首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Automated Gene Ontology annotation for anonymous sequence data   总被引:9,自引:1,他引:9       下载免费PDF全文
  相似文献   

3.
Gene Ontology annotation quality analysis in model eukaryotes   总被引:1,自引:0,他引:1       下载免费PDF全文
Functional analysis using the Gene Ontology (GO) is crucial for array analysis, but it is often difficult for researchers to assess the amount and quality of GO annotations associated with different sets of gene products. In many cases the source of the GO annotations and the date the GO annotations were last updated is not apparent, further complicating a researchers’ ability to assess the quality of the GO data provided. Moreover, GO biocurators need to ensure that the GO quality is maintained and optimal for the functional processes that are most relevant for their research community. We report the GO Annotation Quality (GAQ) score, a quantitative measure of GO quality that includes breadth of GO annotation, the level of detail of annotation and the type of evidence used to make the annotation. As a case study, we apply the GAQ scoring method to a set of diverse eukaryotes and demonstrate how the GAQ score can be used to track changes in GO annotations over time and to assess the quality of GO annotations available for specific biological processes. The GAQ score also allows researchers to quantitatively assess the functional data available for their experimental systems (arrays or databases).  相似文献   

4.
Characterising gene function for the ever-increasing number and diversity of species with annotated genomes relies almost entirely on computational prediction methods. These software are also numerous and diverse, each with different strengths and weaknesses as revealed through community benchmarking efforts. Meta-predictors that assess consensus and conflict from individual algorithms should deliver enhanced functional annotations. To exploit the benefits of meta-approaches, we developed CrowdGO, an open-source consensus-based Gene Ontology (GO) term meta-predictor that employs machine learning models with GO term semantic similarities and information contents. By re-evaluating each gene-term annotation, a consensus dataset is produced with high-scoring confident annotations and low-scoring rejected annotations. Applying CrowdGO to results from a deep learning-based, a sequence similarity-based, and two protein domain-based methods, delivers consensus annotations with improved precision and recall. Furthermore, using standard evaluation measures CrowdGO performance matches that of the community’s best performing individual methods. CrowdGO therefore offers a model-informed approach to leverage strengths of individual predictors and produce comprehensive and accurate gene functional annotations.  相似文献   

5.

Background  

The annotations of Affymetrix DNA microarray probe sets with Gene Ontology terms are carefully selected for correctness. This results in very accurate but incomplete annotations which is not always desirable for microarray experiment evaluation.  相似文献   

6.

Background  

Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO) project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base.  相似文献   

7.

Background  

Vast progress in sequencing projects has called for annotation on a large scale. A Number of methods have been developed to address this challenging task. These methods, however, either apply to specific subsets, or their predictions are not formalised, or they do not provide precise confidence values for their predictions.  相似文献   

8.
9.

Background  

With the advent of high-throughput proteomic experiments such as arrays of purified proteins comes the need to analyse sets of proteins as an ensemble, as opposed to the traditional one-protein-at-a-time approach. Although there are several publicly available tools that facilitate the analysis of protein sets, they do not display integrated results in an easily-interpreted image or do not allow the user to specify the proteins to be analysed.  相似文献   

10.
MOTIVATION: Many bioinformatics data resources not only hold data in the form of sequences, but also as annotation. In the majority of cases, annotation is written as scientific natural language: this is suitable for humans, but not particularly useful for machine processing. Ontologies offer a mechanism by which knowledge can be represented in a form capable of such processing. In this paper we investigate the use of ontological annotation to measure the similarities in knowledge content or 'semantic similarity' between entries in a data resource. These allow a bioinformatician to perform a similarity measure over annotation in an analogous manner to those performed over sequences. A measure of semantic similarity for the knowledge component of bioinformatics resources should afford a biologist a new tool in their repertoire of analyses. RESULTS: We present the results from experiments that investigate the validity of using semantic similarity by comparison with sequence similarity. We show a simple extension that enables a semantic search of the knowledge held within sequence databases. AVAILABILITY: Software available from http://www.russet.org.uk.  相似文献   

11.
Describing the determinants of robustness of biological systems has become one of the central questions in systems biology. Despite the increasing research efforts, it has proven difficult to arrive at a unifying definition for this important concept. We argue that this is due to the multifaceted nature of the concept of robustness and the possibility to formally capture it at different levels of systemic formalisms (e.g., topology and dynamic behavior). Here we provide a comprehensive review of the existing definitions of robustness pertaining to metabolic networks. As kinetic approaches have been excellently reviewed elsewhere, we focus on definitions of robustness proposed within graph-theoretic and constraint-based formalisms.  相似文献   

