首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitogenic G protein-coupled receptor (GPCR) signaling has been extensively studied. In contrast, little is known about anti-mitogenic GPCR signaling. We show here that anti-mitogenic signaling of a GPCR, the bradykinin B2 receptor, involves a novel direct protein-protein interaction. The antiproliferative effect of bradykinin was accompanied by a transient increase in protein-tyrosine phosphatase activity. Using surface plasmon resonance analysis, we observed that an immunoreceptor tyrosine-based inhibitory motif (ITIM) located in the C-terminal part of the B2 receptor interacted specifically with the protein-tyrosine phosphatase SHP-2. The interaction was confirmed in primary culture renal mesangial cells by co-immunoprecipitation of a B2 receptor.SHP-2 complex. The extent of the interaction was transiently increased by stimulation with bradykinin, which was accompanied by an increase in specific SHP-2 phosphatase activity. Mutational analysis of the key ITIM residue confirmed that the B2 receptor ITIM sequence is required for interaction with SHP-2, SHP-2 activation, and the anti-mitogenic effect of bradykinin. Finally, in mesangial cells transfected with a dominant-negative form of SHP-2, bradykinin lost the ability to inhibit cell proliferation. These observations demonstrate that bradykinin inhibits cell proliferation by a novel mechanism involving a direct protein-protein interaction between a GPCR (the B2 receptor) and SHP-2.  相似文献   

2.
Recently, we have described a novel protein-protein interaction between the G-protein coupled bradykinin B2 receptor and tyrosine phosphatase SHP-2 via an immunoreceptor tyrosine-based inhibition motif (ITIM) sequence located in the C-terminal part of the B2 receptor and the Src homology (SH2) domains of SHP-2. Here we show that phospholipase C (PLC)gamma1, another SH2 domain containing protein, can also interact with this ITIM sequence. Using surface plasmon resonance analysis, we observed that PLCgamma1 interacted with a peptide containing the phosphorylated form of the bradykinin B2 receptor ITIM sequence. In CHO cells expressing the wild-type B2 receptor, bradykinin-induced transient recruitment and activation of PLCgamma1. Interestingly, this interaction was only observed in quiescent and not in proliferating cells. Mutation of the key ITIM residue abolished this interaction with and activation of PLCgamma1. Finally we also identified bradykinin-induced PLCgamma1 recruitment and activation in primary culture renal mesangial cells.  相似文献   

3.
Although expression of the gastrin/cholecystokinin-2 receptor (CCK2R) is widely reported in human colorectal cancer, little is known on its role in mediating mature amidated gastrin (gastrin-17 amide, G-17) induced intracellular signal transduction in colon cancer cells. The purpose of this study was to explore the intracellular events of colorectal cancer cells after gastrin binding to CCK2R. Meanwhile, the influence of a natural point mutation 286V-->F in the third intracellular loop of CCK2R on gastrin-envoked intracellular signal transduction was also investigated. Firstly, Colo320 cells were stably transfected with wild type (Colo320 WT) and mutant CCK2R (Colo320 M), respectively. The intracellular signal transduction events in response to gastrin were investigated in both Colo320 WT and Colo320 M cells. In Colo320 WT cells, G-17 induced formation of intracellular cyclic AMP and inositol 1,4,5-trisphosphate, and stimulated intracellular calcium mobilization. G-17 also stimulated tyrosine phosphorylation of ERKl/2, p38, FAK, and paxillin, and up-regulated the mRNA expression of early response gene c-Jun and c-Fos. However, G-17 inhibited proliferation and induced apoptosis in Colo320 WT cells. Mutation 286V-->F in the third intracellular loop of CCK2R blocked G-17 induced biological without affecting binding affinity of CCK2R to G-17. Our results suggest that activation of CCK2R by gastrin stimulates heterotrimeric G-protein Gq and G(12/13) mediated intracellular signal transduction pathway in colon cancer cells. The valine-287 residue in third intracellular loop of CCK2R plays a pivotal role in CCK2R mediated intracellular signal transduction.  相似文献   

