首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Multiple stresses are becoming common challenges in modern agriculture due to environmental changes. A large set of phytochemicals collectively known as oxylipins play a key role in responses to several stresses. Understanding the fine‐tuned plant responses to multiple and simultaneous stresses could open new perspectives for developing more tolerant varieties. We carried out the molecular and biochemical profiling of genes, proteins and active compounds involved in oxylipin metabolism in response to single/combined salt and wounding stresses on Medicago truncatula. Two new members belonging to the CYP74 gene family were identified. Gene expression profiling of each of the six CYP74 members indicated a tissue‐ and time‐specific expression pattern for each member in response to single/combined salt and wounding stresses. Notably, hormonal profiling pointed to an attenuated systemic response upon combined salt and leaf wounding stresses. Combined, these results confirm the important role of jasmonates in legume adaptation to abiotic stresses and point to the existence of a complex molecular cross‐talk among signals generated by multiple stresses.  相似文献   

2.
miR398在植物逆境胁迫应答中的作用   总被引:5,自引:0,他引:5  
丁艳菲  王光钺  傅亚萍  朱诚 《遗传》2010,32(2):129-134
MicroRNA (miRNA)是一类新型的调控基因表达的小分子RNA, 它作为基因表达的负调控因子, 在转录后水平调节靶基因的表达。miRNA参与调控植物的生长发育, 并在多种非生物与生物胁迫响应中发挥重要作用。miR398是第一个被报道的受氧化胁迫负调控的miRNA。它通过负调控其靶基因Cu/Zn过氧化物歧化酶(Cu/Zn-superoxide dismutase, CSD)的表达, 在多种逆境胁迫响应中扮演重要角色, 如调节铜代谢平衡, 应答重金属、蔗糖、臭氧等非生物胁迫, 以及参与应答生物胁迫等。文章综述了miR398在多种逆境胁迫响应中重要的调节作用及miR398自身的转录调控。  相似文献   

3.
The potential for wear in UHMWPE components for total knee replacements can be reduced by decreasing the stresses and strains arising from tibial-femoral contact. The conformity of the articular surfaces has a large effect on the resultant stresses, and components that achieve flat medial-lateral contact have been assumed to produce the lowest stresses due to their perfect conformity. We computed the stresses arising from curved and flat contact on a half-space using two-dimensional, plane strain elasticity solutions and finite element analyses to compare the performance of curved and flat indenters. These indenters were represented by a polynomial so the profiles could be continuously varied from curved to flat. Curved contact resulted in maximum stresses at the center of contact, while flat contact produced maximum stresses at the edge of contact. In addition, three contemporary tibial configurations (flat-on-flat, curved-on-flat, and curved-on-curved geometries) were analyzed using the finite element method with nonlinear material properties. The maximum contact stress, von Mises stress, and von Mises strain were lowest for the curved-on-curved model. The other configurations resulted in higher contact stresses, von Mises stresses, and von Mises strains. The perfect conformity arising from flat contact did not reduce the contact stresses in the UHMWPE component. The tensile stresses, however, were lowest for the flat-on-flat geometry compared with the other two configurations. Relating these distinct differences could prove useful in interpretation of data from simulator and retrieval studies.  相似文献   

4.
An analysis was performed to determine the thermal stresses in the solid region of an organ frozen so that a constant cooling rate is imposed on its outer surface. The analysis shows that at the instant the water freezes at a certain location in the organ, compressive azimuthal stresses develop in the region close to the change of phase front. The compressive asimuthal stresses decrease and become tensile at that location as the change of phase front propagates further. The radial stresses are always compressive. It is hypothesized that those stresses might induce mechanical damage to the cellular components of the organ. The analysis shows that the magnitude of these stresses is a function of the material properties and the product of the outer surface cooling rate and the square of the outer surface radius.  相似文献   

5.
Stump stresses were correlated to prosthesis loads for two unilateral, below-knee amputees over a range of flexion-extension angular adjustments. Normal stresses on the patellar tendon and gastrocnemius were related to the axial force and flexion-extension moment of the prosthesis via a matrix equation. Elements of this matrix, influence factors calculated by least-squares algorithms, identified the contributions of each time-dependent load component acting to produce the time-dependent normal stresses. The flexion-extension angular sensitivity of the way these sagittal plane loads combined to produce normal stresses was included in the matrix equation via a first-order Maclaurin series. Highly favorable correlation coefficients between empirically measured and theoretically predicted stump stresses were calculated. This demonstrated that, in future studies, using an influence-factor matrix holds promise for quantifying sensitivities of normal stresses of the stump to multiple adjustments in prostheses.  相似文献   

