首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Natural rubber, obtained almost exclusively from the Para rubber tree (Hevea brasiliensis), is a unique biopolymer of strategic importance that, in many of its most significant applications, cannot be replaced by synthetic rubber alternatives. Several pressing motives lead to the search for alternative sources of natural rubber. These include increased evidence of allergenic reactions to Hevea rubber, the danger that the fungal pathogen Microcyclus ulei, causative agent of South American Leaf Blight (SALB), might spread to Southeast Asia, which would severely disrupt rubber production, potential shortages of supply due to increasing demand and changes in land use, and a general trend towards the replacement of petroleum-derived chemicals with renewables. Two plant species have received considerable attention as potential alternative sources of natural rubber: the Mexican shrub Guayule (Parthenium argentatum Gray) and the Russian dandelion (Taraxacum koksaghyz). This review will summarize the current production methods and applications of natural rubber (dry rubber and latex), the threats to the production of natural rubber from the rubber tree, and describe the current knowledge of the production of natural rubber from guayule and Russian dandelion.  相似文献   

2.
Optimum conditions for the rapid, efficient, nondestructive determination of rubber producing potential in guayule (Parthenium argentatum) were established. The rubber producing potential may be defined as the ability of the plant material to synthesize rubber from a precursor under specified conditions. To achieve this, stem slices taken from the first 5 centimeters of branches were incubated with [14C]acetate as precursor in 0.1 molar phosphate buffer (pH 6.5) at 26°C for 16 hours in the light. The 14C from labeled acetate and acetyl coenzymeA were efficiently incorporated into rubber whereas the 14C from both mevalonic acid (MVA) and isopentenylpyrophosphate (IPP) were poorly incorporated. Incorporation of 68.6% of the 14C from labeled IPP into the acetone extractable material suggests that most of the IPP was channeled down the lower terpenoid branch of the polyisoprene biosynthetic pathway. The incorporation of 14C from labeled acetate into rubber was most efficient at temperatures between 20 and 25°C. The rubber producing potential was also found to be dependent on light intensity. The roots which represent about one-third of the plant biomass not only had the highest rubber producing potential but also contained the highest amount of rubber (7.6%), indicating that the root system could be a major source of rubber. The mature stem bark also had a high rubber content and rubber producing potential, whereas the young stem had a low rubber content and a lower potential for producing rubber. The leaves showed little potential to incorporate labeled acetate into rubber and no more than 0.5% rubber was found in guayule leaves.  相似文献   

3.
Exposure of guayule plants (Parthenium argentatum Gray) to 6 months of a night temperature of 7°C results in a 2-fold stimulation of cis-polyisoprene (rubber) formation over that of control plants exposed to 21 to 24°C night temperature. Control and cold-treated plants contained 2.18% and 5.69% rubber, respectively. Examination of the stem apices by transmission electron microscopy showed extensive formation of rubber particles in the cold-treated plants compared to the control plants. The rubber particles in guayule are formed in the cytoplasm and fuse to form large globular deposits. The surface area of the rubber particles and globules range from 4 × 10−6 to 2.9 × 10−3 square micrometers. The deposition of rubber in the cytoplasm of the cortical parenchyma cells differs from rubber deposition in the vacuoles of laticifers of Asclepias syriaca. Electron micrographs of stem cortical parenchyma in control plants show mature cells with large central vacuoles, thin layers of parietal cytoplasm, and smaller numbers of rubber particles. Radioactive acetate and mevalonate are incorporated into rubber at a faster rate in stem slices from cold-treated plants compared to slices from control plants. A faster rate of these reactions may account for the increase in rubber synthesis in the cold-treated plants.  相似文献   

4.
Two protein families required for rubber biosynthesis in Taraxacum brevicorniculatum have recently been characterized, namely the cis‐prenyltransferases (TbCPTs) and the small rubber particle proteins (TbSRPPs). The latter were shown to be the most abundant proteins on rubber particles, where rubber biosynthesis takes place. Here we identified a protein designated T. brevicorniculatum rubber elongation factor (TbREF) by using mass spectrometry to analyze rubber particle proteins. TbREF is homologous to the TbSRPPs but has a molecular mass that is atypical for the family. The promoter was shown to be active in laticifers, and the protein itself was localized on the rubber particle surface. In TbREF‐silenced plants generated by RNA interference, the rubber content was significantly reduced, correlating with lower TbCPT protein levels and less TbCPT activity in the latex. However, the molecular mass of the rubber was not affected by TbREF silencing. The colloidal stability of rubber particles isolated from TbREF‐silenced plants was also unchanged. This was not surprising because TbREF depletion did not affect the abundance of TbSRPPs, which are required for rubber particle stability. Our findings suggest that TbREF is an important component of the rubber biosynthesis machinery in T. brevicorniculatum, and may play a role in rubber particle biogenesis and influence rubber production.  相似文献   

