首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Bone and mineral》1994,24(2):109-126
We have previously shown that tumor necrosis factor (TNF) and interleukin-1 (IL-1) acted synergistically to stimulate the production of IL-6 by bone marrow stromal and osteoblastic cells; and that an antibody to IL-6 inhibited TNF-induced osteoclast development in murine calvarial cell cultures. Prompted by this evidence, we have now examined whether TNF and/or IL-1 are produced by murine calvarial cells, and whether these cytokines are involved in IL-6 production and osteoclast formation. When cultured under basal conditions, calvarial cells produced TNF and IL-6, and were able to form bone resorbing osteoclasts. A neutralizing antibody against TNF suppressed both basal IL-6 production and the formation of bone resorbing osteoclasts. The anti-TNF antibody also inhibited IL-6 production in response to exogenous IL-1 or parathyroid hormone (PTH). In contrast, a neutralizing anti-IL-1 receptor antibody had no effect on basal, TNF- or PTH-stimulated IL-6 production. These findings suggest that TNF, but not IL-1, is produced by murine bone cells and that endogenous TNF induces the IL-6 production, osteoclast formation, and bone resorption exhibited by these cultures under basal conditions. Furthermore, bone cell-derived TNF amplifies the stimulatory effect of exogenous IL-1 or PTH on IL-6 production by calvarial cells.  相似文献   

2.
Fibroblast growth factor (FGF)-2 and parathyroid hormone (PTH) are potent inducers of osteoclast (OCL) formation, and PTH increases FGF-2 mRNA and protein expression in osteoblasts. To elucidate the role of endogenous FGF-2 in PTH responses, we examined PTH-induced OCL formation in bone marrow cultures from wild type and mice with a disruption of the Fgf2 gene. FGF-2-induced OCL formation was similar in marrow culture from both genotypes. In contrast, PTH-stimulated OCL formation in bone marrow cultures or co-cultures of osteoblast-spleen cells from Fgf2-/mice was significantly impaired. PTH increased RANKL mRNA expression in osteoblasts cultures from both genotypes. After 6 days of treatment, osteoprotegerin protein in cell supernatants was 40-fold higher in vehicle-treated and 30-fold higher in PTH-treated co-cultures of osteoblast and spleen cells from Fgf2-/mice compared with Fgf2+/+ mice. However, a neutralizing antibody to osteoprotegerin did not rescue reduced OCL formation in response to PTH. Injection of PTH caused hypercalcemia in Fgf2+/+ but not Fgf2-/mice. We conclude that PTH stimulates OCL formation and bone resorption in mice in part by endogenous FGF-2 synthesis by osteoblasts. Because RANKL- and interleukin-11-induced OCL formation was also reduced in bone marrow cultures from Fgf2-/mice, we further conclude that endogenous FGF-2 is necessary for maximal OCL formation by multiple bone resorbing factors.  相似文献   

3.
4.
Medium conditioned by incubation with embryonic chick calvarial bones, which contain osteoblasts but not osteoclasts, stimulated new osteoclast formation in foetal long bone cultures and in adult bone marrow cultures formation of tartrate-resistant acid phosphatase (TRAP) positive cells was greatly stimulated. We have termed the factor responsible for this activity osteoclast growth/inducing factor (OGF). OGF was soluble, heat-stable and of size greater than 10kda. OGF activity was present also in mouse bone conditioned medium and in extracts of demineralized cortical diaphyseal bone of five-week-old chickens. OGF appeared to differ from the osteoblast-derived bone-resorbing factors previously observed as well as from macrophage colony stimulating factor (CSF-1). It is therefore probable that different locally secreted factors independently regulate the formation of osteoclasts and their activity.  相似文献   

