首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Duodenal injection of 64Cu in treated adult mutant mice (Mobr/y) revealed severe malabsorption of copper. In suckling mutants, malabsorption was less severe, owing to delayed absorption between 2 and 5 h after injection. Pinocytosis at the distal small intestine seems the likely explanation for this difference, and this is supported by results of ileal injection of radioisotope in the suckling mice. 2. The distribution of 64 Cu in various organs was measured in suckling normal, mutant and heterozygote mice and in adult normal and mutant mice during 48 h after intracardiac injection. Excessive accumulation of radioisotope was observed in most extrahepatic organs of mutant and heterozygote mice and was most pronounced in kidney. This could not be explained by initial copper deficiency. The livers of suckling mutant and heterozygote mice lost radioisotope rapidly after normal initial uptake. This pattern was not seen in adult mutants.  相似文献   

2.
The brindled mouse is an accurate model of the fatal human X-linked copper deficiency disorder, Menkes disease. Males carrying the mutant allele of the Menkes gene orthologue Atp7a die in the second week of life. To determine whether the genetic defect in the brindled mice could be corrected by expression of the human Menkes gene, male transgenic mice expressing ATP7A from the chicken beta-actin composite promoter (CAG) were mated with female carriers of the brindled mutation (Atp7a(Mo-br)). Mutant males carrying the transgene survived and were fertile but the copper defect was not completely corrected. Unexpectedly males corrected with one transgenic line (T25#5) were mottled and resembled carrier females, this effect appeared to be caused by mosaic expression of the transgene. In contrast, males corrected with another line (T22#2) had agouti coats. Copper concentrations in tissues of the rescued mutants also resembled those of the heterozygous females, with high levels in kidney (84.6+/-4.9 microg/g in corrected males vs. 137.0+/-44.3 microg/g in heterozygotes) and small intestine (15.6+/-2.5 microg/g in corrected males vs. 15.7+/-2.8 microg/g in heterozygotes). The results show that the Menkes defect in mice is corrected by the human Menkes gene and that adequate correction is obtained even when the transgene expression does not match that of the endogenous gene.  相似文献   

3.
Melanosomes and lysosomes share several structural and biosynthetic properties. Therefore, a large number of mouse pigment mutants were tested to determine whether genes affecting melanosome structure of function might also affect the lysosome. Among 31 mouse pigment mutants, six had 1.5- to 2.5-fold increased concentrations of kidney beta-glucuronidase. Three mutants, pale ear, pearl and pallid, had a generalized effect on lysosomal enzymes since there were coordinate increases in kidney beta-galactosidase and alpha-mannosidase. The effects of these three mutations are lysosome specific since rates of kidney protein synthesis and activities of three nonlysosomal kidney enzymes were normal. Also, the mutants are relatively tissue specific in that all had normal liver lysosomal enzyme concentrations.--A common dysfunction in all three mutants was a lowered rate of lysosomal enzyme secretion from kidney into urine. While normal C57BL/6J mice daily secreted 27 to 30% of total kidney beta-glucuronidase and beta-galactosidase, secretion of these two enzymes was coordinately depressed to 1 to 2%, 8 to 9% and 4 to 5% of total kidney enzyme in the pale-ear, pearl and pallid mutants, respectively. Although depressed lysosomal enzyme secretion is the major pigment mutant alteration, the higher lysomal enzyme concentrations in pearl and pallid may be partly due to an increase in lysosomal enzyme synthesis. In these mutants kidney glucuronidase synthetic rate was increased 1.4- to 1.5-fold.--These results suggest that there are several critical genes in mammals that control the biogenesis, processing and/or function of related classes of subcellular organelles. The mechanism of action of these genes is amenable to further analysis since they have been incorporated into congenic inbred strains of mice.  相似文献   