12.
With numerous whole genomes now in hand, and experimental data about genes and biological pathways on the increase, a systems approach to biological research is becoming essential. Ontologies provide a formal representation of knowledge that is amenable to computational as well as human analysis, an obvious underpinning of systems biology. Mapping function to gene products in the genome consists of two, somewhat intertwined enterprises: ontology building and ontology annotation. Ontology building is the formal representation of a domain of knowledge; ontology annotation is association of specific genomic regions (which we refer to simply as 'genes', including genes and their regulatory elements and products such as proteins and functional RNAs) to parts of the ontology. We consider two complementary representations of gene function: the Gene Ontology (GO) and pathway ontologies. GO represents function from the gene's eye view, in relation to a large and growing context of biological knowledge at all levels. Pathway ontologies represent function from the point of view of biochemical reactions and interactions, which are ordered into networks and causal cascades. The more mature GO provides an example of ontology annotation: how conclusions from the scientific literature and from evolutionary relationships are converted into formal statements about gene function. Annotations are made using a variety of different types of evidence, which can be used to estimate the relative reliability of different annotations.  相似文献   

13.
14.
MOTIVATION: Assignment of putative protein functional annotation by comparative analysis using pre-defined experimental annotations is performed routinely by molecular biologists. The number and statistical significance of these assignments remains a challenge in this era of high-throughput proteomics. A combined statistical method that enables robust, automated protein annotation by reliably expanding existing annotation sets is described. An existing clustering scheme, based on relevant experimental information (e.g. sequence identity, keywords or gene expression data) is required. The method assigns new proteins to these clusters with a measure of reliability. It can also provide human reviewers with a reliability score for both new and previously classified proteins. RESULTS: A dataset of 27 000 annotated Protein Data Bank (PDB) polypeptide chains (of 36 000 chains currently in the PDB) was generated from 23 000 chains classified a priori. AVAILABILITY: PDB annotations and sample software implementation are freely accessible on the Web at http://pmr.sdsc.edu/go  相似文献   

15.
A wide range of web based prediction and annotation tools are frequently used for determining protein function from sequence. However, parallel processing of sequences for annotation through web tools is not possible due to several constraints in functional programming for multiple queries. Here, we propose the development of APAF as an automated protein annotation filter to overcome some of these difficulties through an integrated approach.  相似文献   

16.
17.
Automated function prediction (AFP) methods increasingly use knowledge discovery algorithms to map sequence, structure, literature, and/or pathway information about proteins whose functions are unknown into functional ontologies, typically (a portion of) the Gene Ontology (GO). While there are a growing number of methods within this paradigm, the general problem of assessing the accuracy of such prediction algorithms has not been seriously addressed. We present first an application for function prediction from protein sequences using the POSet Ontology Categorizer (POSOC) to produce new annotations by analyzing collections of GO nodes derived from annotations of protein BLAST neighborhoods. We then also present hierarchical precision and hierarchical recall as new evaluation metrics for assessing the accuracy of any predictions in hierarchical ontologies, and discuss results on a test set of protein sequences. We show that our method provides substantially improved hierarchical precision (measure of predictions made that are correct) when applied to the nearest BLAST neighbors of target proteins, as compared with simply imputing that neighborhood's annotations to the target. Moreover, when our method is applied to a broader BLAST neighborhood, hierarchical precision is enhanced even further. In all cases, such increased hierarchical precision performance is purchased at a modest expense of hierarchical recall (measure of all annotations that get predicted at all).  相似文献   

18.
19.
Yu GX  Glass EM  Karonis NT  Maltsev N 《Proteins》2005,61(4):907-917
Automated annotation of high-throughput genome sequences is one of the earliest steps toward a comprehensive understanding of the dynamic behavior of living organisms. However, the step is often error-prone because of its underlying algorithms, which rely mainly on a simple similarity analysis, and lack of guidance from biological rules. We present herein a knowledge-based protein annotation algorithm. Our objectives are to reduce errors and to improve annotation confidences. This algorithm consists of two major components: a knowledge system, called "RuleMiner," and a voting procedure. The knowledge system, which includes biological rules and functional profiles for each function, provides a platform for seamless integration of multiple sequence analysis tools and guidance for function annotation. The voting procedure, which relies on the knowledge system, is designed to make (possibly) unbiased judgments in functional assignments among complicated, sometimes conflicting, information. We have applied this algorithm to 10 prokaryotic bacterial genomes and observed a significant improvement in annotation confidences. We also discuss the current limitations of the algorithm and the potential for future improvement.  相似文献   

20.

Background  

The Gene Ontology (GO) is used to describe genes and gene products from many organisms. When used for functional annotation of microarray data, GO is often slimmed by editing so that only higher level terms remain. This practice is designed to improve the summarizing of experimental results by grouping high level terms and the statistical power of GO term enrichment analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号