4.
FcgammaRIIB are single-chain low affinity receptors for IgG that negatively regulate immunoreceptor tyrosine-based activation motif-dependent cell activation. They bear one immunoreceptor tyrosine-based inhibition motif (ITIM) that becomes tyrosyl-phosphorylated upon coaggregation of FcgammaRIIB with immunoreceptor tyrosine-based activation motif-bearing receptors and that recruits SH2 domain-containing inositol 5-phosphatases (SHIPs) in vivo. Synthetic FcgammaRIIB ITIM phosphopeptides, however, also bind SH2 domain-containing protein-tyrosine phosphatases (SHPs) in vitro. To identify SHIP-binding sites, we exchanged residues between the FcgammaRIIB ITIM and the N-terminal ITIM of a killer cell Ig-like receptor that does not bind SHIPs. Loss of function and gain of function substitutions identified the Y+2 leucine, in the FcgammaRIIB ITIM, as determining the binding of both SHIP1 and SHIP2, but not the binding of SHP-1 or SHP-2. Conversely, the Y-2 isoleucine that determines the in vitro binding of SHP-1 and SHP-2 affected neither the binding nor the recruitment of SHIP1 or SHIP2. One hydrophobic residue, in the ITIM of FcgammaRIIB therefore determines the affinity for SHIPs. This residue is symmetrical to the hydrophobic residue that determines the affinity of all ITIMs for SHPs. It defines a SHIP-binding site, distinct from a SHP-binding site, that enables FcgammaRIIB to recruit SHIP1 and SHIP2 and that is preferentially used in vivo.  相似文献   

5.
6.
IL-2 stimulation of T lymphocytes induces the tyrosine phosphorylation and adaptor function of the insulin receptor substrate/Grb2-associated binder (Gab) family member, Gab2. In addition, Gab2 undergoes a marked decrease in its mobility in SDS-PAGE, characteristic of migration shifts induced by serine/threonine phosphorylations in many proteins. This migration shift was strongly diminished by treating cells with the MEK inhibitor U0126, indicating a possible role for ERK in Gab2 phosphorylation. Indeed, ERK phosphorylated Gab2 on a consensus phosphorylation site at serine 623, a residue located between tyrosine 614 and tyrosine 643 that are responsible for Gab2/Src homology 2 domain-containing tyrosine phosphatase (SHP)-2 interaction. We report that pretreatment of Kit 225 cells with U0126 increased Gab2/SHP-2 association and tyrosine phosphorylation of SHP-2 in response to IL-2, suggesting that ERK phosphorylation of serine 623 regulates the interaction between Gab2 and SHP-2, and consequently the activity of SHP-2. This hypothesis was confirmed by biochemical analysis of cells expressing Gab2 WT, Gab2 serine 623A or Gab2 tyrosine 614F, a mutant that cannot interact with SHP-2 in response to IL-2. Activation of the ERK pathway was indeed blocked by Gab2 tyrosine 614F and slightly increased by Gab2 serine 623A. In contrast, STAT5 activation was strongly enhanced by Gab2 tyrosine 614F, slightly reduced by Gab2 WT and strongly inhibited by Gab2 serine 623A. Analysis of the rate of proliferation of cells expressing these mutants of Gab2 demonstrated that tyrosine 614F mutation enhanced proliferation whereas serine 623A diminished it. These results demonstrate that ERK-mediated phosphorylation of Gab2 serine 623 is involved in fine tuning the proliferative response of T lymphocytes to IL-2.  相似文献   

7.
B and T lymphocytes express receptors providing positive and negative co-stimulatory signals. We recently identified a novel co-stimulatory molecule, B and T lymphocyte attenuator (BTLA), which exerts inhibitory effects on B and T lymphocytes. The cytoplasmic domain of murine and human BTLA share three conserved tyrosine-based signaling motifs, a Grb-2 recognition consensus, and two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Phosphorylation of the cytoplasmic domain of BTLA induced the association with the protein tyrosine phosphatases SHP-1 and SHP-2. Association of SHP-1 and SHP-2 to other receptors can involve recruitment to either a single receptor ITIM or to two receptor ITIMs. Here, we analyzed the requirements of BTLA interaction with SHP-1 and SHP-2 in a series of murine and human BTLA mutants. For human BTLA, mutations of either Y257 or Y282, but not Y226, abrogated association with both SHP-1 and SHP-2. For murine BTLA, mutation of either Y274 or Y299, but not Y245, also abrogated association with both SHP-1 and SHP-2. These results indicate that for both murine and human BTLA, association with SHP-1 or SHP-2 requires both of conserved ITIM motifs and does not involve the conserved Grb-2 consensus. Thus, similar to the bisphosphoryl tyrosine-based activation motif (BTAM) by which the Grb-2 associated binder (Gab1), PDGF receptor, and PECAM-1 recruit SHP-2, BTLA also relies on dual ITIMs for its association with the phosphatases SHP-1 and SHP-2.  相似文献   