5.
In vitro studies have shown that CD44 is involved in the fusion process of osteoclast precursor cells. Yet, in vivo studies do not support this, since an osteopetrotic phenotype has not been described for CD44 knock-out (CD44 k.o.) mice. This discrepancy may suggest that the role of CD44 in fusion may depend on the microenvironment of osteoclast formation. We investigated osteoclast formation of CD44 k.o. and wild-type mice under three conditions: in vitro, both on plastic and on bone and in vivo by analyzing osteoclast number, and size in long bones from wild-type and CD44 k.o. mice. Bone marrow cells from wild-type and CD44 k.o. mice were analyzed for their capacity to form osteoclasts on plastic and on bone in the presence of macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL). On plastic, the number of multinucleated tartrate resistant acid phosphatase (TRAP) positive cells in CD44 k.o. cultures was twofold higher than in wild-type cultures. On bone, however, equal numbers of osteoclasts were formed. Interestingly, the total number of osteoclasts formed on bone proved to be higher than on plastic for both genotypes, strongly suggesting that osteoclastogenesis was stimulated by the bone surface, and that CD44 is not required for osteoclast formation on bone. Functional analyses showed that bone resorption was similar for both genotypes. We further studied the osteoclastogenic potential of wild-type bone marrow cells in the presence of CD44 blocking antibodies. Osteoclastogenesis was not affected by these antibodies, a further indication that CD44 is not required for the formation of multinucleated cells. Finally, we analyzed the in vivo formation of osteoclasts by analyzing long bones from wild-type and CD44 k.o. mice. Morphometric analysis revealed no difference in osteoclast number, nor in number of nuclei per osteoclasts or in osteoclast size. Our in vitro experiments on plastic showed an enhanced formation of osteoclasts in the absence of CD44, thus suggesting that CD44 has an inhibitory effect on osteoclastogenesis. However, when osteoclasts were generated on bone, no differences in number of multinucleated cells nor in bone resorption were seen. These observations are in agreement with in vivo osteoclast characteristics, where no differences between wild-type and CD44 k.o. bones were encountered. Therefore, the modulating role of CD44 in osteoclast formation appears to depend on the microenvironment.  相似文献   

6.
7.
Over-expression of human FGF-2 cDNA linked to the phosphoglycerate kinase promoter in transgenic (TgFGF2) mice resulted in a dwarf mouse with premature closure of the growth plate and shortening of bone length. This study was designed to further characterize bone structure and remodeling in these mice. Bones of 1-6 month-old wild (NTg) and TgFGF2 mice were studied. FGF-2 protein levels were higher in bones of TgFGF2 mice. Bone mineral density was significantly decreased as early as 1 month in femurs from TgFGF2 mice compared with NTg mice. Micro-CT of trabecular bone of the distal femurs from 6-month-old TgFGF2 mice revealed significant reduction in trabecular bone volume, trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Osteoblast surface/bone surface, double-labeled surface, mineral apposition rate, and bone formation rates were all significantly reduced in TgFGF2 mice. There were fewer TRAP positive osteoclasts in calvaria from TgFGF2 mice. Quantitative histomorphometry showed that total bone area was similar in both genotypes, however percent osteoclast surface, and osteoclast number/bone surface were significantly reduced in TgFGF2 mice. Increased replication of TgFGF2 calvarial osteoblasts was observed and primary cultures of bone marrow stromal cells from TgFGF2 expressed markers of mature osteoblasts but formed fewer mineralized nodules. The data presented indicate that non-targeted over-expression of FGF-2 protein resulted in decreased endochondral and intramembranous bone formation. These results are consistent with FGF-2 functioning as a negative regulator of postnatal bone growth and remodeling in this animal model.  相似文献   

8.
Physical interaction between the cell surface receptors CD47 and signal regulatory protein alpha (SIRPalpha) was reported to regulate cell migration, phagocytosis, cytokine production, and macrophage fusion. However, it is unclear if the CD47/SIRPalpha-interaction can also regulate macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-stimulated formation of osteoclasts. Here, we show that functional blocking antibodies to either CD47 or SIRPalpha strongly reduced formation of multinucleated tartrate-resistant acid phosphatase (TRAP)+ osteoclasts in cultures of murine hematopoietic cells, stimulated in vitro by M-CSF and RANKL. In addition, the numbers of osteoclasts formed in M-CSF/RANKL-stimulated bone marrow macrophage cultures from CD47-/- mice were strongly reduced, and bones of CD47-/- mice exhibited significantly reduced osteoclast numbers, as compared with wild-type controls. We conclude that the CD47/SIRPalpha interaction is important for M-CSF/RANKL-stimulated osteoclast formation both in vivo and in vitro, and that absence of CD47 results in decreased numbers of osteoclasts in CD47-/- mice.  相似文献   

