共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomic scale structure and functional models of voltage-gated potassium channels. 总被引:6,自引:0,他引:6
下载免费PDF全文

Recent mutagenesis experiments have confirmed our hypothesis that a segment between S5 and S6 forms the ion selective portion of voltage-gated ion channels. Based on these and other new data, we have revised previous models of the general folding pattern of voltage-gated channel proteins and have developed atomic scale models of the entire transmembrane region of the Shaker A K+ channel. In these models, the ion selective region is a beta-barrel that spans the outer half of the membrane. The inner half of the pore is larger. The voltage-dependent conformational changes of activation gating are modeled to occur by the "helical screw" mechanism, in which the four S4 segments move along and rotate about their axes. These changes are followed by a voltage-independent conformational change, in which the segments linking S4 to S5 move from blocking the intracellular entrance of the pore to forming part of the lining of the large inner portion of the pore. The NH2-terminal of the protein was modeled as an alpha-helix that plugs the intracellular half of the pore to inactivate the channel. 相似文献
2.
Several important new findings have furthered the development of voltage-gated and calcium-activated potassium channel pharmacology. The molecular constituents of several members of these large ion channel families were identified. Small-molecule modulators of some of these channels were reported, including correolide, the first potent, small-molecule, natural product inhibitor of the Shaker family of voltage-gated potassium channels to be disclosed. The initial crystal structure of a bacterial potassium channel was determined; this work gives a physical basis for understanding the mechanisms of ion selectivity and ion conduction. With the recent molecular characterization of a potassium channel structure and the discovery of new templates for channel modulatory agents, the ability to rationally identify and develop potassium channel agonists and antagonists may become a reality in the near future. 相似文献
3.
Activity of voltage-gated potassium (Kv) channels controls membrane potential, which subsequently regulates cytoplasmic free calcium concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMCs). Acute hypoxia inhibits Kv channel function in PASMCs, inducing membrane depolarization and a rise in [Ca2+ ]cyt that triggers vasoconstriction. Prolonged hypoxia inhibits expression of Kv channels and reduces Kv channel currents in PASMCs. The consequent membrane depolarization raises [Ca2+]cyt, thus stimulating PASMC proliferation. The present review discusses recent evidence for the involvement of Kv channels in initiation of hypoxic pulmonary vasoconstriction and in chronic hypoxia-induced pulmonary hypertension. 相似文献
4.
Sequence similarity among known potassium channels indicates the voltage-gated potassium channels consist of two modules: the N-terminal portion of the channel up to and including transmembrane segment S4, called in this paper the 'sensor' module, and the C-terminal portion from transmembrane segment S5 onwards, called the 'pore' module. We investigated the functional role of these modules by constructing chimeric channels which combine the 'sensor' from one native voltage-gated channel, mKv1.1, with the 'pore' from another, Shaker H4, and vice versa. Functional studies of the wild type and chimeric channels show that these modules can operate outside their native context. Each channel has a unique conductance-voltage relation. Channels incorporating the mKv1.1 sensor module have similar rates of activation while channels having the Shaker pore module show similar rates of deactivation. This observation suggests the mKv1.1 sensor module limits activation and the Shaker pore module determines deactivation. We propose a model that explains the observed equilibrium and kinetic properties of the chimeric constructs in terms of the characteristics of the native modules and a novel type of intrasubunit cooperativity. The properties ascribed to the modules are the same whether the modules function in their native context or have been assembled into a chimera. 相似文献
5.
Tetraethylammonium ion (TEA+) blocks voltage-gated K+ channels by acting at two sites located at opposite ends of the aqueous pore. This allowed us to test two predictions made by models of ion permeation, namely that K+ channels can be simultaneously occupied by multiple ions and that the ions repel each other. We show that externally applied TEA+ antagonize block by internal TEA+ and vice versa. The antagonism is less than predicted for competitive binding, hence TEA+ may occupy both sites simultaneously. External TEA+ and internal TEA+ reduce each others affinity 4- to 5-fold. In addition, K+ antagonizes block by TEA+ at the opposite side of the membrane, and external TEA+ antagonizes is block by internal Ba2+. The antagonism between ions applied at opposite sides of the membrane may be common to all cations binding to K+ channels. 相似文献
6.
