首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Triiodothyronine (T3), thyroxine (T4), basal TSH and TSH after stimulation with TRH were determined in healthy subjects and patients treated with D-thyroxine (DT4). After a dosage of 6 mg DT4 the D/L T4 plasma concentration rose about 4-fold 4 hours after application and was only moderately elevated 14 hours later. To achieve constantly elevated T4 levels 3 mg DT4 were applied in the further experiment every 12 hours. The D/L T4 plasma concentration rose 2.5-4-fold and there was a small but significant increase of the D/L T3 plasma concentration. 74 hours after onset of treatment basal TSH was below detectable limits and the increase of TSH 30 min after injection of 200 mug TRH (TRH test) was only about 15% compared to zero time. The time course of TSH suppression was investigated after treatment with DT4 and LT4 (single dosage of 3 mg). TRH-tests were performed before, 10, 26, 50 and 74 hours after the first dosage of D or LT4. There was no difference in the time course of basal TSH and TSH stimulated by TRH. In 10 patients on DT4 long-term therapy, basal and stimulated TSH were found to be below the detectable limits of 0.4 mug/ml. Our results show that (1) plasma half-life of DT4 is less than 1 day, (2) TSH suppression after D and LT4 treatment is very similar, and (3) in patients on long-term DT4 treatment, TSH plasma concentration is below detectable limits even after stimulation with TRH.  相似文献   

2.
The hypothalamus-pituitary-thyroid function was studied in 15 male patients on chronic methadone treatment (40 mg/day). No significant variations of TSH, T4, T3 and rT3 levels were documented, either in basal conditions or after TRH stimulation; however a reduced TSH pituitary response was recorded in some patients (6 out of 15).  相似文献   

3.
The actions of glutamate (L-Glu), and glutamate receptor agonists on serum thyroid hormones (T4 and T3) and TSH levels have been studied in conscious and freely moving adult male rats. The excitatory amino acids (EAA), L-Glu, N-methyl-D-aspartate (NMDA), kainic acid (KA) and domoic acid (Dom) were administered intraperitoneally. Blood samples were collected through a cannula implanted in the rats jugular 0--60 min after injection. Thyroid hormone concentrations were measured by enzyme immunoassay, and thyrotrophin (TSH) concentrations were determined by radioimmunoassay. The results showed that L-Glu (20 and 25 mg/kg) and NMDA (25 mg/kg) increased serum thyroxine (T4), triiodothyronine (T3) and TSH concentrations. Serum thyroid hormone levels increased 30 min after treatment, while serum TSH levels increased 5 min after i.p. administration, in both cases serum levels remained elevated during one hour. Injection of the non-NMDA glutamatergic agonists KA (30 mg/kg) and Dom (1 mg/kg) produced an increase in serum thyroid hormones and TSH levels. These results suggest the importance of EAAs in the regulation of hormone secretion from the pituitary-thyroid axis, as well as the importance of the NMDA and non-NMDA receptors in this stimulatory effect.  相似文献   

4.
The effect of simulated altitude produced by decompression chambers upon the thyroid function was studied in female rats. A significant decrease in blood TSH levels was found when the rats were maintained during 24 hours at a pressure of 0.4 atmosphere, but not at a pressure of 0.7 atmosphere.  相似文献   

5.
6.
Measurement of thyroid stimulating hormone (TSH) in human urine   总被引:1,自引:0,他引:1  
Using a highly sensitive and specific immunoradiometric assay kit for human TSH, we measured TSH concentrations in unprocessed urines in normal subjects, in patients with primary hypothyroidism, and patients with renal disease. In five of ten normal subjects TSH was detectable in urine samples (less than 20-69 microU/day). In five patients with hypothyroidism, the urinary TSH excretion was increased. In seven out of ten patients with nephrotic syndrome, eight out of nine patients with chronic renal failure and two patients with tubular dysfunction, the urinary TSH excretion was increased. The urinary TSH excretion correlated significantly with both urinary protein excretion and urinary beta 2-microglobulin excretion. These results suggest that the renal handling of TSH involves both glomerular filtration and tubular re-absorption, and that urinary TSH excretion is increased when serum TSH is increased and either glomerular or tubular function is impaired.  相似文献   

