首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The M2delta peptide self-assembles to form a pentameric bundle of transmembrane alpha-helices that is a model of the pore-lining region of the nicotinic acetylcholine receptor. Long (>15 ns) molecular dynamics simulations of a model of the M2delta(5) bundle in a POPC bilayer have been used to explore the conformational dynamics of the channel assembly. On the timescale of the simulation, the bundle remains relatively stable, with the polar pore-lining side chains remaining exposed to the lumen of the channel. Fluctuations at the helix termini, and in the helix curvature, result in closing/opening transitions at both mouths of the channel, on a timescale of approximately 10 ns. On average, water within the pore lumen diffuses approximately 4x more slowly than water outside the channel. Examination of pore water trajectories reveals both single-file and path-crossing regimes to occur at different times within the simulation.  相似文献   

2.
The voltage-gated potassium channel in T lymphocytes, Kv1.3, an important target for immunosuppressants, is blocked by picomolar concentrations of the polypeptide ShK toxin and its analogue ShK-Dap22. ShK-Dap22 shows increased selectivity for Kv1.3, and our goal was to determine the molecular basis for this selectivity by probing the interactions of ShK and ShK-Dap22 with the pore and vestibule of Kv1.3. The free energies of interactions between toxin and channel residues were measured using mutant cycle analyses. These data, interpreted as approximate distance restraints, guided molecular dynamics simulations in which the toxins were docked with a model of Kv1.3 based on the crystal structure of the bacterial K(+)-channel KcsA. Despite the similar tertiary structures of the two ligands, the mutant cycle data imply that they make different contacts with Kv1.3, and they can be docked with the channel in configurations that are consistent with the mutant cycle data for each toxin but quite distinct from one another. ShK binds to Kv1.3 with Lys22 occupying the negatively charged pore of the channel, whereas the equivalent residue in ShK-Dap22 interacts with residues further out in the vestibule, producing a significant change in toxin orientation. The increased selectivity of ShK-Dap22 is achieved by strong interactions of Dap22 with His404 and Asp386 on Kv1.3, with only weak interactions between the channel pore and the toxin. Potent and specific blockade of Kv1.3 apparently occurs without insertion of a positively charged residue into the channel pore. Moreover, the finding that a single residue substitution alters the binding configuration emphasizes the need to obtain consistent data from multiple mutant cycle experiments in attempts to define protein interaction surfaces using these data.  相似文献   

3.
Previous studies using combined techniques of site-directed mutagenesis and electrophysiology of voltage-gated Na(+) channels have demonstrated that there are significant overlaps in the regions that are important for the two fundamental properties of the channels, namely gating and permeation. We have previously shown that a pore-lining residue, W402 in S5-S6 region (P loop) in domain I of the micro1 skeletal muscle Na(+) channel, was important in the gating of the channel. Here, we determined the role of an adjacent pore-lining negatively charged residue (E403) in channel gating. Charge neutralization or substitution with positively charged side chain at this position resulted in a marked delay in the rate of recovery from slow inactivation. Indeed, the fast inactivation process appeared intact. Restoration of the negatively charged side chain with a sulfhydryl modifier, MTS-ethylsulfonate, resulted in a reactivation profile from a slow-inactivated state, which was indistinguishable from that of the wild-type channels. We propose an additional functional role for the negatively charged residue. Assuming no major changes in the pore structure induced by the mutations, the negatively charged residue E403 may work in concert with other pore regions during recovery from slow inactivation of the channel. Our data represent the first report indicating the role of negative charge in the slow inactivation of the voltage-gated Na(+) channel.  相似文献   

4.
Recent mutagenesis experiments have confirmed our hypothesis that a segment between S5 and S6 forms the ion selective portion of voltage-gated ion channels. Based on these and other new data, we have revised previous models of the general folding pattern of voltage-gated channel proteins and have developed atomic scale models of the entire transmembrane region of the Shaker A K+ channel. In these models, the ion selective region is a beta-barrel that spans the outer half of the membrane. The inner half of the pore is larger. The voltage-dependent conformational changes of activation gating are modeled to occur by the "helical screw" mechanism, in which the four S4 segments move along and rotate about their axes. These changes are followed by a voltage-independent conformational change, in which the segments linking S4 to S5 move from blocking the intracellular entrance of the pore to forming part of the lining of the large inner portion of the pore. The NH2-terminal of the protein was modeled as an alpha-helix that plugs the intracellular half of the pore to inactivate the channel.  相似文献   

