首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to xeroderma pigmentosum (XP), mutations in the human XPG gene cause early onset of Cockayne syndrome (CS) in some patients (XPG/CS). The CS-causing mutations in such patients all produce truncated XPG proteins. To test the hypothesis that the CS phenotype, with characteristics such as growth retardation and a short life span in XPG/CS patients, results from C-terminal truncations, we constructed mutants with C-terminal truncations in mouse XPG (Xpg) (from residue D811 to the stop codon [XpgD811stop] and deletion of exon 15 [Xpg Delta ex15]). In the XpgD811stop and Xpg Delta ex15 mutations, the last 360 and 183 amino acids of the protein were deleted, respectively. To generate Xpg mutant mice, we devised the shortcut knock-in method by replacing genomic DNA with a mutated cDNA fragment (cDNA-mediated knock in). The control mice, in which one-half of Xpg genomic DNA fragment was replaced with a normal Xpg cDNA fragment, had a normal growth rate, a normal life span, normal sensitivity to UV light, and normal DNA repair ability, indicating that the Xpg gene partially replaced with the normal cDNA fragment retained normal functions. The XpgD811stop homozygous mice exhibited growth retardation and a short life span, but the Xpg Delta ex15 homozygous mice did not, indicating that deletion of the last 360 amino acids results in the CS phenotype but deletion of the last 183 amino acids does not. The XpgD811stop homozygous mice, however, exhibited a slightly milder CS phenotype than did the Xpg null mutant mice, indicating that the XpgD811stop protein still retains some Xpg function that affects the severity of the CS phenotype.  相似文献   

2.
In addition to xeroderma pigmentosum (XP), mutations in the human XPG gene cause an early onset of Cockayne syndrome (CS) in some patients (XP-G/CS) with characteristics, such as growth retardation and a short life span. In the previous studies, we generated four Xpg mutant mice with two different C-terminal truncations, null, or a base substitution mutation to identify the protein region that causes the onset of CS, and found that the CS-causing mutations, null or a deletion of the last 360 amino acids, completely inhibited the NER activity of mouse XPG (Xpg), but the non-CS-causing mutations, XpgD811A (base substitution that eliminates the nuclease activity of Xpg) or XpgDeltaex15 (deletion of the exon 15 corresponding to the last 183 amino acids), resulted in the retention of residual NER activity. To understand why mutations that completely eliminate the NER activity of Xpg cause CS but those that abolish the nuclease activity without totally eliminating the NER activity of Xpg do not result in CS, we made a series of Xpg mutant mice with Xpa-null mutant allele and found that mice with the non-CS-causing deletion mutation (XpgDeltaex15) exhibited the CS phenotype when XPA was also absent but the base substitution mutation (XpgD811A) that eliminated the Xpg nuclease activity did not. These results indicate that Xpg has a second function, beside NER, and that the disruption of this second function (deletion of the last 183 amino acids) when combined with an NER defect causes CS. When we compared amino acid sequences corresponding to the exon 15 of Xpg, a significant homology was conserved among vertebrates, but not in Drosophila and Saccharomyces cerevisiae. These observations suggest that the second function of XPG may be conserved only in vertebrates and CS symptoms may occur in its absence.  相似文献   

3.
4.
Mutations of two enzyme genes, HPRT1 encoding hypoxanthine guanine phosphoribosyltransferase (HPRT) and PRPS1 encoding a catalytic subunit (PRS-I) of phosphoribosylpyrophosphate synthetase, cause X-linked inborn errors of purine metabolism. Analyzing these two genes, we have identified three HPRT1 mutations in Lesch-Nyhan families following our last report. One of them, a new mutation involving the deletion of 4224 bp from intron 4 to intron 5 and the insertion of an unknown 28 bp, has been identified. This mutation resulted in an enzyme polypeptide with six amino acids deleted due to abnormal mRNA skipping exon 5. The other HPRT1 mutations, a single base deletion (548delT, 183fs189X), and a point mutation causing a splicing error (532+1G>A, 163fs165X) were detected first in Japanese patients but have been reported in European families. On the other hand, in the analysis of PRPS1, no mutation was identified in any patient.  相似文献   