4.
Cultured cells of a variety of different types from human Menkes' syndrome patients and brindled mouse mutants exhibit similarly altered responses to changes in extracellular copper concentration. This suggests that the mutations in the mouse and human are very similar and that mutant gene expression is occurring in many different tissues. Intracellular copper levels are markedly elevated in mutant cells in normal medium and in medium containing a hundredfold higher copper. Some cell lines from heterozygotes possess elevated copper levels. Elevated extracellular copper and zinc are significantly more toxic to mutant cells. Mutant cells exhibit normal rates of uptake of copper-64 over a 10-min period but abnormally high accumulation over 24 hr and low rates of efflux. Menkes' fibroblasts become saturated with copper-64 at lower extracellular concentrations than for normal fibroblasts. These data support the idea of enhanced intracellular binding in mutant cells.This work was supported by grants from the Australian National Health and Medical Research Council, the McPherson/Shutt Trust, and the Apex Foundation.  相似文献   

5.
Requirement of Bmp8b for the generation of primordial germ cells in the mouse   总被引:13,自引:0,他引:13  
In the mouse embryo, the generation of primordial germ cells (PGCs) from the epiblast requires a bone morphogenetic protein-4 (BMP4) signal from the adjacent extraembryonic ectoderm. In this study, we report that Bmp8b, a member of the Gbb-60A class of the BMP superfamily, is expressed in the extraembryonic ectoderm in pregastrula and gastrula stage mouse embryos and is required for PGC generation. A mutation in Bmp8b on a mixed genetic background results in the absence of PGCs in 43% null mutant embryos and severe reduction in PGC number in the remainder. The heterozygotes are unaffected. On a largely C57BL/6 background, Bmp8b null mutants completely lack PGCs, and Bmp8b heterozygotes have a reduced number of PGCs. In addition, Bmp8b homozygous null embryos on both genetic backgrounds have a short allantois, and this organ is missing in some more severe mutants. Since Bmp4 heterozygote embryos have reduced numbers of PGCs, we used a genetic approach to generate double-mutant embryos to study interactions of Bmp8b and Bmp4. Embryos that are double heterozygotes for the Bmp8b and Bmp4 mutations have similar defects in PGC number as Bmp4 heterozygotes, indicating that the effects of the two BMPs are not additive. These findings suggest that BMP4 and BMP8B function as heterodimers and homodimers in PGC specification in the mouse.  相似文献   

6.
Copper deficiency was studied in mice to investigate an interaction between copper and ascorbic acid. Twelve-day-old mutant brindled mice that exhibited signs of copper deficiency were compared to their normal brothers as well as to age-matched suckling mice that were copper deficient (-Cu) because their dams were consuming a copper-deficient diet throughout gestation and lactation, and a fourth group of copper-supplemented ( + Cu) suckling mice that served as dietary controls. Dietary copper deficiency was also produced in older mice by beginning the treatment at birth and continuing for 7 wk. Organ ascorbate levels were determined by high performance liquid chromatography with electrochemical detection. Differences caused by diet and genetics were evident but age-dependent. Compared to controls, liver and kidney ascorbate levels did not change remarkably in young or old copper-deficient mice. Cardiac ascorbate levels were higher in 7-wk-old - Cu mice and lower in 12-d-old - Cu mice, despite hypertrophy in both cases. Spleen ascorbate levels were lower in older -Cu mice and higher in 12-d-old mice, but total spleen ascorbate reflected the hypertrophic and atrophic size in the older and younger -Cu mice, respectively. Brindled mutants had an extremely low level of ascorbate in spleen. Plasma ascorbate was lower in 7-wk-old - Cu mice. Reasons for the alterations in ascorbate levels are not known. Synthesis in liver from D-glucuronate was not altered by dietary copper deficiency in 7-wk-old mice. Synthesis was lower in livers from 12-d-old - Cu and brindled mice compared to control values. However, the difference correlated better with body weight of the mice rather than with degree of copper deficiency. Consequences of the altered organ levels of ascorbate in copper-deficient mice are not completely known.  相似文献   

7.
D M Hunt 《Life sciences》1976,19(12):1913-1919
The injection of copper chloride overcomes the lethality and pigment deficiency in the brindled (Mobr) mouse mutant but copper levels remain depressed in the liver and brain, and a further accumulation occurs in the kidney. The copper-dependent synthesis of brain noradrenaline returns to normal but the activity of brain cytochrome c oxidase, although increased, remains depressed. Significant changes in tissue copper content of female brindled heterozygotes are reported and in each case, the changes exceed those expected on the basis of X-inactivation. The significance of these results to the development of a satisfactory treatment regime for this disease is discussed.  相似文献   