8.
The immunoreceptor tyrosine-based inhibitory motif (ITIM) of human type IIb Fcgamma receptor (FcgammaRIIb) is phosphorylated on its tyrosine upon co-clustering with the B cell receptor (BCR). The phosphorylated ITIM (p-ITIM) binds to the SH2 domains of polyphosphoinositol 5-phosphatase (SHIP) and the tyrosine phosphatase, SHP-2. We investigated the involvement of the molecular complex composed of the phosphorylated SHIP and FcgammaRIIb in the activation of SHP-2. As a model compound, we synthesized a bisphosphopeptide, combining the sequences of p-ITIM and the N-terminal tyrosine phosphorylated motif of SHIP with a flexible spacer. This compound bound to the recombinant SH2 domains of SHP-2 with high affinity and activated the phosphatase in an in vitro assay. These data suggest that the phosphorylated FcgammaRII-SHIP complexes formed in the intact cells may also activate SHP-2. Grb2-associated binder 1 (Gab1) is a multisite docking protein, which becomes tyrosine-phosphorylated in response to various types of signaling, including BCR. In turn it binds to the SH2 domains of SHP-2, SHIP and the p85 subunit of phosphatidyl inositol 3-kinase (PtdIns3-K) and may regulate their activity. Gab1 is a potential substrate of SHP-2, thus its binding to FcgammaRIIb may modify the Gab1-bound signaling complex. We show here that Gab1 is part of the multiprotein complex assembled by FcgammaRIIb upon its co-clustering with BCR. Gab1 may recruit SH2 domain-containing molecules to the phosphorylated FcgammaRIIb. SHP-2, activated upon the binding to FcgammaRIIb-SHIP complex, partially dephosphorylates Gab1, resulting in the release of PtdIns3-K and ultimately in the inhibition of downstream activation pathways in BCR/FcgammaRIIb co-aggregated cells.  相似文献   

9.
Divergent roles of SHP-2 in ERK activation by leptin receptors   总被引:21,自引:0,他引:21  
The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant of SHP-2 blocks leptin-stimulated ERK phosphorylation by the long leptin receptor, ObRb. SHP-2, lacking two C-terminal tyrosine residues, partially inhibits ERK phosphorylation. We find similar effects of the SHP-2 mutants after examining stimulation of an ERK-dependent egr-1 promoter-construct by leptin. We also demonstrate ERK phosphorylation and egr-1 mRNA expression in the hypothalamus by leptin. Analysis of signaling by ObRb lacking intracellular tyrosine residues or by the short leptin receptor, ObRa, enabled us to conclude that two pathways are critical for ERK activation. One pathway does not require the intracellular domain of ObRb, whereas the other pathway requires tyrosine residue 985 of ObRb. The phosphatase activity of SHP-2 is required for both pathways, whereas activation of ERK via Tyr-985 of ObRb also requires tyrosine phosphorylation of SHP-2. SHP-2 is thus a positive regulator of ERK by leptin receptors, and both the adaptor function and the phosphatase activity of SHP-2 are critical for this regulation.  相似文献   