7.
The livers removed from thyroidectomized and L-T4 supplemented rats were rapidly frozen by Freon-12 chilled with liquid nitrogen, and concentrations of metabolites which affect glycogen synthetase and phosphorylase were determined. Serum and liver glycose levels were not changed in any thyroid functioning. But liver G6P and ATP were increased by thyroidectomy and decreased by L-T4 supplement, while cAMP was increased by the hormone supplement. The "enzyme activity" ratio of glycogen synthetase a to phosphorylase a was increased by thyroidectomy and decreased by L-T4 supplement. The most intimate correlation was observed between the "enzyme activity" ratio and the ratio of the "energy charge" ratio of cAMP among other indices calculated from changes in the metabolite concentrations in the various thyroid functioning. The change in the substrate levels brought about by thyroidectomy and L-T4 supplement appeared to modulate both the enzyme activities which in turn regulate the glycogen metabolism.  相似文献   

8.
Changes in the pituitary-thyroid axis in patients with Hashimoto's thyroiditis following withdrawal of thyroid suppressive therapy were analyzed. The group of patients with thyroid adenoma served as control (group I). Patients with Hashimoto's thyroiditis were divided into 2 groups on the basis of serum TSH levels 8 weeks after discontinuing the exogenous thyroid hormone (group II, less than 10 microunits/ml; group III, more than 10 microunits/ml). During treatment with L-T4(200 micrograms/day) or L-T3(50 micrograms/day), there was no significant difference in serum T4-I and T3 levels among the three groups. Following L-T4 withdrawal, basal serum TSH levels were higher at 2 to 8 weeks in groups II and III than in group I. Serum TSH response to TRH was greater at 4 to 8 weeks in groups II and III than in group I. Following L-T3 withdrawal, basal serum TSH levels were higher at 1 and 2 weeks in group II than in group I, while those of group III were consistently higher during the study. Higher TSH responses to TRH were observed at 1 to 8 weeks in groups II and III. Neither basal nor TRH-induced prolactin (PRL) secretion differed significantly among the three groups. We have demonstrated that pituitary TSH secretion in patients with Hashimoto's thyroiditis is affected more by withdrawal of thyroid hormone therapy than in patients with thyroid adenoma. In addition, the present findings suggest a difference between the sensitivity of thyrotrophs and lactotrophs in Hashimoto's thyroiditis after prolonged thyroid therapy is discontinued.  相似文献   

9.
Pituitary growth hormone (GH) is present in early pregnancy in the fetal circulation. The concentrations are higher than ever found during life, due to an unrestrained, basal secretion. GH receptors develop around midpregnancy, when they are present in low concentrations, and there is a rapid increase during the first months of life. The function of fetal GH - characterized by a nearly complete GH resistance - is largely unclear: there is only a small effect on longitudinal growth, and the regulation of growth factors is independent of GH. Possibly, metabolic effects of GH on fat and glucose metabolism and body composition are of greater importance. During the first months of life, the rapid fetal (GH-independent, nutrition-dependent) growth decelerates, a process that is partly compensated by the onset of GH-dependent longitudinal growth.  相似文献   

10.
B Ahrén 《Peptides》1984,5(2):305-307
Since VIP occurs in intrathyroidal nerves its role in thyroid hormone secretion has been investigated. It has been found that VIP is a stimulator of iodothyronine secretion in mice. In this respect VIP has a weaker potency than TSH, but shows a similar time characteristic. Also, VIP and TSH potentiate each others effects. In contrast to the effect of TSH, that of VIP is uninfluenced by alpha-adrenoceptor blockade. VIP, like TSH, stimulates thyroid cyclic AMP production. Thus, VIP nerves might, together with TSH, adrenergic and cholinergic nerves and other peptides such as somatostatin, participate in the complex regulation of iodothyronine secretion. Beside this, VIP has also been found to stimulate calcitonin secretion in rats. Other intrathyroidal neuropeptides, such as substance P and CCK-4, have been found to be without effects on iodothyronine secretion, but, like VIP, to stimulate calcitonin secretion.  相似文献   