5.
Natural rubber was identified for the first time in the latex of Ficus benghalensis, and the rubber biosynthetic activity in latex and rubber particles was investigated. 13C NMR analysis of samples prepared by successive extractions with acetone and benzene confirmed that the benzene-soluble residues were natural rubber, cis-1,4-polyisoprene. The rubber content in the latex of F. benghalensis was approximately 17 %. Gel permeation chromatography revealed that the molecular mass of the natural rubber from F. benghalensis was approximately 1 500 kDa. The high rubber content and large molecular size suggest that F. benghalensis is a good candidate for an alternative rubber source. Examination of latex serum from F. benghalensis by SDS-polyacrylamide gel electrophoresis revealed a small number of proteins with major proteins of 31 and 55 kDa in size. The 31-kDa protein was predominant in catalytically-active rubber particles. Determination of metal ion concentration in latex and a comparison of the effect of ethylenediamine-tetraacetic acid on in vitro rubber biosynthesis in F. benghalensis, F. carica and Hevea brasiliensis suggest that the divalent metal ion present in latex serum is an important physiological factor controlling the rubber biosynthetic activities in these plant species. Microscopic examination revealed that the rubber in F. benghalensis occurred in a series of laticifer cells located in concentric zones in the inner bark of stems and branches.  相似文献   

6.
Washed rubber particles isolated from stem homogenates of Parthenium argentatum Gray by ultracentrifugation and gel filtration on columns of LKB Ultrogel AcA34 contain rubber transferase which catalyzes the polymerization of isopentenyl pyrophosphate into rubber polymer. The polymerization reaction requires Mg2+ isopentenyl pyrophosphate, and an allylic pyrophosphate. The Km values for Mg2+, isopentenyl pyrophosphate, and dimethylallyl pyrophosphate were 5.2 × 10−4 molar, 8.3 × 10−5 molar, and 9.6 × 10−5 molar, respectively. The molecular characteristics of the rubber polymer synthesized from [14C]isopentenyl pyrophosphate were examined by gel permeation chromatography on three linear columns of 1 × 106 to 500 Ångstroms Ultrastyragel in a Waters 150C Gel Permeation Chromatograph. The peak molecular weight of the radioactive polymer increased from 70,000 in 15 minutes to 750,000 in 3 hours. The weight average molecular weight of the polymer synthesized over a 3 hour period was 1.17 × 106 compared to 1.49 × 106 for the natural rubber polymer extracted from the rubber particles. Over 90% of the in vitro formation of the rubber polymer was de novo from dimethylallyl pyrophosphate and isopentenyl pyrophosphate. Treatment of the washed rubber particles with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate solubilized the rubber transferase. The solubilized enzyme(s) catalyzed the polymerization of isopentenyl pyrophosphate into rubber polymer with a peak molecular weight of 1 × 105 after 3 hours of incubation with Mg2+ and dimethylallyl pyrophosphate. The data support the conclusion that the soluble preparation of rubber transferase is capable of catalyzing the formation of a high molecular weight rubber polymer from an allylic pyrophosphate initiator and isopentenyl pyrophosphate monomer.  相似文献   