10.
Killer cell Ig-like receptors (KIR) are MHC class I-binding immunoreceptors that can suppress activation of human NK cells through recruitment of the Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) to two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic domains. KIR2DL4 (2DL4; CD158d) is a structurally distinct member of the KIR family, which is expressed on most, if not all, human NK cells. 2DL4 contains only one ITIM in its cytoplasmic domain and an arginine in its transmembrane region, suggesting both inhibitory and activating functions. While 2DL4 can activate IFN-gamma production, dependent upon the transmembrane arginine, the function of the single ITIM of 2DL4 remains unknown. In this study, tandem ITIMs of KIR3DL1 (3DL1) and the single ITIM of 2DL4 were directly compared in functional and biochemical assays. Using a retroviral transduction method, we show in human NK cell lines that 1) the single ITIM of 2DL4 efficiently inhibits natural cytotoxicity responses; 2) the phosphorylated single ITIM recruits SHP-2 protein tyrosine phosphatase, but not SHP-1 in NK cells; 3) expression of dominant-negative SHP-1 does not block the ability of 2DL4 to inhibit natural cytotoxicity; 4) surprisingly, mutation of the tyrosine within the single ITIM does not completely abolish inhibitory function; and 5) this correlates with weak SHP-2 binding to the mutant ITIM of 2DL4 in NK cells and a corresponding nonphosphorylated ITIM peptide in vitro. These results reveal new aspects of the KIR-inhibitory pathway in human NK cells, which are SHP-1 and phosphotyrosine independent.  相似文献   

11.
Clathrin-mediated endocytosis is a complex process regulated at many different levels. We showed previously that activation of the angiotensin type 1 receptor (AT1R), which belongs to the G protein-coupled receptor (GPCR) family, leads to c-Src-dependent tyrosine phosphorylation of beta2-adaptin, a subunit of the clathrin adaptor AP-2. The phosphorylation of beta2-adaptin on tyrosine residue 737 (Y737) negatively regulates its interaction with betaarrestin, another important clathrin adaptor for GPCR internalization. Here we sought to determine whether AP-2 phosphorylation represents a general mechanism for different receptors internalizing through the clathrin pathway. Using a specifically designed antibody against the phosphorylated form of Y737 on beta2-adaptin, we demonstrate that this residue is phosphorylated by AT1R in different cell types like HEK293, COS-7 and vascular smooth muscle cells. Using RNA interference approaches, we reveal that this agonist-mediated event is both betaarrestin- and c-Src-dependent, and that it occurs at the plasma membrane in clathrin-coated vesicles (CCVs). We further show that this is not only a common event employed by other GPCRs like the beta2-adrenergic, vasopressin V2, bradykinin type 2, platelet-activating factor and endothelin A receptors but that the epidermal growth factor receptor is capable of eliciting the phosphorylation of AP-2 in CCVs. Our results imply that tyrosine phosphorylation of Y737 on beta2-adaptin is a common regulatory mechanism employed by different receptors undergoing clathrin-dependent endocytosis, and suggest a wider function for this event than originally anticipated.  相似文献   

12.
Human NK cells use class I MHC-binding inhibitory receptors, such as the killer cell Ig-like receptor (KIR) family, to discriminate between normal and abnormal cells. Some tumors and virus-infected cells down-regulate class I MHC and thereby become targets of NK cells. Substantial evidence indicates that the mechanism of KIR-mediated inhibition involves recruitment of the protein tyrosine phosphatases, Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) and SHP-2, to two phosphorylated cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). KIR2DL5 is a type II member of the KIR2D family with an atypical extracellular domain and an intracytoplasmic domain containing one typical ITIM and one atypical ITIM sequence. Although KIR2DL5 structure is expressed by approximately 50% of humans and is conserved among primate species, its function has not been determined. In the present study, we directly compared functional and biochemical properties of KIR2DL5, KIR3DL1 (a type I KIR with two ITIMs), and KIR2DL4 (the only other type II KIR, which has a single ITIM) in a human NK-like cell line. Our results show that KIR2DL5 is an inhibitory receptor that can recruit both SHP-1 and SHP-2, and its inhibitory capacity is more similar to that of the cytoplasmic domain of KIR2DL4 than KIR3DL1. Interestingly, inhibition of NK cell cytotoxicity by KIR2DL5 was blocked by dominant-negative SHP-2, but not dominant-negative SHP-1, whereas both dominant-negative phosphatases can block inhibition by KIR3DL1. Therefore, the cytoplasmic domains of type II KIRs (2DL4 and 2DL5) exhibit distinct inhibitory capacities when compared with type I KIRs (3DL1), due to alterations in the canonical ITIM sequences.  相似文献   