5.
In the absence of x-ray structures of calcium channels, their homology models are used to rationalize experimental data and design new experiments. The modeling relies on sequence alignments between calcium and potassium channels. Zhen et al. (2005. J. Gen. Physiol. doi:10.1085/jgp.200509292) used the substituted cysteine accessibility method (SCAM) to identify pore-lining residues in the Cav2.1 channel and concluded that their data are inconsistent with the symmetric architecture of the pore domain and published sequence alignments between calcium and potassium channels. Here, we have built Kv1.2-based models of the Cav2.1 channel with 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET)-modified engineered cysteines and used Monte Carlo energy minimizations to predict their energetically optimal orientations. We found that depending on the position of an engineered cysteine in S6 and S5 helices, the ammonium group in the long flexible MTSET-modified side chain can orient into the inner pore, an interface between domains (repeats), or an interface between S5 and S6 helices. Different local environments of equivalent positions in the four repeats can lead to different SCAM results. The reported current inhibition by MTSET generally decreases with the predicted distances between the ammonium nitrogen and the pore axis. A possible explanation for outliers of this correlation is suggested. Our calculations rationalize the SCAM data, validate one of several published sequence alignments between calcium and potassium channels, and suggest similar spatial dispositions of S5 and S6 helices in voltage-gated potassium and calcium channels.  相似文献   

6.
The nicotinic acetylcholine (ACh) receptor converts transiently to an open-channel form when activated by ACh released into the synaptic cleft. We describe here the conformational change underlying this event, determined by electron microscopy of ACh-sprayed and freeze-trapped postsynaptic membranes. ACh binding to the α subunits triggers a concerted rearrangement in the ligand-binding domain, involving an ~ 1‐Å outward displacement of the extracellular portion of the β subunit where it interacts with the juxtaposed ends of α-helices shaping the narrow membrane-spanning pore. The β-subunit helices tilt outward to accommodate this displacement, destabilising the arrangement of pore-lining helices, which in the closed channel bend inward symmetrically to form a central hydrophobic gate. Straightening and tangential motion of the pore-lining helices effect channel opening by widening the pore asymmetrically and increasing its polarity in the region of the gate. The pore-lining helices of the αγ and δ subunits, by flexing between alternative bent and straight conformations, undergo the greatest movements. This coupled allosteric transition shifts the structure from a tense (closed) state toward a more relaxed (open) state.  相似文献   

7.
8.
To identify sequence-specific motifs associated with the formation of an ionic pore, we systematically evaluated the channel-forming activity of synthetic peptides with sequence of predicted transmembrane segments of the voltage-gated calcium channel. The amino acid sequence of voltage-gated, dihydropyridine (DHP)-sensitive calcium channels suggests the presence in each of four homologous repeats (I-IV) of six segments (S1-S6) predicted to form membrane-spanning, alpha-helical structures. Only peptides representing amphipathic segments S2 or S3 form channels in lipid bilayers. To generate a functional calcium channel based on a four-helix bundle motif, four-helix bundle proteins representing IVS2 (T4CaIVS2) or IVS3 (T4CaIVS3) were synthesized. Both proteins form cation-selective channels, but with distinct characteristics: the single-channel conductance in 50 mM BaCl2 is 3 pS and 10 pS. For T4CaIVS3, the conductance saturates with increasing concentration of divalent cation. The dissociation constants for Ba2+, Ca2+, and Sr2+ are 13.6 mM, 17.7 mM, and 15.0 mM, respectively. The conductance of T4CaIVS2 does not saturate up to 150 mM salt. Whereas T4CaIVS3 is blocked by microM Ca2+ and Cd2+, T4CaIVS2 is not blocked by divalent cations. Only T4CaIVS3 is modulated by enantiomers of the DHP derivative BayK 8644, demonstrating sequence requirement for specific drug action. Thus, only T4CaIVS3 exhibits pore properties characteristic also of authentic calcium channels. The designed functional calcium channel may provide insights into fundamental mechanisms of ionic permeation and drug action, information that may in turn further our understanding of molecular determinants underlying authentic pore structures.  相似文献   