6.
Mechanical environment in callus is determinant for the evolution of bone healing. However, recent mechanobiological computational works have underestimated the effect that growth exerts on the mechanical environment of callus. In the present work, we computationally evaluate the significance of growth-induced stresses, commonly called residual stresses, in callus. We construct a mechanobiological model of a callus in the metatarsus of a sheep in two different stages: one week and four weeks after fracture. The magnitude of stresses generated during callus growth is compared with the magnitude of stresses when only external loads are applied to the callus. We predict that residual stresses are relevant in some areas, mainly located at the periosteal side far from the fracture gap. Therefore, the inclusion of these residual stresses could represent a significant impact on the callus growth and predict a different evolution of biological processes occurring during bone healing.  相似文献   

7.
Key message

The developmental stage of anther development is generally more sensitive to abiotic stress than other stages of growth. Specific ROS levels, plant hormones and carbohydrate metabolism are disturbed in anthers subjected to abiotic stresses.

Abstract

As sessile organisms, plants are often challenged to multiple extreme abiotic stresses, such as drought, heat, cold, salinity and metal stresses in the field, which reduce plant growth, productivity and yield. The development of reproductive stage is more susceptible to abiotic stresses than the vegetative stage. Anther, the male reproductive organ that generate pollen grains, is more sensitive to abiotic stresses than female organs. Abiotic stresses affect all the processes of anther development, including tapetum development and degradation, microsporogenesis and pollen development, anther dehiscence, and filament elongation. In addition, abiotic stresses significantly interrupt phytohormone, lipid and carbohydrate metabolism, alter reactive oxygen species (ROS) homeostasis in anthers, which are strongly responsible for the loss of pollen fertility. At present, the precise molecular mechanisms of anther development under adverse abiotic stresses are still not fully understood. Therefore, more emphasis should be given to understand molecular control of anther development during abiotic stresses to engineer crops with better crop yield.

  相似文献   

8.
This preliminary report from an ongoing longitudinal study of students at both Tufts and Harvard medical schools examined the relationship between premedical school demographic and stress variables and the numbers and types of stresses reported by students in open-ended interviews conducted during their first year of medical school. Analyses showed that the general categories of "medical school stresses" and "social stresses related to medical school" accounted for about two-thirds of the total number of stresses mentioned. The overall distributions of stresses across general categories were remarkably similar in all student groups studied, although significant differences were found between students from different background groups on a number of the specific types of stress. No significant differences were found between groups as to those reporting a high total number of stresses. There did appear to be differences in the degree to which students felt affected by the stresses they reported, suggesting the need for additional data on the meanings of different stresses for different students and the ways in which they cope with them.  相似文献   

9.
Cartilage deformation demonstrates viscoelastic behavior due to its unique structure. However, nearly all contact studies investigating incongruity-associated changes in cartilage surface stresses have been static tests. These tests have consistently measured only modest increases in contact stresses, even with large incongruities. In this study, an experimental approach measuring real-time contact stresses in human cadaveric ankles during quasi-physiologic motion and loading was used to determine how stepoff incongruities of the distal tibia affected contact stresses and contact stress gradients. Peak instantaneous contact stresses, in ankles with stepoffs between 1.0 and 4.0mm of the anterolateral articular surface, increased by between 2.3 x and 3.0 x compared to the corresponding intact ankle values. Peak instantaneous contact stress gradients in stepoff configurations increased by between 1.9 x and 2.6 x the corresponding intact configuration values. Anatomic reduction of the displaced fragment restored intact contact stresses and contact stress gradients. Intact and anatomic configurations demonstrated a heterogeneous population of low-magnitude, randomly oriented contact stress gradient vectors in contrast to high-magnitude, preferentially oriented gradients in stepoff configurations. Peak instantaneous contact stresses may be important pathomechanical determinants of post-traumatic arthritis. Abnormal contact stress gradients could cause regional pathological disturbances in cartilage stress and interstitial fluid distribution. Measuring contact stresses and contact stress gradients during motion allowed potential incongruity-associated pathologic changes in loading that occur over the complete motion cycle to be investigated.  相似文献   

