首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
氟桂利嗪对青霉素致痫大鼠皮层及海马癫痫样放电的影响   总被引:4,自引:0,他引:4  
目的:观察氟桂利嗪对青霉素致痫大鼠皮层和海马癫痫样放电的影响.方法:选取Wistar大鼠60只制作青霉素致痫模型,在大鼠海马、颞叶、额叶皮层埋置电极,记录氟桂利嗪(20 mg/kg)灌胃后大鼠癫痫样放电的变化.结果:实验组动物皮层及海马癫痫样放电潜伏期明显延长,持续时间缩短,单位时间内癫痫样放电数明显减少,与对照组相比有显著差异.结论:氟桂利嗪具有明显抗癫痫作用,可显著抑制青霉素致痫鼠皮层及海马区癫痫样放电.  相似文献   

2.
目的:观察皮层抑制对正常及帕金森病(PD)大鼠丘脑底核(STN)神经元自发放电的影响。方法:采用玻璃微电极细胞外记录法,观察正常和PD大鼠STN神经元的放电活动及脑内微量注射KCl后,两组大鼠STN神经元放电频率的变化。结果:对照组和PD组大鼠STN神经元放电频率分别为(9.78±0.71)Hz和(23.81±1.08)Hz,PD组大鼠放电频率显著高于对照组(P<0.01),且呈爆发式放电的神经元比例明显高于对照组(P<0.05)。皮层注射KCl后,经过较长的潜伏期,两组大鼠STN神经元放电频率均明显降低,后缓慢恢复。结论:PD大鼠STN神经元放电频率增高,爆发式放电增多,而抑制皮层可使这种异常放电得到改善,提示皮层兴奋性的改变可能是PD中STN活动增强的另一个诱因。  相似文献   

3.
目的:观察高频刺激丘脑底核(STN)对帕金森病(PD)大鼠模型纹状体 (STR)神经元自发放电的影响.方法:应用6-羟基多巴胺(6-OHDA)制备偏侧PD大鼠模型,丘脑底核区插入刺激电极进行高频刺激,采用细胞外单位记录的方法观察STR神经元自发放电频率的改变.结果:正常大鼠刺激后STR神经元反应主要以兴奋型反应为主, PD大鼠STR神经元反应主要以兴奋抑制型为主,且随着刺激时间的延长,抑制持续时间逐渐增加,持续时间与刺激时间密切相关(r=0.94).结论:刺激STN可使PD大鼠纹状体的异常放电得到改善,提示高频电刺激STN可作为一种有效的治疗PD的方法.  相似文献   

4.
杏仁核点燃模型癫痫样放电传播途径研究   总被引:1,自引:0,他引:1  
目的 :探讨杏仁核点燃模型癫痫样放电的传播途径。方法 :选择健康Wistar大鼠 3 0只以电刺激杏仁核的方式制作杏仁核点燃癫痫模型 ,于右侧杏仁核、左侧海马及右侧额叶皮质埋植电极记录脑电活动 ,观察电刺激杏仁核时在杏仁核、海马及额叶皮质出现癫痫样放电的潜伏期、最低刺激强度及癫痫样放电的持续时间。结果 :杏仁核出现癫痫样放电时 ,海马及皮质均未记录到癫痫样放电。而当杏仁核、海马及皮质三处出现癫痫样放电时的最低刺激强度依次增大 ,潜伏期依次延长 ,海马处癫痫样放电的持续时间最长。结论 :杏仁核点燃模型癫痫样放电可能由杏仁核经海马传至皮层 ,海马可能为癫痫样放电传播的重要结构  相似文献   