5.
Werner syndrome (WS) is an autosomal recessive disease with a complex phenotype that is suggestive of accelerated aging. WS is caused by mutations in a gene, WRN, that encodes a predicted 1,432-amino-acid protein with homology to DNA and RNA helicases. Previous work identified four WS mutations in the 3' end of the gene, which resulted in predicted truncated protein products of 1,060-1,247 amino acids but did not disrupt the helicase domain region (amino acids 569-859). Here, additional WS subjects were screened for mutations, and the intron-exon structure of the gene was determined. A total of 35 exons were defined, with the coding sequences beginning in the second exon. Five new WS mutations were identified: two nonsense mutations at codons 369 and 889; a mutation at a splice-junction site, resulting in a predicted truncated protein of 760 amino acids; a 1-bp deletion causing a frameshift; and a predicted truncated protein of 391 amino acids. Another deletion is >15 kb of genomic DNA, including exons 19-23; the predicted protein is 1,186 amino acids long. Four of these new mutations either partially disrupt the helicase domain region or result in predicted protein products completely missing the helicase region. These results confirm that mutations in the WRN gene are responsible for WS. Also, the location of the mutations indicates that the presence or absence of the helicase domain does not influence the WS phenotype and suggests that WS is the result of complete loss of function of the WRN gene product.  相似文献   

6.
Dystrophic epidermolysis bullosa is an inherited bullous dermatosis caused by the COL7A1 gene mutation in autosomal dominant or recessive mode. COL7A1 gene encodes type VII collagen – the main component of the anchoring fibrils at the dermal–epidermal junction. Besides the 730 mutations reported, we identified two novel COL7A1 gene mutations in a Chinese family, which caused recessive dystrophic epidermolysis bullosa (RDEB). The diagnosis was established histopathologically and ultrastructurally. After genomic DNA extraction from the peripheral blood sample of all subjects (5 pedigree members and 136 unrelated control individuals), COL7A1 gene screening was performed by polymerase chain reaction amplification and direct DNA sequencing of the whole coding exons and flanking intronic regions. Genetic analysis of the COL7A1 gene in affected individuals revealed compound heterozygotes with identical novel mutations. The maternal mutation is a 2-bp deletion at exon 8 (c.1006_1007delCA), leading to a subsequent reading frame-shift and producing a premature termination codon located 48 amino acids downstream in exon 9 (p.Q336EfsX48), consequently resulting in the truncation of 2561 amino acids downstream. This was only present in two affected brothers, but not in the other unaffected family members. The paternal mutation is a 1-bp deletion occurring at the first base of intron 65 (c.IVS5568+1delG) that deductively changes the strongly conserved GT dinucleotide at the 5′ donor splice site, results in subsequent reading-through into intron 65, and creates a stop codon immediately following the amino acids encoded by exon 65 (GTAA→TAA). This is predicted to produce a truncated protein lacking of 1089 C-terminal amino acids downstream. The latter mutation was found in all family members except one of the two unaffected sisters. Both mutations were observed concurrently only in the two affected brothers. Neither mutation was discovered in 136 unrelated Chinese control individuals. This study reveals novel disease-causing mutations in the COL7A1 gene.  相似文献   

7.
Low LDL cholesterol and apoB levels in plasma cosegregate with mutations of apoB in some kindreds with familial hypobetalipoproteinemia. Approximately 35 apoB mutations, many specifying apoB truncations, have been described. Based on the centile nomenclature where the full-length nature apoB consisting of 4536 amino acids is designated as apoB-100, only those truncations of apoB >25% of normal length are detectable in plasma. Previously, we reported on five unrelated kindreds with familial hypobetalipoproteinemia in whom although no apoB truncations were detectable in plasma, low apoB levels were nevertheless linked to the apoB gene. In one of those kindreds, we reported a donor splice site mutation in intron 5 (specifying apoB- 4). We now describe a nonsense mutation in exon 10 (apoB-9) in two of the other unrelated families. Both the apoB-4 and apoB-9 mutations have been reported by others in unrelated families. Recurrent mutations of apoB-40 and apoB-55 also have been reported, suggesting that recurrent mutations of apoB may account for an appreciable proportion of familial hypobetalipoproteinemia kindreds. To test this hypothesis, we searched for four apoB mutations whose products are not detected in plasma including the apoB-4, apoB-9, and two other previously reported mutations in exons 21 and 25. We studied three groups with plasma cholesterols <130 mg/dl in whom no apoB truncations were detected in plasma: a) 28 FHBL probands from St. Louis, b) 151 individual St. Louisians, and c) 28 individual Sicilians. One subject from the 28 kindreds and two subjects among 151 hypobeta individuals from St. Louis harbored the exon 10 mutation. None of the other mutations were detected. Thus, among hypobeta lipoproteinemic subjects without any detectable apoB truncations in plasma, <5% had an apoB truncation-producing mutation. As only about 0.5% of hypobeta lipoproteinemic subjects have plasma-detectable apoB truncations, our data suggest that the known apoB truncations account for only a small proportion of hypocholesterolemia.  相似文献   