10.
Drought and salinity stresses significantly altered microRNA (miRNA) expression in a dose-dependent manner in tobacco. Salinity stress changed the miRNA expression levels from a 6.86-fold down-regulation to a 616.57-fold up-regulation. Alternatively, miRNAs were down-regulated by 2.68-fold and up-regulated 2810-fold under drought conditions. miR395 was most sensitive to both stresses and was up-regulated by 616 and 2810-folds by 1.00% PEG and 0.171 M NaCl, respectively. Salinity and drought stresses also changed the expression of protein-coding genes [alcohol dehydrogenase (ADH) and alcohol peroxidase (APX)]. The results suggest that miRNAs may play an important role in plant response to environmental abiotic stresses. Further investigation of miRNA-mediated gene regulation may elucidate the molecular mechanism of plant tolerance to abiotic stresses and has the potential to create a miRNA-based biotechnology for improving plant tolerance to drought and salinity stresses.  相似文献   

11.
Films of buffalo and elephant running, and detailed measurements on dissected legs, have been used to estimate the maximum stresses which occur in locomotion, in certain muscles, tendons and bones. These stresses are similar to stresses previously determined for some other, smaller mammals.  相似文献   

12.
Effect of bending on shot peened and polished osteosynthesis plates   总被引:1,自引:0,他引:1  
Shot peening can increase the fatigue strength of commercially available surgical plates made of 1.4435 alloy by 40% even in a corrosive environment. Our investigations show that residual stresses resulting from shot peening are reduced by additional bending of the plates. In such plates smaller tensile residual stresses were found than after polishing of the plates. Bending of polished plates results in considerable tensile residual stresses. The hardening achieved by shot peening is not reduced by bending. As the fatigue strength of soft materials depends mainly on the hardening and less on the residual stresses, only little influence of the changed residual stresses on the fatigue strength can be expected. Shot peening of surgical implants thus means an improvement in quality.  相似文献   

13.
During the operation of total hip arthroplasty, when the cement polymerizes between the stem implant and the bone, residual stresses are generated in the cement. The purpose of this study was to determine whether including residual stresses at the stem-cement interface of cemented hip implants affected the cement stress distributions due to externally applied loads. An idealized cemented hip implant subjected to bending was numerically investigated for an early post-operative situation. The finite element analysis was three-dimensional and used non-linear contact elements to represent the debonded stem-cement interface. The results showed that the inclusion of the residual stresses at the interface had up to a 4-fold increase in the von Mises cement stresses compared to the case without residual stresses.  相似文献   

14.
The study of abiotic stress response of plants is important because they have to cope with environmental changes to survive. The plant genomes have evolved to meet environmental challenges. Salt, temperature, and drought are the main abiotic stresses. The tolerance and response to stress vary differently in plants. The idea was to analyze the genes showing differential expression under abiotic stresses. There are many pathways connecting the perception of external stimuli to cellular responses. In plants, these pathways play an important role in the transduction of abiotic stresses. In the present study, the gene expression data have been analyzed for their involvement in different steps of signaling pathways. The conserved genes were analyzed for their role in each pathway. The functional annotations of these genes and their response under abiotic stresses in other plant species were also studied. The enzymes of signal pathways, showing similarity with conserved genes, were analyzed for their role in different abiotic stresses. Our findings will help to understand the expression of genes in response to various abiotic stresses. These genes may be used to study the response of different abiotic stresses in other plant species and the molecular basis of stress tolerance.  相似文献   