Multiple residues specify external tetraethylammonium blockade in voltage-gated potassium channels. 总被引:3,自引:2,他引:3
We have mapped residues in the carboxyl half of the P region of a voltage-gated K+ channel that influence external tetraethylammonium (TEA) block. Fifteen amino acids were substituted with cysteine and expressed in oocytes from monomeric or heterodimeric cRNAs. From a total of six mutant channels with altered TEA sensitivity, three were susceptible to modification by extracellularly applied charged methanethiosulfonates (MTSX). Another residue did not affect TEA block but was protected from MTSX by TEA. MTSX modification of position Y380C, thought to form the TEA binding site, affected TEA affinity only moderately, and this effect could be reversed by additional charge transfer from an oppositely charged MTSX analog. The results show that TEA block is modulated from multiple sites, including residues located deep in the pore and that several side chains besides that of Y380 are exposed at the TEA receptor. 相似文献
7.
The external TEA binding site and C-type inactivation in voltage-gated potassium channels 总被引:5,自引:0,他引:5
下载免费PDF全文

The location of the tetraethylammonium (TEA) binding site in the outer vestibule of K+ channels, and the mechanism by which external TEA slows C-type inactivation, have been considered well-understood. The prevailing model has been that TEA is coordinated by four amino acid side chains at the position equivalent to Shaker T449, and that TEA prevents a constriction that underlies inactivation via a foot-in-the-door mechanism at this same position. However, a growing body of evidence has suggested that this picture may not be entirely correct. In this study, we reexamined these two issues, using both the Kv2.1 and Shaker potassium channels. In contrast to results previously obtained with Shaker, substitution of the tyrosine at Kv2.1 position 380 (equivalent to Shaker 449) with a threonine or cysteine had a relatively minor effect on TEA potency. In both Kv2.1 and Shaker, modification of cysteines at position 380/449 by 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET) proceeded at identical rates in the absence and presence of TEA. Additional experiments in Shaker demonstrated that TEA bound well to C-type inactivated channels, but did not interfere with MTSET modification of C449 in inactivated channels. Together, these findings rule out the possibility that TEA binding involves an intimate interaction with the four side chains at the position equivalent to Shaker 449. Moreover, these results argue against the model whereby TEA slows inactivation via a foot-in-the-door mechanism at position 449, and also argue against the hypothesis that the position 449 side chains move toward the center of the conduction pathway during inactivation. Occupancy by TEA completely prevented MTSET modification of a cysteine in the outer-vestibule turret (Kv2.1 position 356/Shaker position 425), which has been shown to interfere with both TEA binding and the interaction of K+ with an external binding site. Together, these data suggest that TEA is stabilized in a more external position in the outer vestibule, and does not bind via direct coordination with any specific outer-vestibule residues. 相似文献
8.
The homology models of the tetramerization (T1) domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were constructed based on the crystal structure of the Shaker T1 domain. The results of amino acid sequence alignment indicate that the T1 domains of these K+ channels are highly conserved, with the similarities varying from 77% between Shaker and Kv1.6 to 93% between Kv1.2 and Kv1.3. The homology models reveal that the T1 domains of these Kv channels exhibit similar folds as those of Shaker K+ channel. These models also show that each T1 monomer consists of three distinct layers, with N-terminal layer 1 and C-terminal layer 3 facing the cytoplasm and the membrane, respectively. Layer 2 exhibits the highest structural conservation because it is located around the central hydrophobic core. For each Kv channel, four identical subunits assemble into the homotetramer architecture around a four-fold axis through the hydrogen bonds and salt bridges formed by 15 highly conserved polar residues. The narrowest opening of the pore is formed by the four conserved residues corresponding to R115 of the Shaker T1 domain. The homology models of these Kv T1 domains provide particularly attractive targets for further structure-based studies. 相似文献
9.
The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD) on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs) are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type) potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%), ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology. 相似文献
10.
Probing the cavity of the slow inactivated conformation of shaker potassium channels 总被引:1,自引:0,他引:1
下载免费PDF全文

Slow inactivation involves a local rearrangement of the outer mouth of voltage-gated potassium channels, but nothing is known regarding rearrangements in the cavity between the activation gate and the selectivity filter. We now report that the cavity undergoes a conformational change in the slow-inactivated state. This change is manifest as altered accessibility of residues facing the aqueous cavity and as a marked decrease in the affinity of tetraethylammonium for its internal binding site. These findings have implications for global alterations of the channel during slow inactivation and putative coupling between activation and slow-inactivation gates. 相似文献
11.