11.
Spontaneously hypertensive rats (SHR) are characterized by several neuroendocrine abnormalities including a chronic hypersecretion of thyrotropin (TSH) of unknown etiology. We hypothesized that the inappropriately high TSH secretion in SHR may be the result of an impaired thyroid hormone negative feedback regulation of hypothalamic thyrotropin-releasing hormone (TRH) and/or pituitary TSH production. To test this hypothesis, SHR or their normotensive Wistar-Kyoto (WKY) controls were treated with either methimazole (0.02% in drinking water) to induce hypothyroidism or administered L-thyroxine (T4) at a dose of 0.8 or 2.0 micrograms/100 g body weight/day to induce hyperthyroidism. All treatments were continued for 14 days after which animals were killed under low stress conditions. TSH concentrations in plasma and anterior pituitary tissue were 2-fold higher (P less than 0.01) in euthyroid SHR compared to WKY control rats while thyroid hormone (T3 and T4) levels were in the normal range. Hypothyroidism induced by either methimazole or thyroidectomy caused a significant (P less than 0.01) rise of plasma TSH levels in both WKY and SHR rats. However, relative to the TSH concentrations in control animals, the increase of plasma TSH in SHR was significantly blunted (P less than 0.01) in comparison to the WKY group. Hypothyroidism caused a significant depletion of TRH in stalk-median eminence (SME) tissue in both groups of rats. However, no differences between SHR and WKY rats were observed. The administration of thyroid hormone caused a dose dependent suppression of plasma TSH levels in both strains of rats. However, at both doses tested plasma TSH concentrations in SHR rats were significantly less suppressed (P less than 0.05) than those in WKY animals. Under in vitro conditions basal and potassium induced TRH release from SMEs derived from SHR was significantly (P less than 0.05) higher than that from WKY rats, whether expressed in absolute terms or as percent of content. These findings suggest that the thyroid hormone negative feedback regulation of TSH secretion may be impaired in SHR rats. Our data do not allow conclusions as to whether defects in the regulation of TSH production are located exclusively at the hypothalamic level. Since the overproduction of hypothalamic TRH and hypophysial TSH should lead to an increased thyroid hormone biosynthesis other defects in the hypothalamus-pituitary-thyroid-axis may contribute to the abnormal regulation of TSH secretion in SHR rats.  相似文献   

12.
13.
In the present study we have examined the in vivo effects of thyroid hormones and TRH on tissue and blood levels of TRH and TRH-Gly (pGlu-His-Pro-Gly), a TRH precursor. Using specific radioimmunoassays (RIAs), we measured TRH immunoreactivity (TRH-IR) and TRH-Gly-IR concentrations in blood, hypothalamus, anterior and posterior pituitary, and thyroid in euthyroid, hypothyroid and thyroxine (T4)-treated 250 g male Sprague-Dawley rats. TRH-Gly-IR and TRH-IR were detected in all of these tissues. Highly significant positive correlations between whole blood TRH-Gly-IR levels and the corresponding serum TSH values (p less than 0.01), whole blood TRH-IR versus serum TSH (p less than 0.01) and whole blood TRH-Gly-IR versus whole blood TRH-IR (p less than 0.01) are consistent with cosecretion of TRH and TRH precursor peptides into the circulation. Euthyroid rats injected with TRH IP (1 microgram/100 g b.wt.) and hypothyroid rats had 4-fold higher whole blood TRH-Gly-IR levels compared to euthyroid controls (p less than 0.0005). Injection of TRH into euthyroid rats significantly increased the TRH-Gly-IR concentration in the hypothalamus, anterior and posterior pituitary and thyroid. The increase in blood TRH-Gly-IR following intravenous TRH may be due, in part, to partial saturation of TRH-degrading enzymes in blood and cell membranes. The ratio of TRH-Gly to TRH was significantly increased in the anterior pituitary by hypothyroidism and TRH injection, suggesting that thyroid hormones and TRH regulate the alpha-amidation of TRH-Gly to form TRH in this tissue. TRH-Gly levels of pooled pituitary and thyroid extracts quantitated by a combination of TRH-Gly RIA and high performance liquid chromatography (HPLC) revealed several-fold increases following incubation at 60 degrees C. Heating at this temperature may block the alpha-amidation activity in extra-hypothalamic tissues but not the "trypsin-like" enzymes which cleave prepro-TRH into TRH-Gly-immunoreactive peptides.  相似文献   