9.
A spontaneous mutation in Bruton's tyrosine kinase (Btk) induces a defect in B-cell development that results in the immunodeficiency diseases X-linked agammaglobulinemia in humans and X-linked immunodeficiency (Xid) in mice. Here we show an unexpected role of Btk in osteoclast formation. When bone marrow cells derived from Xid mice were stimulated with receptor activator of NF-kappaB ligand, an osteoclast differentiation factor, they did not completely differentiate into mature multinucleated osteoclasts. Moreover, we found that the defects appeared to occur at the stage in which mononuclear preosteoclasts fuse to generate multinucleated cells. Supporting this notion, macrophages from Xid mice also failed to form multinucleated foreign body giant cells. The fusion defect of the Xid mutant osteoclasts was caused by decreased expression of nuclear factor of activated T cells c1 (NFATc1), a master regulator of osteoclast differentiation, as well as reduced expression of various osteoclast fusion-related molecules, such as the d2 isoform of vacuolar H(+)-ATPase V0 domain and the dendritic cell-specific transmembrane protein. This deficiency was completely rescued by the introduction of a constitutively active form of NFATc1 into bone marrow-derived macrophages. Our data provide strong evidence that Btk plays a critical role in osteoclast multinucleation by modulating the activity of NFATc1.  相似文献   

10.
Continuous elevation of parathyroid hormone (PTH) increases osteoclast precursors, the number of osteoclasts on cancellous bone, and bone turnover. The essential molecular mediators of these effects are controversial, however, and both increased receptor activator of NF-kappaB ligand (RANKL) and IL-6 have been implicated. The goal of these studies was to determine whether continuous elevation of endogenous PTH alters IL-6 gene expression in vivo and whether IL-6 is required for PTH-induced bone loss. To accomplish this, we generated transgenic mice harboring a luciferase reporter gene under the control of IL-6 gene regulatory regions to allow accurate quantification of IL-6 gene activity in vivo. In these mice, induction of secondary hyperparathyroidism using a calcium-deficient diet did not alter IL-6-luciferase transgene expression, whereas RANKL mRNA expression was elevated in bone tissue. Moreover, secondary hyperparathyroidism induced an equivalent amount of bone loss in wild-type and IL-6-deficient mice, and PTH elevated RANKL mRNA and osteoclast formation to the same extent in bone marrow cultures derived from wild-type and IL-6-deficient mice. These results demonstrate that IL-6 is not required for the osteoclast formation and bone loss that accompanies continuous elevation of PTH.  相似文献   

11.
The contribution of remodeling-based bone formation coupled to osteoclast activity versus modeling-based bone formation that occurs independently of resorption, to the anabolic effect of PTH remains unclear. We addressed this question using transgenic mice with activated PTH receptor signaling in osteocytes that exhibit increased bone mass and remodeling, recognized skeletal effects of PTH elevation. Direct inhibition of bone formation was accomplished genetically by overexpressing the Wnt antagonist Sost/sclerostin; and resorption-dependent bone formation was inhibited pharmacologically with the bisphosphonate alendronate. We found that bone formation induced by osteocytic PTH receptor signaling on the periosteal surface depends on Wnt signaling but not on resorption. In contrast, bone formation on the endocortical surface results from a combination of Wnt-driven increased osteoblast number and resorption-dependent osteoblast activity. Moreover, elevated osteoclasts and intracortical/calvarial porosity is exacerbated by overexpressing Sost and reversed by blocking resorption. Furthermore, increased cancellous bone is abolished by Wnt inhibition but further increased by blocking resorption. Thus, resorption induced by PTH receptor signaling in osteocytes is critical for full anabolism in cortical bone, but tempers bone gain in cancellous bone. Dissecting underlying mechanisms of PTH receptor signaling would allow targeting actions in different bone compartments, enhancing the therapeutic potential of the pathway.  相似文献   