Recent evidence points to the crucial involvement of voltage-gated potassium channels (Kv) in apoptotic volume decrease and in the regulation of apoptosis in several systems. We have recently described the presence of a Kv channel, Kv1.3, in the mitochondria of lymphocytes. Expression of the channel correlated with increased sensitivity to apoptotic stimuli. Mitochondrial Kv1.3 contributes to the apoptotic cascade in T lymphocytes by interacting with pro-apoptotic Bax resulting in alteration of mitochondrial functional parameters and ultimately, in cytochrome c release. The present review summarizes the current understanding of the function of Kv channels in apoptosis in several cell types as well as the role of mitochondrial Kv1.3 in the regulation of cell death in lymphocytes. 相似文献
12.
Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. 总被引:53,自引:9,他引:53
下载免费PDF全文

W Stühmer J P Ruppersberg K H Schr?ter B Sakmann M Stocker K P Giese A Perschke A Baumann O Pongs 《The EMBO journal》1989,8(11):3235-3244
Cloning and sequencing of cDNAs isolated from a rat cortex cDNA library reveals that a gene family encodes several highly homologous K+ channel forming (RCK) proteins. Functional characterization of the channels expressed in Xenopus laevis oocytes following microinjection of in vitro transcribed RCK-specific RNAs shows that each of the RCK proteins forms K+ channels that differ greatly in both their functional and pharmacological properties. This suggests that the molecular basis for the diversity of voltage-gated K+ channels in mammalian brain is based, at least partly, on the expression of several RCK proteins by a family of genes and their assembly to homooligomeric K+ channels with different functional properties. 相似文献
13.
The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes 总被引:10,自引:0,他引:10
S Bevan S Y Chiu P T Gray J M Ritchie 《Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain)》1985,225(1240):299-313
Patch-clamp recording from the plasmalemma of rat cultured astrocytes reveals the presence of both voltage-dependent sodium and voltage-dependent potassium conductances. These conductances are similar but not identical to the corresponding conductances in the axolemma. Whereas the h infinity relation of the sodium channels has the same voltage dependence as in the nodal axolemma, the peak current-voltage relation is shifted by about 30 mV along the voltage axis in the depolarizing direction. It is speculated that the glial cells synthesize sodium and potassium channels for later insertion into the axolemma of neighbouring axons. The astrocytes also express a plasmalemmal voltage-dependent anion conductance that is turned on at about -40 mV (that is, near the resting potential of the cultured astrocytes). The channels involved are large enough to be just permeable to glutamate but not to ascorbate. It is suggested that the conductance of this channel for chloride plays a physiological role in the spatial buffering of potassium by glial cells. 相似文献
14.
Ryan C Smith Marisa C McClure Margaret A Smith Peter W Abel Michael E Bradley 《Reproductive biology and endocrinology : RB&E》2007,5(1):41
Background
Uterine smooth muscle cells exhibit ionic currents that appear to be important in the control of uterine contractility, but how these currents might produce the changes in contractile activity seen in pregnant myometrium has not been established. There are conflicting reports concerning the role of voltage-gated potassium (Kv) channels and large-conductance, calcium-activated potassium (BK) channels in the regulation of uterine contractility. In this study we provide molecular and functional evidence for a role for Kv channels in the regulation of spontaneous contractile activity in mouse myometrium, and also demonstrate a change in Kv channel regulation of contractility in pregnant mouse myometrium. 相似文献15.
