首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of this study was to determine the change of plasma endothelin (ET)-1 concentrations and insulin resistance index after therapy for hyperthyroidism. We studied 20 patients with hyperthyroidism (15 women and 5 men; age, 34.0 +/- 2.8 years), and 31 patients with euthyroid goiters as controls (27 women, 4 men; age, 37.0 +/- 2.4 years). All hyperthyroid patients were treated with antithyroid drugs. The patients received evaluations before and after normalization of thyroid function. The evaluations included body mass index (BMI), body fat, and measurement of circulating concentrations of thyroid hormones, glucose, insulin, and ET-1. Hyperthyroid subjects had higher plasma ET-1 concentrations than the control group (P < 0.001). No significant differences in serum glucose and insulin concentrations or insulin resistance index estimated by the R value of the homeostasis model assessment (HOMA-R) were noted between the groups. Plasma ET-1 concentrations decreased after correction of hyperthyroidism compared with pretreatment (P = 0.006). Serum glucose concentrations decreased after correction of hyperthyroidism (P = 0.005). Moreover, both body weight-adjusted insulin concentrations and the HOMA-R index were also decreased after correction of hyperthyroidism compared with pretreatment (P = 0.026 and P = 0.019, respectively). Pearson's correlation revealed that plasma ET-1 levels positively correlated with serum triiodothyronine (T3) and free thyroxine (FT4) levels. Serum insulin levels and the HOMA-R index positively correlated with BMI and body fat. The HOMA-R index also positively correlated with serum T3 and FT4 levels. Neither insulin levels nor the HOMA-R index correlated with ET-1 levels. Hyperthyroidism is associated with higher plasma ET-1 concentrations. In addition, correction of hyperthyroidism is also associated with a decrease of plasma ET-1 levels as well as the insulin resistance index calculated by HOMA-R.  相似文献   

2.
BACKGROUND: Ghrelin derives from endocrine cells (A-like cells) in the stomach (mainly the oxyntic mucosa). Its concentration in the circulation increases during fasting and decreases upon re-feeding. This has fostered the notion that the absence of food in the upper gastrointestinal (GI) tract stimulates the secretion of ghrelin. The purpose of the present study was to determine the concentration of ghrelin in serum and oxyntic mucosa after replacing food with intravenous (iv) infusion of nutrients for 8 days using the technique known as total parenteral nutrition (TPN) MATERIALS AND METHODS: Male Sprague-Dawley rats (200-250 g) were given nutrients (lipids, glucose, amino acids, minerals and vitamins) by iv infusion for 8 days during which time they were deprived of food and water; another group was deprived of food for 24-48 h (fasted controls), while fed controls had free access to food and water. Serum ghrelin, gastrin and pancreastatin concentrations were measured together with the ghrelin content of the oxyntic mucosa. Plasma insulin and glucose as well as serum lipid concentrations were also determined. RESULTS: Fasted rats had higher serum ghrelin than TPN rats and fed controls. The oxyntic mucosal ghrelin concentration (and content) was lower in TPN rats than in fasted rats or fed controls. The serum gastrin and pancreastatin concentrations were lower in TPN rats and fasted rats than in fed controls. The plasma insulin concentration was 87 pmol/l+/-8 (SEM) in TPN rats compared to 101+/-16 pmol/l in fed controls; it was 26+/-14 pmol/l in fasted rats. The basal plasma glucose level was 11+/-0.6 mmol/l in TPN rats and 12+/-0.8 mmol/l in fed controls; it was 7+/-0.3 mmol/l in fasted rats. In TPN rats, the serum concentrations of free fatty acids, triglycerides and cholesterol were increased by 100%, 50% and 25%, respectively, compared to fed controls. Fasted rats had higher circulating concentrations of free fatty acids (20%) and lower concentrations of triglycerides (-40%) than fed controls; fasted rats did not differ from fed controls with respect to serum cholesterol. CONCLUSION: The circulating ghrelin concentration is high in situations of nutritional deficiency (starvation) and low in situations of nutritional plenty (free access to food or TPN). The actual presence or absence of food in the GI tract seems irrelevant. Circulating insulin and glucose concentrations did not differ much between TPN rats and fed controls; serum lipids, however, were elevated in the TPN rats. We suggest that elevated blood lipid levels contribute to the suppression of circulating ghrelin in rats subjected to TPN for 8 days.  相似文献   