9.
Communication in the nervous system takes place at chemical and electrical synapses, where neurotransmitter-gated ion channels, such as the nicotinic acetylcholine (ACh) receptor, and gap junction channels control propagation of electrical signals from one cell to the next. Newly developed electron crystallographic methods have revealed the structures of these channels trapped in open as well as closed states, suggesting how they work. The ACh receptor has large vestibules extending from the membrane which shape the ACh-binding pockets and facilitate selective transport of cations across a narrow membrane-spanning pore. When ACh enters the pockets it triggers a concerted conformational change that opens the pore by destabilizing a gate in the middle of the membrane made by a ring of pore-lining alpha-helical segmets. The alternative 'open' configuration of pore-lining segments reshapes the lumen and creates new surfaces, allowing the ions to pass through. The gap junction channel uses a similar structural mechanism, involving coordinated rearrangements of alpha-helical segments in the plane of the membrane, to open its pore.  相似文献   

10.
BACKGROUND: The voltage-gated potassium channel Shaker from Drosophila consists of a tetramer of identical subunits, each containing six transmembrane segments. The atomic structure of a bacterial homolog, the potassium channel KcsA, is much smaller than Shaker. It does not have a voltage sensor and other important domains like the N-terminal tetramerization (T1) domain. The structure of these additional elements has to be studied in the more complex voltage-gated channels. RESULTS: We determined the three-dimensional structure of the entire Shaker channel at 2.5 nm resolution using electron microscopy. The four-fold symmetric structure shows a large and a small domain linked by thin 2 nm long connectors. To interpret the structure, we used the crystal structures of the isolated T1 domain and the KcsA channel. A unique density assignment was made based on the symmetry and dimensions of the crystal structures and domains, identifying the smaller domain as the cytoplasmic mass of Shaker containing T1 and the larger domain as embedded in the membrane. CONCLUSIONS: The two-domain architecture of the Shaker channel is consistent with the recently proposed "hanging gondola" model for the T1 domain, putting the T1 domain at a distance from the membrane domain but attached to it by thin connectors. The space between the two domains is sufficient to permit cytoplasmic access of ions and the N-terminal inactivation domain to the pore region. A hanging gondola architecture has also been observed in the nicotinic acetylcholine receptor and the KcsA structure, suggesting that it is a common element of ion channels.  相似文献   

11.
PA63 channel of anthrax toxin: an extended beta-barrel   总被引:2,自引:0,他引:2  
Anthrax toxin consists of three protein components: protective antigen (PA), lethal factor (LF), and edema factor (EF). PA(63), generated by protease "nicking" of whole PA, is responsible for delivering the toxin's catalytic fragments (LF and EF) to the target cell's cytosol. In planar bilayer membranes, trypsin-nicked PA makes cation-selective voltage-gated channels with a pore diameter of > or =12 A. The channels are presumed to be heptameric "mushrooms", with an extracellular "cap" region and a membrane-inserted, beta-barrel "stem". Although the crystal structure of the water-soluble monomeric form has been resolved to 2.1 A and that of the heptameric "prepore" to 4.5 A, the structure for the membrane-bound channel (pore) has not been determined. We have engineered mutant channels that are cysteine-substituted in residues in the putative beta-barrel, and identified the residues lining the channel lumen by their accessibility to a water-soluble sulfhydryl-specific reagent. The reaction with lumen-exposed cysteinyl side chains causes a drop in channel conductance, which we used to map the residues that line the pore. Our results indicate that the beta-barrel structure extends beyond the bilayer and involves residues that are buried in the monomer. The implication is that major rearrangement of domains in the prepore cap region is required for membrane insertion of the beta-barrel stem.  相似文献   

12.
Lai HC  Grabe M  Jan YN  Jan LY 《Neuron》2005,47(3):395-406
In voltage-gated ion channels, the S4 transmembrane segment responds to changes in membrane potential and controls channel opening. The local environment of S4 is still unknown, even regarding the basic question as to whether S4 is close to the pore domain. Relying on the ability of functional KAT1 channels to rescue potassium (K+) transport-deficient yeast, we have performed an unbiased mutagenesis screen aimed at determining whether S4 packs against S5 of the pore domain. Starting with semilethal mutations of surface-exposed S5 residues of the KAT1 pore domain, we have screened randomly mutagenized libraries of S4 or S1-S3 for second-site suppressors. Our study identifies two S4 residues that interact in a highly specific manner with two S5 residues in the middle of the membrane-spanning regions, supporting a model in which the S4 voltage sensor packs against the pore domain in the hyperpolarized, or "down," state of S4.  相似文献   