7.
Natural rubber, cis-1,4-polyisoprene, is a vital industrial material synthesized by plants via a side branch of the isoprenoid pathway by the enzyme rubber transferase. While the specific structure of this enzyme is not yet defined, based on activity it is probably a cis-prenyl transferase. Photoactive functionalized substrate analogues have been successfully used to identify isoprenoid-utilizing enzymes such as cis- and trans-prenyltransferases, and initiator binding of an allylic pyrophosphate molecule in rubber transferase has similar features to these systems. In this paper, a series of benzophenone-modified initiator analogues were shown to successfully initiate rubber biosynthesis in vitro in enzymatically-active washed rubber particles from Ficus elastica, Heveabrasiliensis and Parthenium argentatum.Rubber transferases from all three species initiated rubber biosynthesis most efficiently with farnesyl pyrophosphate. However, rubber transferase had a higher affinity for benzophenone geranyl pyrophosphate (Bz-GPP) and dimethylallyl pyrophosphate (Bz-DMAPP) analogues with ether-linkages than the corresponding GPP or DMAPP. In contrast, ester-linked Bz-DMAPP analogues were less efficient initiators than DMAPP. Thus, rubber biosynthesis depends on both the size and the structure of Bz-initiator molecules. Kinetic studies thereby inform selection of specific probes for covalent photolabeling of the initiator binding site of rubber transferase.  相似文献   

8.
Changing the visual body appearance by use of as virtual reality system, funny mirror, or binocular glasses has been reported to be helpful in rehabilitation of pain. However, there are interindividual differences in the analgesic effect of changing the visual body image. We hypothesized that a negative body image associated with changing the visual body appearance causes interindividual differences in the analgesic effect although the relationship between the visual body appearance and analgesic effect has not been clarified. We investigated whether a negative body image associated with changes in the visual body appearance increased pain. Twenty-five healthy individuals participated in this study. To evoke a negative body image, we applied the method of rubber hand illusion. We created an “injured rubber hand” to evoke unpleasantness associated with pain, a “hairy rubber hand” to evoke unpleasantness associated with embarrassment, and a “twisted rubber hand” to evoke unpleasantness associated with deviation from the concept of normality. We also created a “normal rubber hand” as a control. The pain threshold was measured while the participant observed the rubber hand using a device that measured pain caused by thermal stimuli. Body ownership experiences were elicited by observation of the injured rubber hand and hairy rubber hand as well as the normal rubber hand. Participants felt more unpleasantness by observing the injured rubber hand and hairy rubber hand than the normal rubber hand and twisted rubber hand (p<0.001). The pain threshold was lower under the injured rubber hand condition than with the other conditions (p<0.001). We conclude that a negative body appearance associated with pain can increase pain sensitivity.  相似文献   

9.
Natural rubber, cis-1,4-polyisoprene, is an essential raw material used in thousands of products, many of which are absolutely necessary for medical purposes. Natural rubber is obtained from latex, an aqueous emulsion present in the laticiferous vessels of the natural rubber-producing plants. Hevea brasiliensis (the Brazilian rubber tree) currently is the only commercially important source of natural rubber. H. brasiliensis crops have very little genetic variability, leaving rubber plantations at risk of serious pathogenic attacks. In addition, repeated exposure to residual proteins in latex products derived from H. brasiliensis have led to serious and widespread allergic (type I) hypersensitivity. Therefore, identification of alternative sources of natural rubber is a very important biotechnological task. Potentially, Russian dandelion (Taraxacum kok-saghyz) may be such an alternative because significant amounts of natural rubber are produced in its root system. However, H. brasiliensis is a more efficient producer of natural rubber than T. kok-saghyz. Thus, improvement of rubber biosynthesis in plants is a first-priority problem of modern biotechnology. In this review, we describe proteins that may increase the concentration of natural rubber in laticiferous vessels of T. kok-saghyz and its close relative Taraxacum brevicorniculatum, when overexpressed in the plants. These proteins, cis-prenyltransferases, rubber transferase activator, and small rubber particle proteins, are directly involved in synthesis of the polyisoprene chain. We also analyze the effects of their expression levels on the production of natural rubber in vivo.  相似文献   

10.
Para-rubber (Hevea brasiliensis) seed and its products were subjected to different methods of processing such as decortication, oil extraction, autoclaving and fermentation and assayed for their chemical composition and nutritional value. Peanut oil meal and yellow maize were also assayed similarly for comparison.

Decortication reduced the crude fibre content, with proportionate increases in other nutrients and energy value. Autoclaving and fermentation failed to improve the nutritional value of undecorticated rubber seed oil meal.

Crude protein content of rubber seed and its products ranged from 11.5% in rubber seeds to 27.4% in commercial decorticated rubber seed oil meal. The oil content of the rubber seeds and kernels was 24.0 and 40.1%, respectively. The available carbohydrate content of rubber seed and its products ranged from 6.3% in rubber seeds to 15.9% in commercial decorticated rubber seed oil meal; these values may be compared with the value of 59.0% for yellow maize.