3.
BACKGROUND: Ghrelin has been reported to be the natural ligand of growth hormone (GH) secretagogue receptor, and it is known that exogenous ghrelin administration strongly stimulates GH release in humans. However, the effects of endogenous ghrelin on GH secretion and changes in ghrelin levels during dynamic changes in GH levels are not well understood. METHODS: Therefore, we measured circulating acylated ghrelin concentrations during oral glucose tolerance tests (OGTTs) in patients with active acromegaly (AA, n = 9) and in age/sex/BMI-matched group A controls (n = 12), and during insulin tolerance testing (ITT) in patients with GH deficiency (GHD, n = 10) and in group B controls (n = 10). Plasma acylated ghrelin, serum GH, insulin and glucose levels were measured during each test. RESULTS: Fasting plasma ghrelin levels correlated negatively with serum insulin levels in both group A and B controls (r = -0.665; p < 0.05) but not in patients with AA or GHD. During OGTTs, circulating ghrelin levels decreased significantly with a nadir at 30 min in both patients with AA (p < 0.05) and group A controls (p < 0.01). Also, ITTs were followed by a significant decrease in circulating ghrelin levels with a nadir at 30 min in patients with GHD (p < 0.05) and in group B controls (p < 0.05). CONCLUSION: The results of the study show that at baseline acylated ghrelin levels do not differ with respect to the GH status (GH excess or GH deficiency) and, furthermore, the suppression of acylated ghrelin levels during OGTT or ITT is independent of the GH response to the tests.  相似文献   

4.
OBJECTIVES: Tumor necrosis factor-alpha (TNF-alpha) is associated with insulin resistance in certain conditions. However, whether TNF-alpha is related to insulin resistance in hypertensive subjects is still controversial. The aim of this study was to determine the status of TNF-alpha and insulin resistance in hypertension. METHODS: Newly diagnosed nondiabetic 17 essentially hypertensive (6 men, 11 women) patients, and 11 control healthy subjects (5 men, 6 women) are involved in the study. Body mass index (BMI), insulin, fasting blood glucose, cholesterol, triglyceride, and TNF-alpha levels were measured. Insulin resistance is assessed according to homeostasis model of assessment (HOMA-IR). RESULTS: Serum insulin (8.4 +/- 2.7 vs. 6.1 +/- 1.4 mIU/ml; p < 0.01), triglyceride (245.0 +/- 39.9 vs. 193.0 +/- 22.8 mg/dl; p < 0.01), and TNF-alpha (4.2 +/- 0.7 vs. 3.0 +/- 0.6 pg/ml; p < 0.001) levels, and HOMA-IR (2.0 +/- 0.8 vs. 1.3 +/- 0.3; p < 0.001) were significantly higher in the hypertensive patients compared to the normotensive control group. There were positive correlations between TNF-alpha levels and body mass index (r = 0.64, p < 0.01), and triglyceride (r = 0.55 p = 0.02) levels in the whole study group. However, there was no correlation of either TNF-alpha or HOMA-IR. CONCLUSIONS: Our data revealed that hypertensive patients have insulin resistance and higher TNF-alpha levels, but there is no relation between TNF-alpha levels and insulin resistance.  相似文献   

5.
Ghrelin is an endogenous growth hormone (GH) secretagogue recently isolated from the stomach. Although it possesses a strong GH releasing activity in vitro and in vivo, its physiological significance in endogenous GH secretion remains unclear. The aim of this study was to characterize plasma ghrelin levels in acromegaly and growth hormone deficiency (GHD). We investigated plasma total and active ghrelin in 21 patients with acromegaly, 9 patients with GHD and 24 age-, sex- and BMI-matched controls. In all subjects, we further assessed the concentrations of leptin, soluble leptin receptor, insulin, IGF-I, free IGF-I and IGFBP-1, 2, 3 and 6. Patients with acromegaly and GHD as well as control subjects showed similar levels of total ghrelin (controls 2.004+/-0.18 ng/ml, acromegalics 1.755+/-0.16 ng/ml, p=0.31, GHD patients 1.704+/-0.17 ng/ml, p=0.35) and active ghrelin (controls 0.057+/-0.01 ng/ml, acromegalics 0.047+/-0.01 ng/ml, p=0.29, GHD patients 0.062+/-0.01 ng/ml, p=0.73). In acromegalic patients plasma total ghrelin values correlated negatively with IGF-I (p<0.05), in GHD patients active ghrelin correlated with IGF-I positively (p<0.05). In the control group, total ghrelin correlated positively with IGFBP-2 (p<0.05) and negatively with active ghrelin (p=0.05), BMI (p<0.05), WHR (p<0.05), insulin (p=0.01) and IGF-I (p=0.05). Plasma active ghrelin correlated positively with IGFBP-3 (p=0.005) but negatively with total ghrelin and free IGF-I (p=0.01). In conclusion, all groups of the tested subjects showed similar plasma levels of total and active ghrelin. In acromegaly and growth hormone deficiency plasma ghrelin does not seem to be significantly affected by changes in GH secretion.  相似文献   