8.
We analyzed DNA from 13 males with ornithine transcarbamylase (OTC) deficiency for gene deletions and known point mutations using the polymerase chain reaction (PCR), allelle-specific oligonucleotide (ASO) hybridization, and Southern blotting with full-length OTC cDNA and exon-specific probes. Three patients were found to have deletions: one was missing the whole OTC gene; a second patient had a deletion of both exon 7 and 8; and the third had a deletion of exon 9. Only one of the remaining 10 patients had a known point mutation consisting of a G-to-A change in nucleotide 422 of the sense strand resulting in a glutamine substitution for arginine at amino acid 109 of the mature OTC protein. This study describes the integration of various molecular methods to screen OTC-deficient patients for deletions and points mutations. Two new deletions within the OTC gene are described.  相似文献   

9.
10.
11.
Dominant white, Dun, and Smoky are alleles at the Dominant white locus, which is one of the major loci affecting plumage color in the domestic chicken. Both Dominant white and Dun inhibit the expression of black eumelanin. Smoky arose in a White Leghorn homozygous for Dominant white and partially restores pigmentation. PMEL17 encodes a melanocyte-specific protein and was identified as a positional candidate gene due to its role in the development of eumelanosomes. Linkage analysis of PMEL17 and Dominant white using a red jungle fowl/White Leghorn intercross revealed no recombination between these loci. Sequence analysis showed that the Dominant white allele was exclusively associated with a 9-bp insertion in exon 10, leading to an insertion of three amino acids in the PMEL17 transmembrane region. Similarly, a deletion of five amino acids in the transmembrane region occurs in the protein encoded by Dun. The Smoky allele shared the 9-bp insertion in exon 10 with Dominant white, as expected from its origin, but also had a deletion of 12 nucleotides in exon 6, eliminating four amino acids from the mature protein. These mutations are, together with the recessive silver mutation in the mouse, the only PMEL17 mutations with phenotypic effects that have been described so far in any species.  相似文献   

12.
Previous molecular genetic analyses of Epstein-Barr virus nuclear protein 2 (EBNA2) identified a negative effect of deletion of codons 19 to 33 on transformation and gene transactivation, while deletion of codons 19 to 110 was a null mutation for transformation and gene transactivation. We here report the surprising finding that codons 2 to 88, which encode the highly conserved unique N terminus (amino acids 1 to 58) and most of the polyproline repeat (amino acids 59 to 95), can be deleted with only minimal effects on transformation. Codons 97 to 122 can also be deleted with only minimal effects on transformation. However, deletion of 35 of the 37 prolines (amino acids 59 to 93) or deletion of codons 2 to 95 results in a null transforming phenotype. Although EBNA2 from which codons 59 to 93 were deleted was a null mutation for transformation, it was similar to some transforming mutants of EBNA2 in abundance, in interaction with RBPJK, and in transactivation of the LMP1 promoter in transient transfection assays. These data indicate that between three and seven prolines are critical for EBNA2 structure or for intermolecular interaction. Aside from these seven prolines, codons encoding the rest of the N-terminal half (amino acids 2 to 230) of EBNA2 are nonessential for primary B-lymphocyte growth transformation.  相似文献   

13.
We have used screening with the polymerase chain reaction and chemical mismatch detection of amplified cDNA to detect and characterize deletions and point mutations in six Hunter Syndrome patients. A high degree of mutational heterogeneity was observed. The first patient is completely deleted for the gene coding for alpha-L-iduronate sulfate sulfatase, while the second has a point mutation that creates a stop codon. The third patient shows a point mutation that creates a novel splice site that is preferentially utilized and results in partial loss of one exon in the RNA. Patients 4, 5, and 6 have point mutations resulting in single amino acid substitutions. Four of the six single-base changes observed in this study were examples of transitions of the highly mutable dinucleotide CpG to TpG. This study has demonstrated a procedure capable of detecting all types of mutation that affect the function of the IDS protein and should enable direct carrier and prenatal diagnosis for Hunter syndrome families.  相似文献   

14.
LIS1 is a genetic entity that is responsible for lissencephaly. Previously we have reported isolated lissencephaly sequence(ILS) in a Japanese patient carrying a balanced chromosomal translocation that disrupted the LIS1 gene. We examined mutations of LIS1 in 12 additional Japanese patients, 8 of them with ILS and 4 with Miller-Dieker syndrome (MDS). Fluorescence in situ hybridization (FISH) analysis disclosed deletions of part of the LIS1 gene or of the chromosomal region surrounding it in three of the ILS cases and in three of the MDS cases. In one of the remaining five ILS cases, SSCP analysis and subsequent sequence analysis identified a 1-bp deletion in exon IV, which can be expected to result in premature termination of the gene product. Our results indicate that in Japan, as elsewhere, abnormality of the LIS1 gene is a common cause of MDS/ILS. Received: 20 April 1998 / Accepted: 28 July 1998  相似文献   