Both undecorticated and decorticated rubber seed oil meals appeared to be deficient in sulphur-containing amino acids and lysine. The gross protein value of undecorticated and decorticated rubber seed oil meals and peanut oil meal was estimated to be 43.6, 47.0 and 49.7, respectively.

Both undecorticated and decorticated rubber seed oils were rich in oleic and stearic acids, but relatively poor in poly-unsaturated fatty acids, compared with peanut oil.

Determined apparent ME (AME) values were (kcal/g dry matter): rubber seeds, 2.91; kernels, 4.70; undecorticated rubber seed oil meal, 2.00; and decorticated rubber seed oil meal, 2.80. The true ME (TME) values were 3.24, 5.16, 2.22 and 3.00 kcal/g dry matter, respectively. In general, TME values were about 10% higher than the AME values.  相似文献   


11.
Hevea brasiliensis, or rubber tree, is an important crop species that accounts for the majority of natural latex production. The rubber tree nuclear genome consists of 18 chromosomes and is roughly 2.15 Gb. The current rubber tree reference genome assembly consists of 1,150,326 scaffolds ranging from 200 to 531,465 bp and totalling 1.1 Gb. Only 143 scaffolds, totalling 7.6 Mb, have been placed into linkage groups. We have performed RNA-seq on 6 varieties of rubber tree to identify SNPs and InDels and used this information to perform target sequence enrichment and high throughput sequencing to genotype a set of SNPs in 149 rubber tree offspring from a cross between RRIM 600 and RRII 105 rubber tree varieties. We used this information to generate a linkage map allowing for the anchoring of 24,424 contigs from 3,009 scaffolds, totalling 115 Mb or 10.4% of the published sequence, into 18 linkage groups. Each linkage group contains between 319 and 1367 SNPs, or 60 to 194 non-redundant marker positions, and ranges from 156 to 336 cM in length. This linkage map includes 20,143 of the 69,300 predicted genes from rubber tree and will be useful for mapping studies and improving the reference genome assembly.  相似文献   

12.
《Biomass》1988,15(3):133-142
Chrysothamnus nauseous (rubber rabbitbrush) is a desert shrub that grows in high density in large populations over a wide range of environmental conditions in the western United States and contains natural rubber that has potential commercial value. Individual plants of two sympatric subspecies (turbinatus and hololeucus) were analyzed to determine the distribution of rubber and resin within the plant. The highest rubber and the lowest resin contents were in the stems near the soil level whereas the highest resin and lowest rubber were in the top of the plants. Negative correlation between rubber and resin from top to bottom of the plants was significant (r2 = −0·64, p = 0·03) for ssp. turbinatus. During the growing season, the highest rubber and lowest resin contents occured during the summer for both subspecies. In contrast the highest resin and lowest rubber contents occured in the spring for both subspecies. Negative correlation between rubber and resin for one year old tissue in ssp. turbinatus was very significant (r2 = −0·76, p = 0·004). Rubber content was highest when soil moisture was lowest and temperatures were highest. Results suggest that rubber and resin contents are under environmental regulation and that it may be possible to influence rubber and resin content in rubber rabbitbrush by using stress treatments.  相似文献   

13.
The rubber yield of the guayule plant (Tarthenium argentatum) is determined by its rubber concentration and biomass production, both of which are a function of genetic constituents and environmental conditions. With the aim of selecting best performing lines of guayule under the climatic conditions of the northern Negev of Israel, two-yr-old guayule plants from 13 USDA lines were evaluated for height, spread, canopy fresh and dry weight, branch and leaf dry weight, rubber and resin concentration, and rubber and resin yield per plant. Significant differences were found among the lines for all the characteristics tested. Lines 11600 and 11604 excelled in rubber and biomass production and were taller and more uniform than the other lines; whereas line N593, conventionally used as a standard, performed poorly and was less uniform. The correlation between rubber yield per plant and rubber concentration was poor, rubber yield being related mainly to biomass production and to a lesser degree to height and spread of the plants. Taken together with the fact that biomass production was more variable than rubber concentration, this finding suggests that breeding and selection of guayule for high rubber yield should be directed primarily towards improvement of biomass production rather than rubber concentration. In the northern Negev of Israel, USDA lines 11600 and 11604 performed well.  相似文献   