8.
Aristolochic acid (AA) is a potent nephrotoxin and carcinogen and is the causative factor for Chinese herb nephropathy. AA has been associated with the development of urothelial cancer in humans, and kidney and forestomach tumors in rodents. To investigate the molecular mechanisms responsible for the tumorigenicity of AA, we determined the DNA adduct formation and mutagenicity of AA in the liver (nontarget tissue) and kidney (target tissue) of Big Blue rats. Groups of six male rats were gavaged with 0, 0.1, 1.0 and 10.0 mg AA/kg body weight five times/week for 3 months. The rats were sacrificed 1 day after the final treatment, and the livers and kidneys were isolated. DNA adduct formation was analyzed by 32P-postlabeling and mutant frequency (MF) was determined using the λ Select-cII Mutation Detection System. Three major adducts (7-[deoxyadenosin-N6-yl]-aristolactam I, 7-[deoxyadenosin-N6-yl]-aristolactam II and 7-[deoxyguanosin-N2-yl]-aristolactam I) were identified. There were strong linear dose-responses for AA-induced DNA adducts in treated rats, ranging from 25 to 1967 adducts/108 nucleotides in liver and 95–4598 adducts/108 nucleotides in kidney. A similar trend of dose-responses for mutation induction also was found, the MFs ranging from 37 to 666 × 10−6 in liver compared with the MFs of 78–1319 × 10−6 that we previously reported for the kidneys of AA-treated rats. Overall, kidneys had at least two-fold higher levels of DNA adducts and MF than livers. Sequence analysis of the cII mutants revealed that there was a statistically significant difference between the mutation spectra in both kidney and liver of AA-treated and control rats, but there was no significant difference between the mutation spectra in AA-treated livers and kidneys. A:T → T:A transversion was the predominant mutation in AA-treated rats; whereas G:C → A:T transition was the main type of mutation in control rats. These results indicate that the AA treatment that eventually results in kidney tumors in rats also results in significant increases in DNA adduct formation and cII MF in kidney. Although the same treatment does not produce tumors in rat liver, it does induce DNA adducts and mutations in this tissue, albeit at lower levels than in kidney.  相似文献   

9.
The concentrations of copper, zinc and metallothionein-I (MT-I) mRNA were determined in the liver, kidney and brain of the brindled mutant mouse from birth until the time of death. Despite accumulation of copper in the kidney of the mutant, MT-I mRNA concentrations were normal. There was no difference between the MT-I mRNA in the brain of mutant and normal in the first 10 days of life, but after day 10 metallothionein mRNA levels were increased in the mutant. The concentration of copper was very low in the liver of the mutant, and on day 6 after birth the metallothionein mRNA was also reduced by about 50%. This reduction was not seen in copper-deficient 6-day-old pups, despite very low hepatic copper levels. This suggests that the lower hepatic MT-I mRNA in the day 6 brindled mouse was not simply due to the reduction in hepatic copper and also that hepatic copper is not regulating metallothionein gene expression the liver of neonatal mice. After day 12 hepatic MT-I mRNA levels were elevated in mutant and in copper deficient mice, both of which die at 14 to 16 days. These increases and the increase in brain MT-I mRNA in older mutant mice are likely to be caused by stress. Overall the results support the conclusions that the brindled mutation does not cause a constitutive activation of the metallothionein genes, and that the differences in metallothionein mRNA between mutant and normal are most probably secondary consequences of the mutation.  相似文献   

10.
The concentrations of copper, zinc and metallothionein-I (MT-I) mRNA were determined in the liver, kidney and brain of the brindled mutant mouse from birth until the time of death. Despite accumulation of copper in the kidney of the mutant, MT-I mRNA concentrations were normal. There was no difference between the MT-I mRNA in the brain of mutant and normal in the first 10 days of life, but after day 10 metallothionein mRNA levels were increased in the mutant. The concentration of copper was very low in the liver of the mutant, and on day 6 after birth the metallothionein mRNA was also reduced by about 50%. This reduction was not seen in copper-deficient 6-day-old pups, despite very low hepatic copper levels. This suggests that the lower hepatic MT-I mRNA in the day 6 brindled mouse was not simply due to the reduction in hepatic copper and also that hepatic copper is not regulating metallothionein gene expression the liver of neonatal mice. After day 12 hepatic MT-I mRNA levels were elevated in mutant and in copper deficient mice, both of which die at 14 to 16 days. These increases and the increase in brain MT-I mRNA in older mutant mice are likely to be caused by stress. Overall the results support the conclusions that the brindled mutation does not cause a constitutive activation of the metallothionein genes, and that the differences in metallothionein mRNA between mutant and normal are most probably secondary consequences of the mutation.  相似文献   