13.
Numerous inwardly rectifying potassium (Kir) channels possess an aromatic residue in the helix bundle crossing region, forming the narrowest pore constriction in crystal structures. However, the role of the Kir channel bundle crossing as a functional gate remains uncertain. We report a unique phenotype of Kir6.2 channels mutated to encode glutamate at this position (F168E). Despite a prediction of four glutamates in close proximity, Kir6.2(F168E) channels are predominantly closed at physiological pH, whereas alkalization causes rapid and reversible channel activation. These findings suggest that F168E glutamates are uncharged at physiological pH but become deprotonated at alkaline pH, forcing channel opening due to mutual repulsion of nearby negatively charged side chains. The potassium channel pore scaffold likely brings these glutamates close together, causing a significant pK(a) shift relative to the free side chain (as seen in the KcsA selectivity filter). Alkalization also shifts the apparent ATP sensitivity of the channel, indicating that forced motion of the bundle crossing is coupled to the ATP-binding site and may resemble conformational changes involved in wild-type Kir6.2 gating. The study demonstrates a novel mechanism for engineering extrinsic control of channel gating by pH and shows that conformational changes in the bundle crossing region are involved in ligand-dependent gating of Kir channels.  相似文献   

14.
The nicotinic acetylcholine receptor (nAChR) is an integral membrane protein that forms ligand-gated and cation-selective channels. The central pore is lined by a bundle of five approximately parallel M2 helices, one from each subunit. Candidate model structures of the solvated pore region of a homopentameric (alpha7)5 nAChR channel in the open state, and in two possible forms of the closed state, have been studied using molecular dynamics simulations with restraining potentials. It is found that the mobility of the water is substantially lower within the pore than in bulk, and the water molecules become aligned with the M2 helix dipoles. Hydrogen-bonding patterns in the pore, especially around pore-lining charged and hydrophilic residues, and around exposed regions of the helix backbone, have been determined. Initial studies of systems containing both water and sodium ions together within the pore region have also been conducted. A sodium ion has been introduced into the solvated models at various points along the pore axis and its energy profile evaluated. It is found that the ion causes only a local perturbation of the water structure. The results of these calculations have been used to examine the effectiveness of the central ring of leucines as a component of a gate in the closed-channel model.  相似文献   

15.
NalP is an autotransporter secretory protein found in the outer membrane of Neisseria meningitidis. The crystal structure of the NalP translocator domain revealed a transmembrane beta-barrel containing a central alpha-helix. The role of this alpha-helix, and of the conformational dynamics of the beta-barrel pore have been studied via atomistic molecular dynamics simulations. Three simulations, each of 10 ns duration, of NalP embedded within a solvated DMPC bilayer were performed. The helix was removed from the barrel interior in one simulation. The conformational stability of the protein is similar to that of other outer membrane proteins, e.g., OmpA, in comparable simulations. The transmembrane beta-barrel is stable even in the absence of the alpha-helix. Removal of the helix results in an influx of water into the pore region, suggesting the helix acts as a 'plug'. Water molecules entering the resultant pore form hydrogen bonds with the barrel lining that compensate for the loss of helix-barrel hydrogen bonds. The dimensions of the pore fluctuate over the course of the simulation revealing it to be flexible, but only wide enough to allow transport of the passenger domain in an unfolded or extended conformation. The simulations help us to understand the role of the central helix in plugging the pore and in maintaining the width of the barrel, and show that the NalP monomer is sufficient for the transport of the passenger domain in an unfolded or extended conformation.  相似文献   

16.
Local anesthetics and related drugs block ionic currents of Na+, K+ and Ca2+ conducted across the cell membrane by voltage-dependent ion channels. Many of these drugs bind in the permeation pathway, occlude the pore and stop ion movement. However channel-blocking drugs have also been associated with decreased membrane stability of certain tetrameric K+ channels, similar to the destabilization of channel function observed at low extracellular K+ concentration. Such drug-dependent stability may result from electrostatic repulsion of K+ from the selectivity filter by a cationic drug molecule bound in the central cavity of the channel. In this study we used the pore domain of the KcsA K+ channel protein to test this hypothesis experimentally with a biochemical assay of tetramer stability and theoretically by computational simulation of local anesthetic docking to the central cavity. We find that two common local anesthetics, lidocaine and tetracaine, promote thermal dissociation of the KcsA tetramer in a K+-dependent fashion. Docking simulations of these drugs with open, open-inactivated and closed crystal structures of KcsA yield many energetically favorable drug-channel complexes characterized by nonbonded attraction to pore-lining residues and electrostatic repulsion of K+. The results suggest that binding of cationic drugs to the inner cavity can reduce tetramer stability of K+ channels.  相似文献   