14.
New aspects of rubber biosynthesis   总被引:5,自引:0,他引:5  
New aspects of rubber biosynthesis. Following a review of the site of rubber biosynthesis in Hevea brasiliensis and Parthenium argentalum, evidence is given for the initiation of polyisoprene molecules from (ranMerpenoid precursors including geranylgeranyl pyrophosphate. All franj-14C-geranylgeraniol has been isolated from incubations of H. brasiliensis latex serum with 14C-isopentenyl pyrophosphate. Gel-filtration chromatography of the serum yields very small rubber particles of high biosynthetic activity, and two proteinaceous fractions. One of these increases the biosynthesis of rubber and may contain the enzyme, isopentenyldiphosphate δ-isomerase, whilst the other appears to inhibit rubber formation. The nature and molecular weight of the rubber formed in vitro is discussed and a mechanism for the de novo formation of rubber particles is suggested.  相似文献   

15.

Purpose

The number of scrap tires generated in China has grown dramatically every year. Generation of ground rubber from scrap tires is the dominant management option in China. It is necessary to assess the environmental impacts of ground rubber production from scrap tires to provide technical advices on a cleaner production.

Methods

Production of ground rubber from recycled scrap tires consist of three steps: rubber powder preparation, devulcanization, and refining. A process life cycle assessment (LCA) of ground rubber production from scrap tires is carried out, and Eco-indicator 99 method coupled with ecoinvent database is applied to evaluate the environmental impacts of this process.

Results and discussion

During the ground rubber production stage, the impact factor of respiratory inorganic is the most serious one. Devulcanization has the highest environmental load of about 66.2 %. Moreover, improvement on the flue gas treatment contributes to a cleaner production and a more environmental-friendly process. Applying clean energy can largely reduce environmental load by about 21.5 %.

Conclusions

The results can be a guidance to reduce environmental load when producing ground rubber from scrap tires. Meanwhile, increasing energy efficiency, improving environmental protection equipment, and applying clean energy are the effective measures to achieve this goal.  相似文献   

16.
The rapidly growing car industry in China has led to an equally rapid expansion of monoculture rubber in many regions of South East Asia. Xishuangbanna, the second largest rubber planting area in China, located in the Indo-Burma biodiversity hotspot, supplies about 37% of the domestic natural rubber production. There, high income possibilities from rubber drive a dramatic expansion of monoculture plantations which poses a threat to natural forests. For the first time we mapped rubber plantations in and outside protected areas and their net present value for the years 1988, 2002 (Landsat, 30 m resolution) and 2010 (RapidEye, 5 m resolution). The purpose of our study was to better understand the pattern and dynamics of the expansion of rubber plantations in Xishuangbanna, as well as its economic prospects and conservation impacts. We found that 1) the area of rubber plantations was 4.5% of the total area of Xishuangbanna in 1988, 9.9% in 2002, and 22.2% in 2010; 2) rubber monoculture expanded to higher elevations and onto steeper slopes between 1988 and 2010; 3) the proportion of rubber plantations with medium economic potential dropped from 57% between 1988 and 2002 to 47% in 2010, while the proportion of plantations with lower economic potential had increased from 30% to 40%; and 4) nearly 10% of the total area of nature reserves within Xishuangbanna has been converted to rubber monoculture by 2010. On the basis of our findings, we conclude that the rapid expansion of rubber plantations into higher elevations, steeper terrain, and into nature reserves (where most of the remaining forests of Xishuangbanna are located) poses a serious threat to biodiversity and environmental services while not producing the expected economic returns. Therefore, it is essential that local governments develop long-term land use strategies for balancing economic benefits with environmental sustainability, as well as for assisting farmers with the selection of land suitable for rubber production.  相似文献   