11.
D. M. Hunt  R. Clarke 《Biochemical genetics》1983,21(11-12):1175-1194
Copper accumulates in kidney tissue of mottled (Mo) mice largely in association with a low MW cytosol protein, and the reduced copper levels in neonatal mutant liver are largely the result of a reduction in the amount of copper associated with this same protein. On the basis of ion-exchange chromatographic profile, heat stability, absence of a 280nm absorption peak, and the binding of Cd109 and Zn65 the protein mutants in the kidney is identified as metallothionein (MT). Amino acid analysis, however, failed to confirm this, and it is suggested that the high copper content of the mutant protein results in its oxidative degradation during purification, even when normal anaerobic precautions are taken. Estimates of thionein protein content of tissues from mutant and normal mice demonstrated that the levels are significantly elevated in both young and adult mutant kidney and depressed in young mutant liver, in parallel therefore with the changes in tissue copper levels. In adult mutant liver tissue, however, thionein levels are significantly raised, even though tissue copper content is normal. The synthesis and degradation of MT was examined in some detail. Incorporation of S35-cysteine in kidney MT was significantly raised in both young and adult mutant mice, while in adult tissue the rate of degradation of MT was significantly depressed. The elevated kidney MT levels arise therefore in young mutant mice from an increased rate of synthesis and in adult mice from the combined effects of increased synthesis and reduced degradation.  相似文献   

12.
The toxic milk (tx) mouse is a rodent model for Wilson disease, an inherited disorder of copper overload. Here we assessed the effect of copper accumulation in the tx mouse on zinc and iron metabolism. Copper, zinc and iron concentrations were determined in the liver, kidney, spleen and brain of control and copper-loaded animals by atomic absorption spectroscopy. Copper concentration increased dramatically in the liver, and was also significantly higher in the spleen, kidney and brain of control tx mice in the first few months of life compared with normal DL mice. Hepatic zinc was increased with age in the tx mouse, but zinc concentrations in the other organs were normal. Liver and kidney iron concentrations were significantly lower at birth in tx mice, but increased quickly to be comparable with control mice by 2 months of age. Iron concentration in the spleen was significantly higher in tx mice, but was lower in 5 day old tx pups. Copper-loading studies showed that normal DL mice ingesting 300 mg/l copper in their diet for 3 months maintained normal liver, kidney and brain copper, zinc and iron levels. Copper-loading of tx mice did not increase the already high liver copper concentrations, but spleen and brain copper concentrations were increased. Despite a significant elevation of copper in the brain of the copper-loaded tx mice no behavioural changes were observed. The livers of copper-loaded tx mice had a lower zinc concentration than control tx mice, whilst the kidney had double the concentration of iron suggesting that there was increased erythrocyte hemolysis in the copper-loaded mutants.  相似文献   

13.
The murine mottled mutants brindled, Mo br, and blotchy, Mo blo, are valuable animal models for the study of mammalian copper metabolism. In this paper, we present data showing that a nutritionally copper deficient suckling mouse, Cu-, with strong phenotypic similarities to the brindled mutant can be produced by feeding genetically normal dams a copper deficient diet (0.1-0.4 ppm Cu2+) from the day of mating. Comparisons of copper distribution between the Cu- mice and brindled mutants indicate that when a small dose of copper (0.5-0.9 micrograms Cu2+) was administered by intracardiac injection, the copper was abnormally distributed, and that the pattern of tissue distribution was very similar in Cu- mice and brindled mutants 24 h after injection. When, however, a treatment dose (50 micrograms Cu2+) was injected subcutaneously, and tissues assayed 3 d after injection, copper distribution in Cu- mice and brindled mutants was clearly different. Copper deficiency in Cu- suckling mice is entirely derived from maternal effects. Evidence that maternal effects may also influence the survival and phenotype of the brindled and blotchy mutants was obtained by comparing the viability of mutants born to dams carrying mottled mutations on one or both X chromosomes.  相似文献   