5.
目的:探究双侧海马CA1区立体定向注射anti-GDNF抗体对匹鲁卡品诱导的大鼠癫痫模型的影响。方法:选择成年雄性SD大鼠60只,并随机分为3组,即假手术组(sham组,n=20)、癫痫模型组(model组,n=20)和GDNF抑制剂组(anti-GDNF组,n=20)。使用氯化锂-匹鲁卡品腹腔注射诱导癫痫模型,sham组只给予氯化锂,anti-GDNF组在造模前2 h给予大鼠双侧海马CA1区立体定向注射anti-GDNF抗体。在造模后1、3、7 d观察大鼠癫痫的发作频率,7 d后采用脑电图监测(EEG)测定脑电波的变化情况,通过免疫组化方法测定海马CA1区域神经元数量变化(Neu N表达水平),造模后1 d时使用western blot方法测定海马CA1区GDNF、RET和P53蛋白的表达。结果:Model组大鼠棘-慢波数量明显高于Sham组,anti-GDNF组以上指标较model组显著减少(P0.05);Model组海马CA1区神经元大量凋亡,但anti-GDNF组凋亡较model组显著减少(P0.05)。与Sham组比较,在癫痫发作后1 d,model组的GDNF、RET表达水平上调,P53表达水平下降(P0.05),而anti-GDNF组大鼠海马CA1区GDNF、RET表达较model组明显下调,P53表达水平显著上降(P0.05)。结论:双侧海马CA1区立体定向注射anti-GDNF抗体能够减少癫痫发作,并对海马神经元起到保护作用,可能与其抑制GDNF/RET/P53信号通路有关。  相似文献   

6.
目的观察氯喹对戊四氮致痫大鼠皮质和海马白细胞介素1β(IL-1β)及肿瘤坏死因子α(TNF-α)表达的影响,探讨其在癫痫发生发展过程中的作用.方法 48只健康雄性SD大鼠随机分为对照组(12只)、戊四氮(PTZ)致痫组(18只,60mg/kg,i.p.)和氯喹干预组(18只,氯喹0.61mg/kg,i.c.v.,2h后注射PTZ).每组确定6个时间点:1h、2h、4h、8h、12h和24h.观察大鼠行为表现,记录脑电改变,用免疫组化检测皮质和海马IL-1β和TNF-α表达的变化.结果对照组无痫样发作和痫样放电,戊四氮致痫组痫样发作重(Ⅲ-Ⅴ级),氯喹干预组轻(Ⅰ-Ⅲ级)(P<0.05);脑电记录显示戊四氮致痫组呈频发高幅的痫样波,氯喹干预组痫样波幅低且缓;LI-1β和TNF-α在戊四氮致痫组皮质和海马表达强,与对照组比较差异有显著性(P<0.05),氯喹干预组与对照组比较差异无显著性(P>0.05).结论氯喹可能通过对IL-1β和TNF-α表达的抑制减轻戊四氮致痫大鼠的痫样放电和痫样发作程度.这些结果提示,氯喹在防治癫痫方面可能是理想的抗痫剂.  相似文献   

7.
蝎毒诱导红藻氨酸癫痫大鼠海马内GABA释放的免疫组化观察   总被引:11,自引:0,他引:11  
Jiang CL  Zhang WQ 《生理学报》1999,(6):609-614
本工作用红藻氨酸癫痫模型,经蝎毒处理后观察大鼠癫痫发作的行为变化并检测大鼠海马内GABA免疫反应样物质对国产钳蝎粗毒抗癫痫反复发作的细胞机制进行初步探讨。KA癫痫大鼠经蝎毒处理3周后,与实验对照组相比,能明显减轻发作行为。GABA免疫组化的实验显示,用KA3周后,实验对照组大鼠与空白对照组腹侧海马尤其是海马门区GABA免疫反应阳性神经元数目明显减少,免疫染色强度明显降低。实验给药组大鼠8例中,有6  相似文献   

8.
目的:探讨双侧海马细胞癫痫相关性单位放电特征。方法:双玻璃微电极同步记录大鼠44对双侧海马神经元单位放电,每隔5-10min重复强直电刺激右背海马(0.6-0.4mA60Hz2s)一次,共施加10-12个刺激串。结果:强直电刺激可以诱发双侧海马神经元单位放电的原发性和继发性后放,呈现明显的双侧非对称性和动态发展特征,甚至出现双侧交互性改变,与人类颞叶癫痫的病理生理特征相吻合;进行性发展、跨大脑半球扩布和动态变化,强直电刺激对海马细胞单位自发放电具有易化或抑制、调制或解调作用,并取决于这些细胞的基础单位放电,东莨菪碱可以调电刺激引起的海马细胞爆发式单位放电成为紧张性放电,诱导强直电刺激后单位放电频率的抑制效应。结论:强直电刺激右背海马后,双侧海马细胞特征性癫痫相关性单位电活动很可能是颞叶癫痫跨半球脑损伤的病理生理学机制之一。  相似文献   