17.
We report the identification, functional expression, purification, reconstitution and electrophysiological characterization of an up to now unique prokaryotic potassium ion channel (KcsA). It has a rectifying current-voltage relationship and displays subconductance states, the largest of which amounts to A approximately equal to 90 pS. The channel is blocked by Cs- ions and gating requires the presence of Mg2+ ions. The kcsA gene has been identified in the gram-positive soil bacterium Streptomyces lividans. It encodes a predicted 17.6 kDa protein with two potential membrane-spanning helices linked by a central domain which shares a high degree of similarity with the H5 segment conserved among eukaryotic ion channels. Multiple alignments of deduced amino acids suggest that the novel channel has the closest kinship to the S5, H5 and S6 regions of voltage-gated K+ channel families, mainly to the subfamily represented by the Shaker protein from Drosophila melanogaster. Moreover, KcsA is most distantly related to eukaryotic inwardly rectifying channels with two putative predicted transmembrane segments.  相似文献   

18.
Three-dimensional models of non-NMDA glutamate receptors.   总被引:6,自引:1,他引:5       下载免费PDF全文
Structural models have been produced for three types of non-NMDA inotropic glutamate receptors: an AMPA receptor, GluR1, a kainate receptor, GluR6; and a low-molecular-weight kainate receptor from goldfish, GFKAR alpha. Modeling was restricted to the domains of the proteins that bind the neurotransmitter glutamate and that form the ion channel. Model building combined homology modeling, distance geometry, molecular mechanics, interactive modeling, and known constraints. The models indicate new potential interactions in the extracellular domain between protein and agonists, and suggest that the transition from the "closed" to the "open" state involves the movement of a conserved positive residue away from, and two conserved negative residues into, the extracellular entrance to the pore upon binding. As a first approximation, the ion channel domain was modeled with a structure comprising a central antiparallel beta-barrel that partially crosses the membrane, and against which alpha-helices from each subunit are packed; a third alpha-helix packs against these two helices in each subunit. Much, but not all, of the available data were consistent with this structure. Modifying the beta-barrel to a loop-like topology produced a model consistent with available data.  相似文献   

19.
Recent studies making use of channel-blocking peptides as molecular calipers have revealed the architecture of the pore-forming region of Shaker-type potassium channels. Here we show that the low-resolution, experimentally derived geometric information can be incorporated as restraints within the context of an annealed molecular dynamics simulation to predict an atomic structure for the channel pore which, by virtue of restraints, conforms to the experimental evidence. The simulation is reminiscent of the computational method employed by nuclear magnetic resonance (NMR) spectroscopists to resolve solution structures of biological macromolecules, but in lieu of restraints conventionally derived from NMR spectra, novel restraints are developed that include side-chain orientation of amino acid residues and assumed symmetry of protein subunits. The method presented here offers the possibility of expanding cooperation between simulation and experiment in developing structural models, especially for systems such as ion channels whose three-dimensional structures may not be amenable to determination by direct methods at the present time.  相似文献   

20.
Understanding the structure and functional mechanisms of voltage-gated calcium channels remains a major task in membrane biophysics. In the absence of three dimensional structures, homology modelling techniques are the method of choice, to address questions concerning the structure of these channels. We have developed models of the open Cav1.2 pore, based on the crystal structure of the mammalian voltage-gated potassium channel Kv1.2 and a model of the bacterial sodium channel NaChBac. Our models are developed to be consistent with experimental data and modelling criteria. The models highlight major differences between voltage-gated potassium and calcium channels, in the P segments, as well as the inner pore helices. Molecular dynamics simulations support the hypothesis of a clockwise domain arrangement and experimental observations of asymmetric calcium channel behaviour. In the accompanying paper these models were used to study structural effects of a channelopathy mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号