6.
Ghrelin levels fluctuate rapidly and dynamically with surges before meal times and postprandial troughs, and ghrelin increases appetite and food intake. Circulating ghrelin correlates negatively with body mass index (BMI), but obese individuals have a reduced postprandial decrease in ghrelin levels. Whether this reflects changes in secretion or clearance of ghrelin is uncertain. We therefore studied the pharmacokinetics of ghrelin in relation to anthropometric and biochemical measures. We also studied the effects of ghrelin on hormones and metabolites. In fasting humans, we used a constant infusion rate of ghrelin lasting 180 min at 5 pmol.kg body wt(-1).min(-1) in a randomized, double-blind, placebo-controlled crossover study. Serum ghrelin (s-ghrelin; total levels) was distributed and eliminated according to a two-compartment model. s-Ghrelin initial half-life was 24 +/- 2 min and terminal half-life 146 +/- 36 min, respectively. Mean residence time (MRT) of ghrelin was 93 +/- 16 min. MRT correlated positively with both BMI (r = 0.51, P < 0.001) and high-density cholesterol (HDL) levels (r = 0.75, P < 0.001). Serum insulin levels remained constant during ghrelin infusion, whereas plasma glucose increased 0.3 +/- 0.1 mmol/l (P < 0.01) and free fatty acid levels more than doubled (to 1.03 +/- 0.08 mmol/l, P < 0.001), translating into a significant reduction of insulin sensitivity (P < 0.001). In conclusion, 1) we describe novel pharmacokinetics of ghrelin that are useful when tailoring ghrelin infusion rates in clinical experiments, 2) BMI and HDL correlate positively with MRT of infused ghrelin, and 3) supraphysiological ghrelin levels impair insulin sensitivity.  相似文献   

7.
BACKGROUND: Adiponectin is a recently discovered plasma protein with many associations to glucose and lipid metabolism. Due to its central role in cardiovascular diseases and insulin resistance, we studied the relationship between serum adiponectin and factors reflecting glucose and lipid metabolism. METHODS AND RESULTS: Thirty healthy participants (20M/10F, age 32.0 +/- 2.1 years, BMI 25.8 +/- 0.9 kg/m (2) and HbA (1c) 5.2 +/- 0.1 %) were studied four times at approximately one week intervals. The effects of a 4-hour euglycemic hyperinsulinemia (40 mU/m (2)/min), saline infusion (control), oral glucose, and oral fat load on serum adiponectin were studied. No significant correlation was found between serum adiponectin and insulin sensitivity before (r = 0.25) or after adjustment for age, BMI and gender (r = 0.04). Adiponectin concentration correlated inversely with HbA (1c) (r = - 0.43, p < 0.05), insulin concentration (r = - 0.38, p < 0.05) and triglyceride concentration (r = - 0.42, p < 0.05) but positively with HDL cholesterol (r = 0.38, p < 0.05). Metabolic procedures had no effect on serum adiponectin. CONCLUSIONS: Our findings favor the interpretation that adiponectin is not causally related to insulin sensitivity in healthy participants. The strongest associations of adiponectin in healthy participants are to be found to lipid metabolism. Serum levels of adiponectin are very stable and not acutely affected by hyperinsulinemia, oral glucose or fat load.  相似文献   

8.
BACKGROUND: Plasma ghrelin levels have been shown to decrease after insulin infusion in lean subjects. Nevertheless, the mechanism of the suggested inhibitory effect of insulin on ghrelin is still unclear and no data about the effect of acute insulin infusion on plasma ghrelin concentration in obese subjects are available. OBJECTIVE: We sight to evaluate plasma ghrelin concentration during an hyperinsulinemic euglycemic clamp in uncomplicated obese subjects. METHODS: 35 uncomplicated obese subjects, body mass index (BMI) 43.3+/-10.1 kg/m(2), 33 women and 2 men, mean age 34.9+/-10, with a history of excess fat of at least 10 years underwent euglycemic hyperinsulinemic clamp. Blood samples for ghrelin were performed at baseline and steady state of euglycemic insulin clamp. RESULTS: Ghrelin concentrations decreased over time to 10.6+/-15% (range 2-39%) of baseline, from a mean of 205.53+/-93.79 pg/ml to 179.03+/-70.43 pg/ml during the clamp (95% CI, 10.69 to 36.44, P<0.01). In a univariate linear regression analysis baseline plasma ghrelin levels were inversely correlated to BMI (r=-0.564, P=0.04). A linear positive trend between whole body glucose utilization (M(FFMkg) index) and ghrelin reduction during the clamp was found (chi(2) 3.05, p=0.05). CONCLUSIONS: Our data seem to suggest that hyperinsulinemia during a euglycemic clamp is able to suppress plasma ghrelin concentrations in uncomplicated obesity. This effect appears to be positively related to insulin sensitivity.  相似文献   