9.
川芎嗪改善癫痫大鼠水迷宫成绩和海马PS幅度   总被引:1,自引:0,他引:1  
目的:观察川芎嗪对青霉素致痫大鼠学习记忆的影响。方法:造模后,腹腔注射川芎嗪,通过水迷宫实验和在体记录海马CA1区群峰电位(PS)以观测大鼠学习记忆的变化。结果:①癫痫发作使大鼠入水找到终点的时间延长 ②癫痫发作后海马CA1区PS幅度降低 ③注射川芎嗪后癫痫大鼠入水找到终点的时间缩短 ④注射川芎嗪后癫痫大鼠海马CA1区PS幅度升高。结论:川芎嗪可能对青霉素致痫大鼠学习记忆的损伤有改善作用。  相似文献   

10.
目的:研究功率谱熵在痫性发作大鼠脑电检测中的应用。方法:采用青霉素在大鼠海马微注射制备急性痫性发作模型,以深部电极记录大鼠原始脑电信号,将24只SD大鼠随机分成四组,即正常组(A),对照组(B),单电极组(C),多电极组(D)。C、D组大鼠经致痫后观察未发作期、发作前期、发作期和发作后期四期脑电信号的变化,运用谱熵对四期脑电信号进行分析,并与A、B组进行对比。结果:C组和D组脑电功率谱熵显示两组发作期与未发作期、发作前期、发作后期比较有显著差异(P0.05),发作期明显低于其它各期;未发作期和发作前期相比有明显差异(P0.05),发作前期较未发作期降低;将D组大鼠海马致痫灶(a)及其同侧附近(b)、对侧(c)三点发作各期脑电功率谱熵进行对比分析,发作前期和发作期a、b、c三点比较有明显差异(P0.05),a点最低,c点的功率谱熵值最高。结论:功率谱熵可以预报痫性发作并可对癫痫病灶的定位提供一定的帮助。  相似文献   

11.
Citrate synthase has a key role in the tricarboxylic (TCA) cycle of mitochondria of all organisms, as it cata- lyzes the first committed step which is the fusion of a carbon-carbon bond between oxaloacetate and acetyl CoA. The regulation of TCA cycle function is especially important in plants, since mitochondrial activities have to be coordinated with photosynthesis. The posttranslational regulation of TCA cycle activity in plants is thus far almost entirely unexplored. Although several TCA cycle enzymes have been identified as thioredoxin targets in vitro, the existence of any thioredoxin-dependent regulation as known for the Calvin cycle, yet remains to be demonstrated. Here we have investigated the redox regulation of the Arabidopsis citrate synthase enzyme by site-directed mutagenesis of its six cysteine residues. Our results indicate that oxidation inhibits the enzyme activity by the formation of mixed disulfides, as the partially oxidized citrate synthase enzyme forms large redox-dependent aggregates. Furthermore, we were able to demonstrate that thioredoxin can cleave diverse intraas well as intermolecular disulfide bridges, which strongly enhances the activity of the enzyme. Activity measurements with the cysteine variants of the enzyme revealed important cysteine residues affecting total enzyme activity as well as the redox sensitivity of the enzyme.  相似文献   

12.
To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.  相似文献   

13.
The pH of intracellular compartments is essential for the viability of cells. Despite its relevance, little is known about the pH of these compartments. To measure pH in vivo, we have first generated two pH sensors by combining the improved-solubility feature of solubility-modified green fluorescent protein (GFP) (smGFP) with the pH-sensing capabil- ity of the pHluorins and codon optimized for expression in Arabidopsis. PEpHluorin (plant-solubility-modified ecliptic pHluorin) gradually loses fluorescence as pH is lowered with fluorescence vanishing at pH 6.2 and PRpHluorin (plant- solubility-modified ratiomatric pHluorin), a dual-excitation sensor, allowing for precise measurements. Compartment- specific sensors were generated by further fusing specific sorting signals to PEpHluorin and PRpHluorin. Our results show that the pH of cytosol and nucleus is similar (pH 7.3 and 7.2), while peroxisomes, mitochondrial matrix, and plastidial stroma have alkaline pH. Compartments of the secretory pathway reveal a gradual acidification, spanning from pH 7.1 in the endoplasmic reticulum (ER) to pH 5.2 in the vacuole. Surprisingly, pH in the trans-Golgi network (TGN) and mul- tivesicular body (MVB) is, with pH 6.3 and 6.2, quite similar. The inhibition of vacuolar-type H+-ATPase (V-ATPase) with concanamycin A (ConcA) caused drastic increase in pH in TGN and vacuole. Overall, the PEpHluorin and PRpHluorin are excellent pH sensors for visualization and quantification of pH in vivo, respectively.  相似文献   