15.
Considerable debate has accompanied efforts to integrate the selective impacts of environmental stresses into models of life-history evolution. This study was designed to determine if different environmental stresses have consistent phenotypic effects on life-history characters and whether selection under different stresses leads to consistent evolutionary responses. We created lineages of a wild mustard (Sinapis arvensis) that were selected for three generations under five stress regimes (high boron, high salt, low light, low water, or low nutrients) or under near-optimal conditions (control). Full-sibling families from the six selection histories were divided among the same six experimental treatments. In that test generation, lifetime plant fecundity and six phenotypic traits were measured for each plant. Throughout this greenhouse study, plants were grown individually and stresses were applied from the early seedling stage through senescence. Although all stresses consistently reduced lifetime fecundity and most size- and growth-related traits, different stresses had contrasting effects on flowering time. On average, stress delayed flowering compared to favorable conditions, although plants experiencing low nutrient stress flowered earliest and those experiencing low light flowered latest. Contrary to expectations of Grime's triangle model of life-history evolution, this ruderal species does not respond phenotypically to poor environments by flowering earlier. Most stresses enhanced the evolutionary potential of the study population. Compared with near-optimal conditions, stresses tended to increase the opportunity for selection as well as phenotypic variance, although both of these quantities were reduced in some stresses. Rather than favoring traits characteristic of stress tolerance, such as slow growth and delayed reproduction, phenotypic selection favored stress-avoidance traits: earlier flowering in all five stress regimes and faster seedling height growth in three stresses. Phenotypic correlations reinforced direct selection on these traits under stress, leading to predicted phenotypic change under stress, but no significant selection in the control environment. As a result of these factors, selection under stress resulted in an evolutionary shift toward earlier flowering. Environmental stresses may drive populations of ruderal plant species like S. arvensis toward a stress-avoidance strategy, rather than toward stress tolerance. Further studies will be needed to determine when selection in stressful environments leads to these alternative life-history strategies.  相似文献   

16.
Surface damage in polyethylene components for total joint replacement is associated with large contact stresses. An elasticity solution and finite element analyses were used to determine the influence of design parameters on the stresses due to contact in metal-backed components. For nearly conforming contact surfaces, it was found that the stresses in the plastic are very sensitive to clearance, that minimum plastic thickness of 4-6 mm should be maintained for metal-backed components, and that bonding the plastic to the metal backing reduces tensile stresses in the plastic at the edge of the contact zone.  相似文献   

17.
Shear effects on failure of hollow trees   总被引:1,自引:0,他引:1  
It is shown that bending stresses in a non-cracked hollow trunk can never explain failure. Consequently, stem breakage due to bending stress cannot be primary failure. It is shown by field studies and simple theoretical assessments that the initiation of a longitudinal shear crack is primarily responsible for failure. Due to cracking, the bending stresses increase and failure by bending happens as secondary failure. As a result, bending theory of a non-cracked closed circular pipe is inappropriate to describe failure of hollow trees. In the appendix is shown the reason for high shear stresses at the tree base and why the shear stresses increase more due to hollowness than to bending stresses.  相似文献   

18.
Stress is one of the many biological factors that plays an important role in wound healing. It is therefore essential to analyze stresses around the wound closure theoretically, especially when no invasive/noninvasive technique to measure stress directly is available. The objective of this paper is to determine the regions of high stresses and the optimal pattern of suturing wounds of complex shapes. It is hypothesized that the optimal pattern of suturing wounds is that pattern which will produce minimum principal stresses. The finite element method (FEM) employing the basic equations of elasticity theory for orthotropic materials is utilized to compute the principal stresses and displacements resulting from suturing fusiform, elliptical and triangular wounds in human abdominal skin. The optimal suturing pattern for the triangular wound is determined. The average stress indices for varying suturing density are also determined which can provide useful clinical information for the surgeon. Since regions of high stresses in surgical closures produce adverse affects on healing and scar production, this work of predicting areas of high stresses is useful in indicating regions of slow healing in wounds.  相似文献   

19.
20.
In natural habitats, especially in arid areas, plants are often simultaneously exposed to multiple abiotic stresses, such as salt, osmotic and heat stresses. However, most analyses of gene expression in stress responses examine individual stresses. In this report, we compare gene expression in individual and combined stresses. We show that combined stress treatments with salt, mannitol and heat induce a unique pattern of gene expression that is not a simple merge of the individual stress responses. Under multiple stress conditions, expression of most heat and salt stress‐responsive genes increased to levels similar to or higher than those measured in single stress conditions, but osmotic stress‐responsive genes increased to lower levels. Genes up‐regulated to higher levels under multiple stress condition than single stress conditions include genes for heat shock proteins, heat shock regulators and late embryogenesis abundant proteins (LEAs), which protect other proteins from damage caused by stresses, suggesting their importance in multiple stress condition. Based on this analysis, we identify candidate genes for engineering crop plants tolerant to multiple stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号