9.
Obestatin, a recently discovered 23-amino acid peptide, is involved in the regulation of appetite and body weight in antagonistic fashion to ghrelin, both deriving from a common precursor peptide. Ghrelin was shown to be associated with insulin resistance, which may also affect obestatin. We investigated the association between insulin resistance and plasma concentrations of obestatin and ghrelin in nondiabetic individuals with high (IS; n = 18, 13 females and 5 males, age 47 +/- 2 yr, BMI = 25.5 +/- 0.9 kg/m(2)) and low (IR; n = 18, 12 females and 6 males, age 45 +/- 2 yr, P = 0.49, BMI = 27.5 +/- 1.1 kg/m(2), P = 0.17) insulin-stimulated glucose disposal (M), measured by 2-h hyperinsulinemic (40 mU.min(-1).m(-2)) isoglycemic clamp tests. M(100-120 min) was higher in IS (10.7 +/- 0.7) than in IR (4.4 +/- 0.2 mg.min(-1).kg(-1), P < 10(-9)), whereas insulin-dependent suppression of free fatty acids (FFA) in plasma was reduced in IR (71 +/- 6% vs. IS: 82 +/- 5%, P < 0.02). In both groups, plasma ghrelin concentrations were comparable at fasting and similarly reduced by 24-28% during insulin infusion. IR had lower fasting plasma obestatin levels (383 +/- 26 pg/ml vs. IS: 469 +/- 23 pg/ml, P < 0.02). Clamp insulin infusion reduced plasma obestatin to approximately 81% of basal values in IS (P < 0.00002), but not in IR. Fasting plasma obestatin was correlated positively with M (r = 0.34, P = 0.04), HDL cholesterol (r = 0.45, P = 0.01), and plasma ghrelin concentrations (r = 0.80, P < 0.000001) and negatively with measures of adiposity, plasma FFA during clamp (r = -0.42, P < 0.01), and systolic blood pressure (r = -0.33, P < 0.05). In conclusion, fasting plasma concentrations of obestatin, but not of ghrelin, are reduced in insulin resistance and are positively associated with whole body insulin sensitivity in nondiabetic humans. Furthermore, plasma obestatin is reduced by insulin in insulin-sensitive but not in insulin-resistant persons.  相似文献   

10.
BACKGROUND/AIMS: Insulin resistance is associated with serum C-reactive protein (CRP) levels. We aimed to evaluate the effect of bicalutamide on insulin resistance and serum CRP levels in non-obese polycystic ovarian syndrome (PCOS) patients. METHODS: 40 non-obese patients (BMI < or =25 kg/m2) with PCOS and, 40 age- and BMI-matched healthy women were studied. Patients received bicalutamide orally at the dose of 25 mg/day. Serum CRP levels were measured with immunometric assay. Homeostasis model assessment (HOMA-IR) index was used for insulin resistance. RESULTS: Mean Ferriman-Gallwey score (FGS) (p = 0.001), insulin (p = 0.001), serum glucose (p = 0.001), prolactin (p < 0.003), total (p < 0.04) and free testosterone (p = 0.001) and free androgen index (FAI) levels (p = 0.001) of PCOS subjects were higher than in the control group. Mean HOMA-IR of PCOS patients was higher than in control subjects (2.43 +/- 1.2 and 0.94 +/- 0.37, p = 0.001). CRP levels in subjects with PCOS was also higher than in control subjects (4.27 +/- 1.33 and 0.98 +/- 0.19, p = 0.001). After bicalutamide treatment, FGS, free and total testosterone and FAI decreased (p = 0.001). HOMA-IR, prolactin and CRP levels did not show any statistical difference with bicalutamide treatment. CONCLUSIONS: PCOS patients had insulin resistance and a high CRP level. Bicalutamide treatment did not influence insulin resistance and CRP level in PCOS, and this ineffectiveness of bicalutamide on CRP levels may be the result of insulin resistance and/or high prolactin levels at this time.  相似文献   

11.
Systemic ghrelin concentration falls rapidly after nutrient ingestion in vivo. The effect incretins on ghrelin secretion in humans remains unclear. We quantified circulating ghrelin concentrations under hyperglycemic conditions combined with infusion of gastric inhibitory polypeptide (GIP) and arginine. METHODS: Eight healthy volunteers were studied with a hyperglycemic clamp followed by addition of GIP (2 pmol.kg(-1).min(-1), 60-115 min) and an arginine-bolus and -infusion (10 mg.kg(-1).min(-1), 90-115 min). RESULTS: Hyperglycemia alone increased circulating insulin concentrations (p<0.01), and decreased ghrelin concentrations to 89.8% of basal (p=0.208). GIP-infusion resulted in circulating insulin concentration of 1109+/-942 pmol/l (p<0.02) and no further decrease of ghrelin (86.2% of baseline, p=0.050). Under arginine- and GIP-infusion together, insulin concentrations increased progressively to 3005+/-1604 pmol/l (p<0.01) without further decreasing in ghrelin concentrations (98.9% of baseline, p=0.575). CONCLUSIONS: Hyperglycemic hyperinsulinemia and further increases of hyperinsulinemia to supraphysiological and high supraphysiological concentrations under GIP- and arginine-infusion do not significantly decrease ghrelin concentrations in healthy subjects. Moreover, there is no dose-dependent suppression of ghrelin by insulin in the hyperglycemic condition. Neither GIP nor arginine affected ghrelin release.  相似文献   