The permeation pathway in voltage-gated potassium channels has narrow constrictions at both the extracellular and intracellular ends. These constrictions might limit the flux of cations from one side of the membrane to the other. The extracellular constriction is the selectivity filter, whereas the intracellular bundle crossing is proposed to act as the activation gate that opens in response to a depolarization. This four-helix bundle crossing is composed of S6 transmembrane segments, one contributed by each subunit. Here, we explore the cytoplasmic extension of the S6 transmembrane segment of Shaker potassium channels, just downstream from the bundle crossing. We substituted cysteine for each residue from N482 to T489 and determined the amplitudes of single channel currents and maximum open probability (P(o,max)) at depolarized voltages using nonstationary noise analysis. One mutant, F484C, significantly reduces P(o,max), whereas Y483C, F484C, and most notably Y485C, reduce single channel conductance (gamma). Mutations of residue Y485 have no effect on the Rb(+)/K(+) selectivity, suggesting a local effect on gamma rather than an allosteric effect on the selectivity filter. Y485 mutations also reduce pore block by tetrabutylammonium, apparently by increasing the energy barrier for blocker movement through the open activation gate. Replacing Rb(+) ions for K(+) ions reduces the amplitude of single channel currents and makes gamma insensitive to mutations of Y485. These results suggest that Rb(+) ions increase an extracellular energy barrier, presumably at the selectivity filter, thus making it rate limiting for flux of permeant ions. These results indicate that S6(T) residues have an influence on the conformation of the open activation gate, reflected in both the stability of the open state and the energy barriers it presents to ions. 相似文献
16.
Stoichiometry studies reveal functional properties of KDC1 in plant shaker potassium channels
下载免费PDF全文

Functional heteromeric plant Shaker potassium channels can be formed by the assembly of subunits from different tissues, as well as from diverse plant species. KDC1 (K(+) Daucus carota 1) produces inward-rectifying currents in Xenopus oocytes when coexpressed with KAT1 and other subunits appertaining to different plant Shaker subfamilies. Owing to the presence of KDC1, resulting heteromeric channels display slower activation kinetics, a shift of the activation threshold toward more negative membrane potentials and current potentiation upon the addition of external zinc. Despite available information on heteromerization of plant Shaker channels, very little is known to date on the properties of the various stoichiometric configurations formed by different subunits. To investigate the functional properties of heteromeric nKDC1/mKAT1 configurations, we realized a series of dimeric constructs combining KDC1 and KAT1 alpha-subunits. We found that homomeric channels, formed by monomeric or dimeric alpha-subunit constructs, show identical biophysical characteristics. Coinjections of diverse tandem constructs, instead, displayed significantly different currents proving that KDC1 has high affinity for KAT1 and participates in the formation of functional channels with at most two KDC1 subunits, whereas three KDC1 subunits prevented the formation of functional channels. This article brings a contribution to the understanding of the molecular mechanisms regulating plant Shaker channel functionality by association of modulatory subunits. 相似文献
17.
18.
19.
The moving parts of voltage-gated ion channels. 总被引:32,自引:0,他引:32
G Yellen 《Quarterly reviews of biophysics》1998,31(3):239-295
20.
The mechanism by which 4-aminopyridine (4-AP) blocks the delayed rectifier type potassium (K+) channels present on lipopolysaccharide-activated murine B lymphocytes was investigated using whole-cell and single channel patch-clamp recordings. 4-AP (1 microM-5 mM) was superfused for 3-4 min before applying depolarizing pulses to activate the channel. During the first pulse after application of 4-AP above 50 microM, the current inactivated faster, as compared with the control, but its peak was only reduced at high concentrations of 4-AP (Kd = 3.1 mM). During subsequent pulses, the peak current was decreased (Kd = 120 microM), but the inactivation rate was slower than in the control, a feature that could be explained by a slow unblocking process. After washing out the drug, the current elicited by the first voltage step was still markedly reduced, as compared with the control one, and displayed very slow activation and inactivation kinetics; this suggests that the K+ channels move from a blocked to an unblocked state slowly during the depolarizing pulse. These results show that 4-AP blocks K+ channels in their open state and that the drug remains trapped in the channel once it is closed. On the basis of the analysis of the current kinetics during unblocking, we suggest that two pathways lead from the blocked to the unblocked states. Computer simulations were used to investigate the mechanism of action of 4-AP. The simulations suggest that 4-AP must bind to both an open and a nonconducting state of the channel. It is postulated that the latter is either the inactivated channel or a site on closed channels only accessible to the drug once the cell has been depolarized. Using inside- and outside-out patch recordings, we found that 4-AP only blocks channels from the intracellular side of the membrane and acts by reducing the mean burst time. 4-AP is a weak base (pK = 9), and thus exists in ionized or nonionized form. Since the Kd of channel block depends on both internal and external pH, we suggest that 4-AP crosses the membrane in its nonionized form and acts from inside the cell in its ionized form. 相似文献