14.
15.
Melatonin and TSH, injected separately, caused no change of the blood thyroxine level at 30 min after treatment. Simultaneous or subsequent administration of the two hormones induced an increase of the level. Thus, melatonin is capable of potentiating acute, thyroxine mobilizing effect of TSH.  相似文献   

16.
17.
This study was undertaken because of uncertainties regarding the influence of hormones on myocardial glycogen metabolism of fed and fasted rats. The results indicate that adrenal hormones exert a stabilizing effect on myocardial glycogen levels in fed animals but are not necessary for synthesis to occur. Hypophysectomy eliminates the glycogen increase that occurs from fasting in normal animals while insulin deficiency leads to elevated glycogen stores in both fed and fasted conditions. These findings suggest that changes in myocardial glycogen metabolism are the results of a synergetic relationship between a variety of hormonal and nutritional factors.  相似文献   

18.
Blood lead was measured at birth for 11,837 infants in Boston. Extensive maternal demographic, pregnancy, and delivery characteristics were recorded for 4354 of them. For 249 of these, intensive environmental sampling was done. Many medical factors were unrelated to blood lead, including diabetes, venereal diseases, preeclampsia, toxemia, hypertension, age, hematocrit, contraceptive use, presentation, type of delivery, fetal distress, premature rupture of membrane, blood type, gestational age, birthweight, Apgar score, jaundice, and mortality by one month. However, use of tobacco, alcohol, coffee, tea, or marihuana, having had an abortion, receiving welfare and being unmarried, Black, or Hispanic are associated with significantly elevated blood lead. Being college educated, Jewish, younger, and multiparitous are related to lower blood lead levels. Environmental factors covarying with blood lead included dust and soil lead and refinishing activity, but not water, air, or paint lead or traffic density. Many of these predictors are intercorrelated. Simultaneous, step-wise regression models of blood lead ranking these factors are presented. Only 18% of the variance is explainable. Temporal and geographic patterns exist even after taking these maternal and environmental factors into account.  相似文献   

19.
20.
Chang J  Wang M  Gui W  Zhao Y  Yu L  Zhu G 《Zoological science》2012,29(3):181-184
The zebrafish (Danio rerio) has been used as a model for the study of endocrine disrupting chemicals. This study set out to determine the profiles of whole-body thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels during the development of zebrafish from embryo to adult. Enzyme-linked immunoassay was used to analyze whole-body T4 and T3 contents. The results showed that whole-body T4 and T3 levels remained stable during the pre-hatching period (0-3 d) and increased significantly during early development after hatching. The T3 level peaked at 0.28 ± 0.01 ng g(-1) body weight at 10 days post-fertilization (dpf), and T4 peaked at 0.58 ± 0.09 ng g(-1) body weight at 21 dpf. Both thyroid hormones subsequently declined during later development. This study establishes a baseline for thyroid hormones in zebrafish, which will be vital for the understanding of thyroid hormone functions and in future studies of thyroid toxicants in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号