15.
Most cancer-associated BRCA1 mutations identified to date result in the premature translational termination of the protein, highlighting a crucial role for the C-terminal, BRCT repeat region in mediating BRCA1 tumor suppressor function. However, the molecular and genetic effects of missense mutations that map to the BRCT region remain largely unknown. Using a protease-based assay, we directly assessed the sensitivity of the folding of the BRCT domain to an extensive set of truncation and single amino acid substitutions derived from breast cancer screening programs. The protein can tolerate truncations of up to 8 amino acids, but further deletion results in drastic BRCT folding defects. This molecular phenotype can be correlated with an increased susceptibility to disease. A cross-validated computational assessment of the BRCT mutation data base suggests that as much as half of all BRCT missense mutations contribute to BRCA1 loss of function and disease through protein-destabilizing effects. The coupled use of proteolytic methods and computational predictive methods to detect mutant BRCA1 conformations at the protein level will augment the efficacy of current BRCA1 screening protocols, especially in the absence of clinical data that can be used to discriminate deleterious BRCT missense mutations from benign polymorphisms.  相似文献   

16.
Cystic fibrosis (CF) is the most frequent autosomal recessive inherited disorder in Caucasian populations. The disease is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. We have identified an 84-bp deletion in exon 13 of the CFTR gene, detected by DNA amplification and direct sequencing of 500 bp of the 5' end of exon 13. The deletion was in the maternal allele of a CF patient bearing the delta F508 deletion in the father's allele. The same 84-bp deletion could also be detected in the patient's mother. The deletion spanned from a four-A cluster in positions 1949-1952 to another four-A cluster in positions 2032-2035, including 84 bp which correspond to codons 607-634 (1949del84). The reported mutation would result in the loss of 28 amino acid residues of the R domain of the CFTR protein.  相似文献   

17.
18.
Ribosomal protein L2 is a primary 23S rRNA binding protein in the large ribosomal subunit. We examined the contribution of the N- and C-terminal regions of Bacillus stearothermophilus L2 (BstL2) to the 23S rRNA binding activity. The mutant desN, in which the N-terminal 59 residues of BstL2 were deleted, bound to the 23S rRNA fragment to the same extent as wild type BstL2, but the mutation desC, in which the C-terminal 74 amino acid residues were deleted, abolished the binding activity. These observations indicated that the C-terminal region is involved in 23S rRNA binding. Subsequent deletion analysis of the C-terminal region found that the C-terminal 70 amino acids are required for efficient 23S rRNA binding by BstL2. Furthermore, the surface plasmon resonance analysis indicated that successive truncations of the C-terminal residues increased the dissociation rate constants, while they had little influence on association rate constants. The result indicated that reduced affinities of the C-terminal deletion mutants were due only to higher dissociation rate constants, suggesting that the C-terminal region primarily functions by stabilizing the protein L2-23S rRNA complex.  相似文献   

19.
20.
Mutator phenotypes of common polymorphisms and missense mutations in MSH2.   总被引:4,自引:0,他引:4  
Hereditary non-polyposis colorectal cancer (HNPCC) is associated with germline mutations in the DNA mismatch repair gene hMSH2 [1], the human homologue of the Escherichia coli MutS gene. These are mostly nonsense, frameshift or deletion mutations that result in loss of intact protein and complete inactivation of DNA mismatch repair. However, cancer is also associated with hMSH2 missense mutations that are merely inferred to be deleterious because they result in non-conservative substitutions of amino acids that are highly conserved among MutS family proteins. Moreover, sequence polymorphisms exist in hMSH2 that also change conserved amino acids but whose functional consequences and relationship to cancer are uncertain. Here, we show that yeast strains harboring putative equivalents of three hMSH2 polymorphisms have elevated mutation rates. Mutator effects were also observed for yeast equivalents of hMSH2 missense mutations found in HNPCC families and in an early onset colon tumor. Several distinct phenotypes were observed, indicating that these missense mutations have differential effects on MSH2 function(s). The results suggest that cancer may be associated with even partial loss of hMSH2 function and they are consistent with the hypothesis that polymorphisms in hMSH2 might predispose humans to disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号