12.
BACKGROUND/AIMS: Our aim was to investigate glucose homeostasis, insulin sensitivity and insulin-like growth factor (IGF) system status in children born small for gestational age (SGA). METHODS: A case-control study was carried out at birth, infancy and childhood, comparing SGA with children appropriate for gestational age strictly matched for age, gender, pubertal status and body mass index. Ninety newborns, 52 infants, and 68 children were studied. Fasting insulin (I(F)), fasting glucose (G(F)) to I(F) ratio (G(F)/I(F)), the homeostasis model assessment of insulin sensitivity, the quantitative insulin sensitivity check index, insulinogenic index and the triglyceride/high-density lipoprotein-cholesterol ratio were measured. IGF-I, IGF-binding protein-3 and the IGF-I/IGF-binding protein-3 molar ratio were assessed. RESULTS: Glucose concentrations were lower in SGA newborns (p < 0.0001), infants (p = 0.01), and children (p = 0.001). Birth weight correlated with glucose levels at birth (r = 0.59, p < 0.0001), 12 months (r = 0.29, p = 0.04) and childhood (r = 0.44, p < 0.0001). CONCLUSION: Our results provide evidence for a developmental adaptation of glucose metabolism in SGA children leading to reduced glucose concentrations.  相似文献   

13.
Glycogen synthase is post-translationally modified by both phosphate and O-linked N-acetylglucosamine (O-GlcNAc). In 3T3-L1 adipocytes exposed to high concentrations of glucose, O-GlcNAc contributes to insulin resistance of glycogen synthase. We sought to determine whether O-GlcNAc also regulates glycogen synthase in vivo. Glycogen synthase activity in fat pad extracts was inhibited in streptozotocin (STZ)-treated diabetic mice. The half-maximal activation concentration for glucose 6-phosphate (A(0.5)) was increased to 830 +/- 120 microm compared with 240 +/- 20 microm in control mice (C, p < 0.01), while the basal glycogen synthase activity (%I-form) was decreased to 2.4 +/- 1.4% compared with 10.1 +/- 1.8% in controls (p < 0.01). Glycogen synthase activity remained inhibited after compensatory insulin treatment. After insulin treatment kinetic parameters of glycogen synthase were more closely correlated with blood glucose (A(0.5), r(2) = 0.70; %I-form, r(2) = 0.59) than insulin levels (A(0.5), r(2) = 0.04; %I-form, r(2) = 0.09). Hyperglycemia also resulted in an increase in the level of O-GlcNAc on glycogen synthase (16.1 +/- 1.8 compared with 7.0 +/- 0.9 arbitrary intensity units for controls, p < 0.01), even though the level of phosphorylation was identical in diabetic and control mice either with (STZ: 2.9 +/- 1.0 and C: 3.2 +/- 0.8) or without (STZ: 12.2 +/- 2.8 and C: 13.8 +/- 3.0 arbitrary intensity units) insulin treatment. In all mice the percent activation of glycogen synthase that could be achieved in vitro by recombinant protein phosphatase 1 (230 +/- 30%) was significantly greater in the presence of beta-d-N-acetylglucosaminidase (410 +/- 60%, p < 0.01). This synergistic stimulation of glycogen synthase due to codigestion by protein phosphatase 1 and beta-d-N-acetylglucosaminidase was more pronounced in STZ-diabetic mice (310 +/- 70%) compared with control mice (100 +/- 10%, p < 0.05). The findings demonstrate that O-GlcNAc has a role in the regulation of glycogen synthase both in normoglycemia and diabetes.  相似文献   