12.
Recombinant human interleukin-10 (hIL-10) inhibited the formation of osteoclast-like multinucleated cells in rat whole bone marrow cultures. The effect of hIL-10 on the process of osteoclast formation was further examined, since the process of osteoclast formation includes the proliferation and the differentiation of osteoclast progenitors into mononuclear preosteoclasts and the fusion of preosteoclasts into multinucleated osteoclasts. In the nonadherent bone marrow cell culture system, which was free of stromal cells and formed preosteoclast-like cells, hIL-10 significantly inhibited the formation of preosteoclast-like cells even at a very low concentration (0.5 U/ml). The strong inhibition appeared even after treatment with hIL-10 for only the first 24 h of the culture. However, hIL-10 did not affect the fusion process of preosteoclast-like cells to form osteoclast-like multinucleated cells in the rat coculture system of preosteoclast-like cells with primary osteo-blasts. Furthermore, hIL-10 completely inhibited the colony formation induced by granulocyte macrophage colony-stimulating factor (GM-CSF). These findings suggest that the inhibition of osteoclastogenesis by hIL-10 started at the early stage of the differentiation of osteoclast progenitors to preosteoclasts. © 1995 Wiley-Liss Inc.  相似文献   

13.
Osteoclasts are formed in cocultures of mouse calvarial cells and hematopoietic cells in the presence of osteotropic factors such as 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], parathyroid hormone (PTH) and prostaglandin E2 (PGE2). We isolated osteoclast precursors (OCPs) from the coculture and examined their characteristics. After coculture for 7 days of mouse calvarial cells and bone marrow cells in the absence of osteotropic factors, hematopoietic cells were recovered and applied to a Sephadex G-10 column. Cells which passed through the column were collected as OCPs. When OCPs were cultured on calvarial cell layers in the presence of 1α,25(OH)2D3, tartrate-resistant acid phosphatase (TRAP)–positive cells first appeared within 24 h, and their number increased thereafter. OCPs also differentiated into TRAP-positive cells within 48 h on the calvarial cell layer which had been pretreated with either 1α,25(OH)2D3, PTH, or PGE2. Autoradiography using [125I]-labeled calcitonin showed that TRAP-positive cells formed on the calvarial cell layer expressed calcitonin receptors. Direct contact between OCPs and calvarial cells was required for the differentiation of OCPs into TRAP-positive cells. Flow cytometric analysis revealed that OCPs were positive for Mac-1, Mac-2, and Gr-1 but negative for F4/80, B220 and CD3e. Calvarial cells obtained from macrophage-colony stimulating factor (M-CSF)–deficient osteopetrotic (op/op) mice did not support OCP formation. A cell preparation disaggregated from long bones of newborn mice contained OCPs that differentiated into TRAP-positive cells on calvarial cells within 48 h, but cell preparations of freshly isolated bone marrow cells and alveolar macrophages did not. These results suggest that OCPs are specific cells which are formed only in the bone microenvironment and that OCPs recognize a signal(s) expressed by stromal cells in response to osteotropic factors and differentiate into osteoclasts. J. Cell. Physiol. 177:26–35, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
15.
We have utilized the adenylate cyclase stimulator, cholera toxin, as a tool to test the role of cyclic AMP as a mediator of the effects on bone resorption by the calcium-regulating hormones, parathyroid hormone (PTH) and calcitonin. The effects on bone resorption were studied in an organ culture system using calvarial bones from newborn mice. Cyclic AMP response was assayed in calvarial bone explants and isolated osteoblasts from neonatal mouse calvaria. Cholera toxin caused a dose-dependent cAMP response in calvarial bones, seen at and above approx. 1-3 ng/ml and calculated half-maximal stimulation (EC50) at 18 ng/ml. The stimulatory effect of cholera toxin could be potentiated by the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX, 0.2 mmol/l). Cyclic AMP accumulation in the bones was maximal after 4-6 h, and thereafter declined. However, activation of the adenylate cyclase was irreversible and the total amount (bone + medium) of cAMP produced, in the presence of IBMX (0.2 mmol/l), increased with time, for at least 48 h. In osteoblast-like cells cholera toxin (1 microgram/ml) stimulated the cellular levels of cAMP with a peak after 60-120 min, which could be potentiated with IBMX. The total cAMP accumulation indicated an irreversible response. In short-term bone organ cultures (at most, 24 h) cholera toxin, at and above 3 ng/ml, inhibited the stimulatory effect of PTH (10 nmol/l) on 45Ca release from prelabelled calvarial bones. The inhibitory effect of cholera toxin (0.1 microgram/ml) on 45Ca release was significant after 6 h and the calculated IC50 value at 24 h was 11.2 ng/ml. Cholera toxin (0.1 microgram/ml) also inhibited PTH-stimulated (10 nmol/l) release of Ca2+, inorganic phosphate (Pi), beta-glucuronidase, beta-N-acetylglucosaminidase and degradation of organic matrix (release of 3H from [3H]proline-labelled bones) in 24 h cultures. 45Ca release from bones stimulated by prostaglandin E2 (1 mumol/l) and 1 alpha-hydroxyvitamin D3 (0.1 mumol/l) was also inhibited by cholera toxin (0.3 microgram/ml) in 24-h cultures. The inhibitory effect of cholera toxin on bone resorption was transient, and in long-term cultures (120 h) cholera toxin caused a dose-dependent, delayed stimulation of mineral mobilization (Ca2+, 45Ca, Pi), degradation of matrix and release of the lysosomal enzymes beta-glucuronidase and beta-N-acetylglucosaminidase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Although PKD is broadly expressed and involved in numerous cellular processes, its function in osteoclasts has not been previously reported. In this study, we found that PKD2 is the main PKD isoform expressed in osteoclastic cells. PKD phosphorylation, indicative of the activated state, increased after 2–3 days of treatment of bone marrow macrophages with M-CSF and RANKL, corresponding to the onset of preosteoclast fusion. RNAi against PKD2 and treatment with the PKD inhibitor CID755673 showed that PKD activity is dispensable for induction of bone marrow macrophages into tartrate-resistant acid phosphatase-positive preosteoclasts in culture but is required for the transition from mononucleated preosteoclasts to multinucleated osteoclasts. Loss of PKD activity reduced expression of DC-STAMP in RANKL-stimulated cultures. Overexpression of DC-STAMP was sufficient to rescue treatment with CID755673 and restore fusion into multinucleated osteoclasts. From these data, we conclude that PKD activity promotes differentiation of osteoclast progenitors through increased expression of DC-STAMP.  相似文献   