17.
18.
In Hevea brasiliensis, laticifers produce and accumulate rubber particles. Despite observation using histochemical methods, development stage structure and structures with ceasing functions have rarely been described. Spectral confocal laser scanning microscopy with Nile red staining simplifies laticifer structure observation in tangential sections while enhancing the resolution. Laticifer and ray images were extracted from unmixed images and used to monitor changes during growth. A laticifer network structure developed from increased anastomoses between adjoining laticifers outside of the conducting phloem, but because of increased radial division and growth of rays, the network structure ruptured and disintegrated. We also investigated immunohistochemical localization of two rubber particle-associated proteins in the laticifers: small rubber particle protein (SRPP) and rubber elongation factor (REF). Mature bark test results show that SRPP is localized only in the laticifer layers in the conducting phloem; REF is localized in all laticifer layers. Because SRPP plays a positive role in rubber biosynthesis, results show that the rubber biosynthesis capability of laticifers is concentrated where rays and the sieve tube actively transport metabolites.  相似文献   

19.
The Russian dandelion Taraxacum koksaghyz synthesizes considerable amounts of high‐molecular‐weight rubber in its roots. The characterization of factors that participate in natural rubber biosynthesis is fundamental for the establishment of T. koksaghyz as a rubber crop. The cis‐1,4‐isoprene polymers are stored in rubber particles. Located at the particle surface, the rubber transferase complex, member of the cis‐prenyltransferase (cisPT) enzyme family, catalyzes the elongation of the rubber chains. An active rubber transferase heteromer requires a cisPT subunit (CPT) as well as a CPT‐like subunit (CPTL), of which T. koksaghyz has two homologous forms: TkCPTL1 and TkCPTL2, which potentially associate with the rubber transferase complex. Knockdown of TkCPTL1, which is predominantly expressed in latex, led to abolished poly(cis‐1,4‐isoprene) synthesis but unaffected dolichol content, whereas levels of triterpenes and inulin were elevated in roots. Analyses of latex from these TkCPTL1‐RNAi plants revealed particles that were similar to native rubber particles regarding their particle size, phospholipid composition, and presence of small rubber particle proteins (SRPPs). We found that the particles encapsulated triterpenes in a phospholipid shell stabilized by SRPPs. Conversely, downregulating the low‐expressed TkCPTL2 showed no altered phenotype, suggesting its protein function is redundant in T. koksaghyz. MS‐based comparison of latex proteomes from TkCPTL1‐RNAi plants and T. koksaghyz wild‐types discovered putative factors that convert metabolites in biosynthetic pathways connected to isoprenoids or that synthesize components of the rubber particle shell.  相似文献   

20.
Ground rubber contains 15?C20 g Zn kg?1 but very low levels of Cd and could serve as an inexpensive byproduct Zn fertilizer. The aim of this investigation was to test Zn release in a soil treated with ground tire rubber and rubber ash compared with commercial Zn fertilizer and a laboratory grade zinc sulfate. A Zn-deficient soil was chosen from wheat fields in Isfahan province, central Iran, and the ground rubber, rubber ash and fertilizer-Zn and laboratory ZnSO4 were added at 0.5 and 2 mg Zn kg?1; 0.5 kg ha?1 would usually correct Zn deficiency in such pot tests. The soil DTPA-extractable Zn was then measured with time and the results were described examining first order, Elovich, power function and parabolic diffusion kinetics models. In the pot experiment, corn (Zea mays L.) plants were exposed to three rates of Zn (0, 20, 40 mg Zn kg?1) from two different sources (ZnSO4 and ground rubber). Ground rubber was applied as 2?C3 mm and <1 mm diameter particles. Zinc treatments were mixed with the soils before planting. At harvest, concentrations of Zn, Pb, and Cd in roots and shoots of corn were measured. Results showed that ground rubber and rubber ash significantly increased the concentration of DTPA-Zn in the soil and this increase was higher than achieved with the commercial Zn fertilizer. At the lower Zn application rate, Zn release followed parabolic diffusion, while at the higher rate the kinetics of release followed power function and Elovich models. There was an increase in Zn concentration of corn shoot and roots by adding of Zn regardless the source of applied Zn. With increase in the rate of rubber used, the shoot Zn uptake increased. The Pb concentration of shoot and Cd concentrations of shoot and roots were low (less than 0.02 mg kg?1) in all treatments. The results showed that the soil DTPA Zn decreases over time if the soil is amended with a soluble form of Zn whereas the reverse was observed if the Zn is added as ground rubber which only gradually transforms. Thus ground rubber and rubber ash offer strong value as Zn fertilizer for Zn deficient soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号