14.
Adiponectin is a novel adipocytokine negatively correlated with parameters of the metabolic syndrome, such as body mass index (BMI), body fat mass (BFM), and circulating insulin levels. Furthermore, metabolic actions directly on the liver have been described. The aim of the present study was to characterize circulating adiponectin levels, hepatic turnover, and the association of adiponectin with key parameters of hepatic as well as systemic metabolism in cirrhosis, a catabolic disease. Circulating adiponectin levels and hepatic turnover were investigated in 20 patients with advanced cirrhosis. Hepatic hemodynamics [portal pressure, liver blood flow, hepatic vascular resistance, indocyanine green (ICG) half-life], body composition, resting energy expenditure, hepatic free fatty acids (FFA) and glucose turnover, and circulating levels of hormones (catecholamines, insulin, glucagon) and proinflammatory cytokines (IL-1beta, TNF-alpha, IL-6) were also assessed. Circulating adiponectin increased dependently on the clinical stage in cirrhosis compared with controls (15.2 +/- 1.7 vs. 8.2 +/- 1.1 microg/ml, respectively, P < 0.01), whereas hepatic extraction decreased. Adiponectin was negatively correlated with parameters of hepatic protein synthesis (prothrombin time: r = -0.62, P = 0.003; albumin: r = -0.72, P < 0.001) but not with transaminases or parameters of lipid metabolism. In addition, circulating adiponectin increased with portal pressure (r = 0.67, P = 0.003), hepatic vascular resistance (r = 0.60, P = 0.008), and effective hepatic blood flow (ICG half-life: r = 0.69, P = 0.001). Adiponectin in cirrhosis was not correlated with BMI, BFM, parameters of energy metabolism, insulin levels, hepatic FFA and glucose turnover, and circulating proinflammatory cytokines. These results demonstrate that 1) adiponectin plasma levels in cirrhosis are significantly elevated, 2) the liver is a major source of adiponectin extraction, and 3) adiponectin levels in cirrhosis do not correlate with parameters of body composition or metabolism but exclusively with reduced liver function and altered hepatic hemodynamics.  相似文献   

15.
Ghrelin is a novel peptide that acts on the growth hormone (GH) secretagogue receptor in the pituitary and hypothalamus. It may function as a third physiological regulator of GH secretion, along with GH-releasing hormone and somatostatin. In addition to the action of ghrelin on the GH axis, it appears to have a role in the determination of energy homeostasis. Although feeding suppresses ghrelin production and fasting stimulates ghrelin release, the underlying mechanisms controlling this process remain unclear. The purpose of this study was to test the hypotheses, by use of a stepped hyperinsulinemic eu- hypo- hyperglycemic glucose clamp, that either hyperinsulinemia or hypoglycemia may influence ghrelin production. Having been stable in the period before the clamp, ghrelin levels rapidly fell in response to insulin infusion during euglycemia (baseline ghrelin 207 +/- 12 vs. 169 +/- 10 fmol/ml at t = 30 min, P < 0.001). Ghrelin remained suppressed during subsequent periods of hypoglycemia (mean glucose 53 +/- 2 mg/dl) and hyperglycemia (mean glucose 163 +/- 6 mg/dl). Despite suppression of ghrelin, GH showed a significant rise during hypoglycemia (baseline 4.1 +/- 1.3 vs. 28.2 +/- 3.9 microg/l at t = 120 min, P < 0.001). Our data suggest that insulin may suppress circulating ghrelin independently of glucose, although glucose may have an additional effect. We conclude that the GH response seen during hypoglycemia is not regulated by circulating ghrelin.  相似文献   

16.
BACKGROUND: Insulin resistance is an important determinant of circulating leptin concentrations in humans, but its independent contribution on plasma leptin levels are controversial. In the present study, we characterized plasma leptin levels and their regulation in women with 2 different insulin resistance states: type 2 diabetes and myotonic dystrophy disease, and in controls. MATERIAL AND METHODS: We studied 3 groups of women: 21 type 2 diabetic patients, 20 myotonic dystrophic patients and a control group of 20 normoglycemic subjects, matched in age and body mass index. Body composition, fasting glucose and insulin, IGF-I, IGF-binding protein-3 and leptin were studied. Body composition was measured using a bioelectrical impedance analyser. Insulin sensitivity (in percentage) was modeled according to a computer-based homeostasis model assessment model. Data are expressed in mean +/- SEM. RESULTS: In both groups of patients, glucose concentrations were higher in type 2 diabetic patients than in myotonic dystrophic patients, and insulin concentrations and insulin sensitivity were similar in the 2 groups of patients (82.4 +/- 18.6% in type 2 diabetic patients vs. 69.7 +/- 9.7% in myotonic dystrophic patients, p = 0.2) and lower than in controls. Serum leptin and leptin/fat mass ratio were higher in myotonic dystrophic patients than in type 2 diabetic patients (30 +/- 4.9 ng/ml vs. 17.7 +/- 2.6 ng/ml, p = 0.03 and 2.32 +/- 0.69 ng/ml/kg vs. 1.07 +/- 0.2 ng/ml/kg, p = 0.02, respectively) or those found in controls. In type 2 diabetic patients, leptin concentrations were correlated with body mass index and body fat, and in myotonic dystrophic patients leptin concentrations were correlated with age, body mass index, fasting insulin and lower insulin sensitivity, whereas leptin concentrations were not correlated with body fat. CONCLUSIONS: These findings suggest that leptin concentrations and regulation in myotonic dystrophic patients are different from type 2 diabetes.  相似文献   