17.
The clinical findings that alendronate blunted the anabolic effect of human parathyroid hormone (PTH) on bone formation suggest that active resorption is involved and enhances the anabolic effect. PTH signals via its receptor on the osteoblast membrane, and osteoclasts are impacted indirectly via the products of osteoblasts. Microarray with RNA from rats injected with human PTH or vehicle showed a strong association between the stimulation of monocyte chemoattractant protein-1 (MCP-1) and the anabolic effects of PTH. PTH rapidly and dramatically stimulated MCP-1 mRNA in the femora of rats receiving daily injections of PTH or in primary osteoblastic and UMR 106-01 cells. The stimulation of MCP-1 mRNA was dose-dependent and a primary response to PTH signaling via the cAMP-dependent protein kinase pathway in vitro. Studies with the mouse monocyte cell line RAW 264.7 and mouse bone marrow proved that osteoblastic MCP-1 can potently recruit osteoclast monocyte precursors and facilitate receptor activator of NF-kappaB ligand-induced osteoclastogenesis and, in particular, enhanced fusion. Our model suggests that PTH-induced osteoblastic expression of MCP-1 is involved in recruitment and differentiation at the stage of multinucleation of osteoclast precursors. This information provides a rationale for increased osteoclast activity in the anabolic effects of PTH in addition to receptor activator of NF-kappaB ligand stimulation to initiate greater bone remodeling.  相似文献   