14.
The Cu2+-binding proteins from liver and kidney tissue of 7--8-day-old brindled (Mobr) mice and their normal littermates were compared. (1) Separation over Bio-Gel P-10 showed that the differences in the Cu2+ content of mutant tissues were largely associated with a low-molecular-weight protein fraction (mol.wt. 14 500). (2) Further purification of this low-molecular-weight fraction by anion-exchange chromatography revealed four subfractions. The Cu2+ content of each subfraction reflected the Cu2+ status of the tissue of origin; the Cu2+ contents of the mutant kidney subfractions were elevated and those of the mutant liver were depressed compared with normal. In contrast, the protein contents of the subfractions were less variable and did not reflect the differing Cu2+ contents. (3) Amino acid analysis of the four subfractions from CuCl2-treated mutant and normal animals revealed clos similarities. The proteins showed high glycine, glutamic acid, serine, alanine and lysine contents and a rather variable cysteine content. Differences were apparent in the normal liver subfractions, which showed a higher cysteine content and lower glutamic acid content than did either the mutant liver or normal and mutant kidney subfractions. These observations, together with the recorded presence of aromatic amino acids, indicated that these proteins are not thioneins.  相似文献   

15.
16.
The activity of two copper-dependent enzymes, cytochrome c oxidase and copper, zinc-superoxide dismutase, was determined in six tissues of age-matched (13-day-old) copper-deficient mutant and normal mice. In the two mutants 'brindled' and 'blotchy', brain, heart and skeletal muscle had significant enzyme deficiencies. Cytochrome c oxidase was more severely affected than was superoxide dismutase. In these three tissues the degree of deficiency could be correlated with decreased copper concentration; however, enzyme activity was normal in liver, kidney and lung, despite abnormal copper concentrations in these tissues. In nutritionally copper-deficient mice, all six tissues showed decreased enzyme activity, which was most marked in brain, heart and skeletal muscle, the tissues which showed enzyme deficiencies in the mutants. Analysis in vitro of cytochrome c oxidase (temperature coefficient = 2) at a single temperature was found to underestimate the deficiency of this enzyme in hypothermic copper-deficient animals. Cytochrome c oxidase deficiency may therefore be sufficiently severe in vivo to account for the clinical manifestations of copper deficiency. An injection of copper (50 micrograms of Cu+) at 7 days increased cytochrome c oxidase activity by 13 days in all deficient tissues of brindled mice, and in brain and heart from blotchy mice. However, skeletal-muscle cytochrome c oxidase in blotchy mutants did not respond to copper injection. Cytochrome c oxidase activity increased to normal in all tissues of nutritionally copper-deficient mice after copper injection, except in the liver. Hepatic enzyme activity remained severely deficient despite a liver copper concentration three times that found in copper-replete controls. Superoxide dismutase activity did not increase with treatment in either mutant, but its activity was higher than control levels in nutritionally deficient mice after injection. This difference is probably due to sequestration of copper in mutant tissue such as kidney, but a defect in the copper transport pathway to superoxide dismutase cannot be excluded.  相似文献   

17.
The mosaic (Atp7a(mo-ms)) is an X-linked, lethal mutation in mice. Hemizygous males die at the age of 15 days and they exhibit strong similarities to the brindled and macular mutants. Injection of cupric chloride to mossaic mutants prolongs their life and diminishes the pathological results of mutation. Histochemical analysis of the kidneys from 14-day-old mutant males showed accumulation of copper in the renal cortex of the investigated animals leading to damage of the kidney architecture. A histological profile of the kidneys was defined for four groups of 14-day-old animals: mosaic males ms/-, control males +/-, mosaic males injected with cupric chloride ms/- (Cu), and control males injected with cupric chloride +/- (Cu). Pathological changes were observed in the cortex and in the medulla of the kidneys in both groups of mutants and control males injected with cupric chloride (50 microg of CuCl2 per each individual).  相似文献   