17.
The human immunodeficiency virus (HIV)-lipodystrophy syndrome is characterized by abnormalities of lipid metabolism, glucose homeostasis, and fat distribution. Overaccumulation of intramuscular lipid may contribute to insulin resistance in this population. We examined 63 men: HIV positive with lipodystrophy (n = 22), HIV positive without lipodystrophy (n = 20), and age- and body mass index-matched HIV-negative controls (n = 21). Single-slice computed tomography was used to determine psoas muscle attenuation and visceral fat area. Plasma free fatty acids (FFA), lipid profile, and markers of glucose homeostasis were measured. Muscle attenuation was significantly decreased in subjects with lipodystrophy [median (interquartile range), 55.0 (51.0-58.3)] compared with subjects without lipodystrophy [57.0 (55.0-59.0); P = 0.05] and HIV-negative controls [59.5 (57.3-64.8); P < 0.01]. Among HIV-infected subjects, muscle attenuation correlated significantly with FFA (r = -0.38; P = 0.02), visceral fat (r = -0.49; P = 0.002), glucose (r = -0.38; P = 0.02) and insulin (r = -0.60; P = 0.0001) response to a 75-g oral glucose tolerance test. In forward stepwise regression analysis with psoas attenuation as the dependent variable, visceral fat (P = 0.02) and FFA (P < 0.05), but neither body mass index, subcutaneous fat, nor antiretroviral use, were strong independent predictors of muscle attenuation (r2 = 0.39 for model). Muscle attenuation (P = 0.02) and visceral fat (P = 0.02), but not BMI, subcutaneous fat, FFA, or antiretroviral use, were strong independent predictors of insulin response (area under the curve) to glucose challenge (r2 = 0.47 for model). These data demonstrate that decreased psoas muscle attenuation due to intramuscular fat accumulation may contribute significantly to hyperinsulinemia and insulin resistance in HIV-lipodystrophy patients. Further studies are needed to assess the mechanisms and consequences of intramuscular lipid accumulation in HIV-infected patients.  相似文献   

18.
Lipid and lipoprotein profile in women with polycystic ovary syndrome   总被引:2,自引:0,他引:2  
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by obesity-related risk factors for cardiovascular disease. The objective of our study was to determine values of key lipid and lipoprotein fractions in PCOS, and their possible relation to insulin resistance. A total of 75 women with PCOS (aged 23.1 +/- 5.1 years, BMI 24.9 +/- 4.7 kg/m(2)), and 56 age- and BMI-matched controls were investigated. In all subjects, basal glucose, cholesterol (total, HDL, and LDL), oxidized LDL (OxLDL), triglycerides, apolipoprotein (apo)A1, apoB, and apoE, nonesterified fatty acids, insulin, testosterone, sex hormone-binding globulin, homeostasis model assessment (HOMA) index, and free androgen index were determined in the follicular phase of the cycle. PCOS patients compared with controls had increased indices of insulin resistance, basal insulin (p < 0.001), and HOMA index (p < 0.001), and worsened insulin resistance-related dyslipidemia with decreased HDL cholesterol (p < 0.01), elevated triglycerides (p = 0.010), and pronounced LDL oxidation (p < 0.001). In conclusion, characteristic dyslipidemia of insulin resistance and unfavorable proatherogenic lipoprotein ratios were present only in women with PCOS and not in controls. Elevated OxLDL and the relation of apoE and nonesterified fatty acids with insulin resistance suggest that women with PCOS are at increased risk for premature atherosclerosis.  相似文献   

19.
High sucrose (HS) feeding in rats induces hepatic steatosis and plasma dyslipidemia. In previous reports (Huang W, Dedousis N, Bhatt BA, O'Doherty RM. J Biol Chem 279: 21695-21700, 2004; and Huang W, Dedousis N, Bandi A, Lopaschuk GD, O'Doherty RM. Endocrinology 147: 1480-1487, 2006), our laboratory demonstrated a rapid ( approximately 100 min) leptin-induced decrease in liver and plasma VLDL triglycerides (TG) in lean rats, effects that were abolished in obese rats fed a high-fat diet, a model that also presents with hepatic steatosis and plasma dyslipidemia. To further examine the capacity of acute leptin treatment to improve metabolic abnormalities induced by nutrient excess, hepatic leptin action was studied in rats after 5 wk of HS feeding. HS feeding induced hepatic steatosis (TG+80+/-8%; P=0.001), plasma hyperlipidemia (VLDL-TG+102+/-14%; P=0.001), hyperinsulinemia (plasma insulin +67+/-12%; P=0.04), and insulin resistance as measured by homeostasis model assessment (+125+/-20%; P=0.02), without increases in adiposity or plasma leptin concentration compared with standard chow-fed controls. A 120-min infusion of leptin (plasma leptin 13.6+/-0.7 ng/ml) corrected hepatic steatosis (liver TG-29+/-3%; P=0.003) and plasma hyperlipidemia in HS (VLDL-TG-42+/-4%; P=0.001) and increased plasma ketones (+45+/-3%; P=0.006), without altering plasma glucose, insulin, or homeostasis model assessment compared with saline-infused HS controls. In addition, leptin activated liver phosphatidylinositol 3-kinase (+70+/-18%; P=0.01) and protein kinase B (Akt; +90+/-29%; P=0.02), and inhibited acetyl-CoA carboxylase (40+/-7%; P=0.04) in HS, further demonstrating that hepatic leptin action was intact in these animals. We conclude that 1) leptin action on hepatic lipid metabolism remains intact in HS-fed rats, 2) leptin rapidly reverses hepatic steatosis and plasma dyslipidemia induced by sucrose, and 3) the preservation of hepatic leptin action after a HS diet is associated with the maintenance of low adiposity and plasma leptin concentrations.  相似文献   