13.
To date very few G protein-coupled receptors (GPCRs) have been shown to be connected to the Janus kinase (JAK)/STAT pathway. Thus our understanding of the mechanisms involved in the activation of this signaling pathway by GPCRs remains limited. In addition, little is known about the role of the JAK pathway in the physiological or pathophysiological functions of GPCRs. Here, we described a new mechanism of JAK activation that involves Galpha(q) proteins. Indeed, transfection of a constitutively activated mutant of Galpha(q) (Q209L) in COS-7 cells demonstrated that Galpha(q) is able to associate and activate JAK2. In addition, we showed that this mechanism is used to activate JAK2 by a GPCR principally coupled to G(q), the CCK2 receptor (CCK2R), and involves a highly conserved sequence in GPCRs, the NPXXY motif. In a pancreatic tumor cell line expressing the endogenous CCK2R, we demonstrated the activation of the JAK2/STAT3 pathway by this receptor and the involvement of this signaling pathway in the proliferative effects of the CCK2R. In addition, we showed in vivo that the targeted CCK2R expression in pancreas of Elas-CCK2 mice leads to the activation of JAK2 and STAT3. This process may contribute to the increase of pancreas growth as well as the formation of preneoplastic lesions leading to pancreatic tumor development observed in these transgenic animals.  相似文献   

14.
15.
Platelet activation is regulated by both positive and negative signals. G6B-b is an inhibitory platelet receptor with an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). The molecular basis of inhibition by G6B-b is currently unknown but thought to involve the SH2 domain-containing tyrosine phosphatase SHP-1. Here we show that G6B-b also associates with SHP-2, as well as SHP-1, in human platelets. Using a number of biochemical approaches, we found these interactions to be direct and that the tandem SH2 domains of SHP-2 demonstrated a binding affinity for G6B-b 100-fold higher than that of SHP-1. It was also observed that while SHP-1 has an absolute requirement for phosphorylation at both motifs to bind, SHP-2 can associate with G6B-b when only one motif is phosphorylated, with the N-terminal SH2 domain and the ITIM being most important for the interaction. A number of other previously unreported SH2 domain-containing proteins, including Syk and PLCγ2, also demonstrated specificity for G6B-b phosphomotifs and may serve to explain the observation that G6B-b remains inhibitory in the absence of both SHP-1 and SHP-2. In addition, the presence of dual phosphorylated G6B-b in washed human platelets can reduce the EC50 for both CRP and collagen.  相似文献   

16.
SHP-2, an SH2 domain-containing protein-tyrosine phosphatase, plays an important role in receptor tyrosine kinase-regulated cell proliferation and differentiation. Little is known about the activation mechanisms and the participation of SHP-2 in the activity of G protein-coupled receptors lacking intrinsic tyrosine kinase activity. We show that the activity of SHP-2 (but not SHP-1) is specifically stimulated by the selective alpha2A-adrenergic receptor agonist UK14304 and by lysophosphatidic acid (LPA) in Madin-Darby canine kidney (MDCK) cells. UK14304 and LPA promote the tyrosine phosphorylation of SHP-2 and its association with Grb2. The agonist-induced direct interaction of Grb2 with SHP-2 is mediated by the SH2 domain of Grb2 and the tyrosine phosphorylation of SHP-2. Rapid activation of Src family kinase by UK14304 preceded the SHP-2 activation. Among the Src family members (Src, Fyn, Lck, Yes, and Lyn) present in MDCK cells, Fyn was the only one specifically associated with SHP-2, and the physical interaction between them, which requires the Src family kinase activity, was increased in response to the agonists. Pertussis toxin, PP1 (a selective Src family kinase inhibitor), or overexpression of a catalytically inactive mutant of Fyn blocked the UK14304- or LPA-stimulated activity of SHP-2, SHP-2 tyrosine phosphorylation, and SHP-2 association with Grb2. Therefore, we have demonstrated for the first time that the activation of SHP-2 by these Gi protein-coupled receptors requires Fyn kinase and that there is a specific physical interaction of Fyn kinase with SHP-2 in MDCK cells.  相似文献   