18.
The specific activity of 10 erythrocyte enzymes was measured to detect gene mutations in F1 offspring of male mice treated with 3 different doses of ethylnitrosourea (ENU). After administration of ENU or of the solvent (controls), the (101/El X C3H/El)F1 hybrid males were mated to untreated T-stock females. No enzyme-activity mutant was found in 3610 F1 offspring of the control group. After treatment of postspermatogonial germ-cell stages, 1 mutant in 1125 F1 offspring of males treated with 160 mg ENU/kg body weight, and 2 mutants in 1319 F1 offspring of a 250-mg/kg group were observed. After treatment of spermatogonia, 9 enzyme-activity mutants in 4247 F1 offspring of males treated with 80 mg ENU/kg body weight, 15 mutants in 3396 F1 offspring of a 160-mg/kg group, and 9 mutants in 1402 F1 offspring of a 250-mg/kg group were detected. The mutation frequencies in spermatogonia were significantly different from that of the controls (P less than 0.01). The dose-response curve was found to be linear. The frequencies of enzyme-activity mutations are comparable to those of recessive specific-locus mutations determined in the same experiments. Enzyme-activity mutants with reduced activity as well as mutants with enhanced activity were found. Genetic and biochemical characterization of enzyme-activity mutants was routinely performed. In inter se crossings of heterozygotes, no offspring expressing a third phenotype other than the wild type and the heterozygote were found in approximately half of the mutation studies. The recovered mouse mutants might be used as animal models to study corresponding genetic diseases in humans.  相似文献   

19.
The induction of gene mutations was examined in MutaMouse after an intraperitoneal injection of 7, 8-dimethylbenz[a]anthracene (DMBA) at 20 mg/kg in a collaborative study participated by four laboratories. Although the DMBA dose used was lower than the level that has been reported to induce micronucleated erythrocytes maximally in several mouse strains, a killing effect appeared after day 9 of the post-treatment interval. Mutations in lacZ transgene were detected by the positive selection assay following in vitro packaging of phage lambda from the genomic DNA of the transgenic animals that survived. The mutant induction was evaluated in the bone marrow, liver, skin, colon, kidney, thymus, and testis 7 to 28 days after the treatment. In the bone marrow, the mutant frequency reached a maximum, approximately a 30-fold increase, 14 days after the treatment and the increased frequency persisted at least up to day 28 of the post-treatment. Induction of mutants was detected in the liver, colon, thymus, and skin to lesser extents. Marginal responses were obtained in the kidney and testis. The slight increases in the mutant frequencies in the kidney and testis observed in some laboratories were within laboratory-to-laboratory or animal-to-animal variations. In contrast to the gene mutation induction in the bone marrow, the frequency of micronucleated reticulocytes increased transiently 3 days after the treatment and returned to a control level before day 8 of the post-treatment. It was suggested that DMBA induced gene mutation is fixed in stem cells depending on cell proliferation while DNA damages responsible for chromosome breakage are not transmitted to progeny cells.  相似文献   

20.
Menkes disease (MD) is a genetic neurodegenerative disorder characterized by copper deficiency due to a defect in ATP7A. Standard treatment involves parenteral copper-histidine administration. However, the treatment is ineffective if initiated after two months of age, because the administered copper accumulates in the blood-brain barrier and is not transported to neurons. To resolve this issue, we investigated the effects of a combination therapy comprising copper and disulfiram, a lipophilic chelator, in the macular mouse, an animal model of MD. Seven-day-old macular mice treated subcutaneously with 50 μg of CuCl(2) on postnatal day 4 were used. The mice were given a subcutaneous injection of CuCl(2) (10 μg) with oral administration of disulfiram (0.3mg/g body weight) twice a week until eight weeks of age, and then sacrificed. Copper concentrations in the cerebellum, liver, and serum of treated macular mice were significantly higher than those of control macular mice, which received only copper. Mice treated with the combination therapy exhibited higher cytochrome c oxidase activity in the brain. The ratios of noradrenaline and adrenaline to dopamine in the brain were also increased by the treatment, suggesting that dopamine β-hydroxylase activity was improved by the combination therapy. Liver and renal functions were almost normal, although renal copper concentration was higher in treated macular mice than in controls. These results suggest that disulfiram facilitates the passage of copper across the blood-brain barrier and that copper-disulfiram combination therapy may be an effective treatment for MD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号