20.
Introduction: Secretory products from adipocytes may contribute to deterioration in glycaemic control and increased insulin resistance (IR). Retinol-binding protein 4 (RBP-4) may increase IR in mice, with elevated levels in insulin-resistant mice and humans with obesity and type 2 diabetes. However, the mechanisms regulating RBP-4 synthesis remain not fully understood. It is not clear whether short-term glucose-induced hyperglycaemia and hyperinsulinaemia as well as glucocorticosteroid-induced increase in IR might be reflected in alterations in serum RBP-4 levels in humans. In order to investigate this, we measured serum RBP-4, glucose and insulin concentrations during 75.0 gram oral glucose tolerance test (OGTT) - Study 1, as well as before and after oral administration of dexamethasone - Study 2. Material and methods: Both studies included 35 subjects (8 males), age (mean +/- SD) 39.1 +/- 15.6 years, BMI 35.8 +/- 8.7 kg/m(2). Twenty-four of those subjects (5 males), age 38.7 +/- 15.1 years, BMI 34.4 +/- 8.3 kg/m(2), had 75 gram oral glucose tolerance test (OGTT) - Study 1. Blood samples were taken before (0 minutes), and at 60 and 120 minutes of OGTT. 17 subjects (3 males, 4 subjects with type 2 diabetes), age 43.1 +/- 18.1 years, BMI 36.7 +/- 9.0 kg/m(2) underwent screening for Cushing's disease/syndrome (Study 2). Dexamethasone was administered in a dose of 0.5 mg every 6 hours for 48 hours. Fasting serum concentrations of RBP-4, glucose and insulin were assessed before (D0) and after 48 hours of dexamethasone administration (D2). IR was assessed by HOMA in all non-diabetic subjects and in subjects participating in study 1 also by Insulin Resistance Index (IRI), which takes into account glucose and insulin levels during OGTT. Results: Glucose administration resulted in significant increases in insulin and glucose (p < 0.0001). There was, however, no change in RBP-4 concentrations (124.1 +/- 32 mg/ml at 0 minutes, 123 +/- 35 mg/ml at 60 minutes and 126.5 +/- 37.5 mg/ml at 120 minutes of OGTT, p = ns). All subjects in Study 2 achieved suppression of cortisol below 50 nmo/l. Dexamethasone administration resulted in an increase in fasting insulin (from 11.6 +/- 6.8 to 17.1 +/- 7.2 muU/ml; p = 0.003), and an increase in HOMA (from 2.73 +/- 1.74 to 4.02 +/- 2.27; p = 0.015), although without a significant change in RBP-4 levels (119 +/- 26.8 vs. 117.5 +/- 24.8 mg/ml, p = ns). RBP-4 correlated with fasting insulin (r = 0.40, p = 0.025), fasting glucose (r = 0.41, p = 0.02) and HOMA (r = 0.43, p = 0.015), but not with IRI (r = 0.19, p = 0.31). There was, however, only a moderate correlation between HOMA and IRI (r = 0.49 [r(2) = 0.24]; p = 0.006, Spearman rank correlation), while the best correlation was obtained between the product of glucose and insulin levels at 60 min of OGTT and IRI in a non-linear model (r = 0.94 [r(2) = 0.88]; p<0.00001). In subjects who received dexamethasone, a positive correlation between RBP-4 and HOMA (p = 0.01) was lost after two days of dexamethasone administration (p = 0.61). Conclusions: RBP-4 levels do not change during oral glucose tolerance test or after a dexamethasone-induced increase in insulin resistance. This implies that it is highly unlikely that RBP-4 is involved in short-term regulation of glucose homeostasis in humans and that it responds to short-term changes in insulin resistance. A moderate correlation between RBP-4 and some insulin resistance indices (HOMA) does not exclude the fact that RBP-4 might be one of many factors that can influence insulin sensitivity in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号