14.
Aphis gossypii Glover shows obvious host specialization, with cucurbit- and cotton-specialized biotypes or host races in many regions. Because its annual natal hostcrops senesce earlier the cucurbit-specialized biotype may suffer food deficiency. The method this biotype uses to overcome this challenge is still poorly understood. In orderto understand the potential of the cucurbit-specialized biotype aphids in host shift and usage, the performance of this biotype on cotton (Gossypium hirsutum), a common butpoor quality host plant, was explored in this study. The cucurbit-specialized aphids could establish populations on cotton only when these plants had at least nine leaves, and subsequent populations developed rather slowly. The presence of whitefly populations on cotton improved the success rate of cucurbit-specialized aphids. The cucurbit-specialized aphidswere mainly distributed on the older leaves of cotton, with only a few settling on the upper leaves. The cucurbit-specialized aphids reared on cotton for 40, 54 and 61 days stillmaintained strong preference for their natal host plant, cucumber (Cucumis sativus), rather than cotton, and their net reproductive rates and intrinsic rates of natural increase weredramatically lower when they were transferred onto new six-leaf cotton plants or detached leaves. Therefore, we concluded that the cucurbit-specialized aphids have the potentialto utilize mature or whitefly-stressed cotton plants, but that this feeding experience on cotton did not alter their specialization for cucurbits. Some cotton plants could act as atemporary host for the cucurbit-specialized aphids to overcome food deficiency arising from senescing cucurbits.  相似文献   

15.
The development of a plant leaf is a meticulously orchestrated sequence of events producing a complex organ comprising diverse cell types. The reticulate class of leaf variegation mutants displays contrasting pigmentation between veins and interveinal regions due to specific aberrations in the development of mesophyll cells. Thus, the reticulate mutants offer a potent tool to investigate cell-type-specific developmental processes. The discovery that most mutants are affected in plastid-localized, metabolic pathways that are strongly expressed in vasculature-associated tis- sues implicates a crucial role for the bundle sheath and their chloroplasts in proper development of the mesophyll cells. Here, we review the reticulate mutants and their phenotypic characteristics, with a focus on those in Arabidopsis thali- ana. Two alternative models have been put forward to explain the relationship between plastid metabolism and meso- phyll cell development, which we call here the supply and the signaling hypotheses. We critically assess these proposed models and discuss their implications for leaf development and bundle sheath function in C3 species. The characteriza- tion of the reticulate mutants supports the significance of plastid retrograde signaling in cell development and highlights the significance of the bundle sheath in C3 photosynthesis.  相似文献   

16.
To study how conserved fundamental concepts of the heat stress response (HSR) are in photosynthetic eukaryotes, we applied pharmaceutical and antisense/amiRNA approaches to the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HSR appears to be triggered by the accumulation of unfolded proteins, as it was induced at ambient temperatures by feeding cells with the arginine analog canavanine. The protein kinase inhibitor staurosporine strongly retarded the HSR, demonstrating the importance of phosphorylation during activation of the HSR also in Chlamydomonas. While the removal of extracellular calcium by the application of EGTA and BAPTA inhibited the HSR in moss and higher plants, only the addition of BAPTA, but not of EGTA, retarded the HSR and impaired thermotoler- ance in Chlamydomonas. The addition of cycloheximide, an inhibitor of cytosolic protein synthesis, abolished the attenu- ation of the HSR, indicating that protein synthesis is necessary to restore proteostasis. HSP90 inhibitors induced a stress response when added at ambient conditions and retarded attenuation of the HSR at elevated temperatures. In addition, we detected a direct physical interaction between cytosolic HSP90A/HSP70A and heat shock factor 1, but surprisingly this interaction persisted after the onset of stress. Finally, the expression of antisense constructs targeting chloroplast HSP70B resulted in a delay of the cell's entire HSR, thus suggesting the existence of a retrograde stress signaling cascade that is desensitized in HSP7OB-antisense strains.  相似文献   