18.
Osteoporosis is associated with both atherosclerosis and vascular calcification attributed to hyperlipidemia. However, the cellular and molecular mechanisms explaining the parallel progression of these diseases remain unclear. Here, we used low-density lipoprotein receptor knockout (LDLR(-/-)) mice to elucidate the role of LDLR in regulating the differentiation of osteoclasts, which are responsible for bone resorption. Culturing wild-type osteoclast precursors in medium containing LDL-depleted serum decreased receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation, and this defect was additively rescued by simultaneous treatment with native and oxidized LDLs. Osteoclast precursors constitutively expressed LDLR in a RANKL-independent manner. Osteoclast formation from LDLR(-/-) osteoclast precursors was delayed, and the multinucleated cells formed in culture were smaller and contained fewer nuclei than wild-type cells, implying impaired cell-cell fusion. Despite these findings, RANK signaling, including the activation of Erk and Akt, was normal in LDLR(-/-) preosteoclasts, and RANKL-induced expression of NFATc1 (a master regulator of osteoclastogenesis), cathepsin K, and tartrate-resistant acid phosphatase was equivalent in LDLR-null and wild-type cells. In contrast, the amounts of the osteoclast fusion-related proteins v-ATPase V(0) subunit d2 and dendritic cell-specific transmembrane protein in LDLR(-/-) plasma membranes were reduced when compared with the wild type, suggesting a correlation with impaired cell-cell fusion, which occurs on the plasma membrane. LDLR(-/-) mice consistently exhibited increased bone mass in vivo. This change was accompanied by decreases in bone resorption parameters, with no changes in bone formation parameters. These findings provide a novel mechanism for osteoclast differentiation and improve the understanding of the correlation between osteoclast formation and lipids.  相似文献   

19.
Peritoneal mononuclear phagocytes elicited by thioglycollate demonstrate responsiveness to parathyroid hormone (PTH) and calcitonin (CT) which differs from that seen in the normal resident population. PTH causes a twofold stimulation of adenylate cyclase activity in elicited cells but inhibits this activity in resident cells. CT causes a greater stimulation of adenylate cyclase in elicited than in resident cells. Both CT and PTH cause an increase in cyclic AMP accumulation in cultures of elicited mononuclear phagocytes. These results indicate that cells of the mononuclear phagocyte lineage have functional receptors for both PTH and CT. This is the first biochemical evidence to support the hypothesis that mononuclear phagocytes are precursors of the bone resorbing osteoclast.  相似文献   

20.
Nitric oxide (NO) is a multifunctional signaling molecule and a key vasculoprotective and potential osteoprotective factor. NO regulates normal bone remodeling and pathological bone loss in part through affecting the recruitment, formation, and activity of bone-resorbing osteoclasts. Using murine RAW 264.7 and primary bone marrow cells or osteoclasts formed from them by receptor activator of NF-kappaB ligand (RANKL) differentiation, we found that inducible nitric-oxide synthase (iNOS) expression and NO generation were stimulated by interferon (IFN)-gamma or lipopolysaccharide, but not by interleukin-1 or tumor necrosis factor-alpha. Surprisingly, iNOS expression and NO release were also triggered by RANKL. This response was time- and dose-dependent, required NF-kappaB activation and new protein synthesis, and was specifically blocked by the RANKL decoy receptor osteoprotegerin. Preventing RANKL-induced NO (via iNOS-selective inhibition or use of marrow cells from iNOS-/- mice) increased osteoclast formation and bone pit resorption, indicating that such NO normally restrains RANKL-mediated osteoclastogenesis. Additional studies suggested that RANKL-induced NO inhibition of osteoclast formation does not occur via NO activation of a cGMP pathway. Because IFN-beta is also a RANKL-induced autocrine negative feedback inhibitor that limits osteoclastogenesis, we investigated whether IFN-beta is involved in this novel RANKL/iNOS/NO autoregulatory pathway. IFN-beta was induced by RANKL and stimulated iNOS expression and NO release, and a neutralizing antibody to IFN-beta inhibited iNOS/NO elevation in response to RANKL, thereby enhancing osteoclast formation. Thus, RANKL-induced IFN-beta triggers iNOS/NO as an important negative feedback signal during osteoclastogenesis. Specifically targeting this novel autoregulatory pathway may provide new therapeutic approaches to combat various osteolytic bone diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号