17.
Melatonin is the pineal hormone that acts via a pertussis toxin-sensitive G-protein to inhibit adenylate cyclase. However, the intracellular signalling effects of melatonin are not completely understood. Melatonin receptors are mainly present in the suprachiasmatic nucleus (SCN) and pars tuberalis of both humans and rats. The SCN directly controls, amongst other mechanisms, the circadian rhythm of plasma glucose concentration. In this study, using immunoprecipitation and immunoblotting, we show that melatonin induces rapid tyrosine phosphorylation and activation of the insulin receptor beta-subunit tyrosine kinase (IR) in the rat hypothalamic suprachiasmatic region. Upon IR activation, tyrosine phosphorylation of IRS-1 was detected. In addition, melatonin induced IRS-1/PI3-kinase and IRS-1/SHP-2 associations and downstream AKT serine phosphorylation and MAPK (mitogen-activated protein kinase) phosphorylation, respectively. These results not only indicate a new signal transduction pathway for melatonin, but also a potential cross-talk between melatonin and insulin.  相似文献   

18.
Engagement of the immunoinhibitory receptor, programmed death-1 (PD-1) attenuates T-cell receptor (TCR)-mediated activation of IL-2 production and T-cell proliferation. Here, we demonstrate that PD-1 modulation of T-cell function involves inhibition of TCR-mediated phosphorylation of ZAP70 and association with CD3zeta. In addition, PD-1 signaling attenuates PKCtheta activation loop phosphorylation in a cognate TCR signal. PKCtheta has been shown to be required for T-cell IL-2 production. A phosphorylated PD-1 peptide, corresponding to the C-terminal immunoreceptor tyrosine-switch motif (ITSM), acts as a docking site in vitro for both SHP-2 and SHP-1, while the phosphorylated peptide containing the N-terminal PD-1 immunoreceptor tyrosine based inhibitory motif (ITIM) associates only with SHP-2.  相似文献   

19.
The low-affinity receptor for IgG, FcgammaRIIB, functions broadly in the immune system, blocking mast cell degranulation, dampening the humoral immune response, and reducing the risk of autoimmunity. Previous studies concluded that inhibitory signal transduction by FcgammaRIIB is mediated solely by its immunoreceptor tyrosine-based inhibition motif (ITIM) that, when phosphorylated, recruits the SH2-containing inositol 5'- phosphatase SHIP and the SH2-containing tyrosine phosphatases SHP-1 and SHP-2. The mutational analysis reported here reveals that the receptor's C-terminal 16 residues are also required for detectable FcgammaRIIB association with SHIP in vivo and for FcgammaRIIB-mediated phosphatidylinositol 3-kinase hydrolysis by SHIP. Although the ITIM appears to contain all the structural information required for receptor-mediated tyrosine phosphorylation of SHIP, phosphorylation is enhanced when the C-terminal sequence is present. Additionally, FcgammaRIIB-mediated dephosphorylation of CD19 is independent of the cytoplasmic tail distal from residue 237, including the ITIM. Finally, the findings indicate that tyrosines 290, 309, and 326 are all sites of significant FcgammaRIIB1 phosphorylation following coaggregation with B cell Ag receptor. Thus, we conclude that multiple sites in FcgammaRIIB contribute uniquely to transduction of FcgammaRIIB-mediated inhibitory signals.  相似文献   

20.
In CHO cells we had found that CCK positively regulated cell proliferation via the activation of a soluble guanylate cyclase. Here we demonstrate that CCK stimulated a nitric oxide synthase (NOS) activity. The production of NO was involved in the proliferative response elicited by CCK regarding the inhibitory effect of NOS inhibitors L-NAME and alpha-guanidinoglutaric acid. We identified the NOS activated by the peptide as the neuronal isoform: the expression of the C415A neuronal NOS mutant inhibited both CCK-induced stimulation of NOS activity and cell proliferation. These two effects were also inhibited after expression of the C459S tyrosine phosphatase SHP-2 mutant and the betaARK1 (495-689) sequestrant peptide, indicating the requirement of activated SHP-2 and G-betagamma subunit. Kinetic analysis (Western blot after coimmunoprecipitation and specific SHP-2 activity) revealed that in response to CCK-treatment, SHP-2 associated to G-beta1 subunit, became activated, and then dephosphorylated the neuronal NOS through a direct association. These data demonstrate that the neuronal NOS is implicated in proliferative effect evoked by CCK. A novel growth signaling pathway is described, involving the activation of neuronal NOS by dephosphorylation of tyrosyl residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号