17.
A phylogeny of the genus Aphis Linnaeus, 1 758 was built primarily from specimens collected in the Midwest of the United States. A data matrix was constructedwith 68 species and 41 morphological characters with respective character states of alate and apterous viviparous females. Dendrogram topologies of analyses performed usingUPGMA (Unweighted Pair Group Method with Arithmetic Mean), Maximum Parsimony and Bayesian analysis of Cytochrome Oxidase I, Elongation Factor 1-α and primary endosymbiont Buchnera aphidicola 16S sequences were not congruent. Bayesian analysis strongly supported most terminal nodes of the phylogenetic trees. The phylogeny wasstrongly supported by EFI-α, and analysis of COl and EFI-α molecular data combined with morphological characters. It was not supported by single analysis of COI or Buch-hera aphidicola 16S. Results from the Bayesian phylogeny show 4 main species groups: asclepiadis,fabae, gossypii, and middletonii. Results place Aphis and species of the generaProtaphis Bōrner, 1952, Toxoptera Koch, 1856 and Xerobion Nevsky, 1928 in a monophyletic clade. Morphological characters support this monophyly as well. The phylogenyshows that the monophyletic clade of the North American middletonii species group belong to the genus Protaphis: P. debilicornis (Gillette & Palmer, 1929), comb. nov., P. echinaceae(Lagos and Voegtlin, 2009), comb. nov., and P. middletonii (Thomas, 1879). The genus Toxoptera should be considered a subgenus of Aphis (stat. nov.). The analysis also indicatesthat the current genus Iowana Frison, 1954 should be considered a subgenus of Aphis (stat. nov.).  相似文献   

18.
Catharanthus roseus is the sole source of two most important monoterpene indole alkaloid (MIA) anti- cancer agents: vinblastine and vincristine. MIAs possess a terpene and an indole moiety derived from terpenoid and shikimate pathways, respectively. Geranyl diphosphate (GPP), the entry point to the formation of terpene moiety, is a product of the condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase (GPPS). Here, we report three genes encoding proteins with sequence similarity to large subunit (CrGPPS.LSU) and small subunit (CrGPPS.SSU) of heteromeric GPPSs, and a homomeric GPPSs. CrGPPS.LSU is a bifunctional enzyme producing both GPP and geranyl geranyl diphosphate (GGPP), CrGPPS.SSU is inactive, whereas CrGPPS is a homomeric enzyme forming GPP. Co-expression of both subunits in Escherichia coil resulted in heteromeric enzyme with enhanced activity producing only GPR While CrGPPS.LSU and CrGPPS showed higher expression in older and younger leaves, respectively, CrGPPS.SSU showed an increasing trend and decreased gradually. Methyl jasmonate (MelA) treatment of leaves sig- nificantly induced the expression of only CrGPPS.SSU. GFP localization indicated that CrGPPS.SSU is plastidial whereas CrGPPS is mitochondrial. Transient overexpression of AmGPPS.SSU in C. roseus leaves resulted in increased vindoline, immediate monomeric precursor of vinblastine and vincristine. Although C. roseus has both heteromeric and homomeric GPPS enzymes, our results implicate the involvement of only heteromeric GPPS with CrGPPS.SSU regulating the GPP flux for MIA biosynthesis.  相似文献   

19.
Fluorescent reporter proteins that allow repeated switching between a fluorescent and a non-fluorescent state in response to specific wavelengths of light are novel tools for monitoring of protein trafficking and super-resolu- tion fluorescence microscopy in living organisms. Here, we describe variants of the reversibly photoswitchable fluores- cent proteins rsFastLime, bsDronpa, and Padron that have been codon-optimized for the use in transgenic Arabidopsis plants. The synthetic proteins, designated rsFastLIME-s, bsDRONPA-s, and PADRON C-s, showed photophysical properties and switching behavior comparable to those reported for the original proteins. By combining the 'positively switchable' PADRON C-s with the 'negatively switchable' rsFastLIME-s or bsDRONPA-s, two different fluorescent reporter proteins could be imaged at the same wavelength upon transient expression in Nicotiana benthamiana cells. Thus, co-localiza- tion analysis can be performed using only a single detection channel. Furthermore, the proteins were used to tag the RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein 7) in transgenic Arabidopsis plants. Because the new reversibly photoswitchable fluorescent proteins show an increase in signal strength during each pho- toactivation cycle, we were able to generate a large number of scans of the same region and reconstruct 3-D images of AtGRP7 expression in the root tip. Upon photoactivation of the AtGRP7:rsFastLIME-s fusion protein in a defined region of a transgenic Arabidopsis root, spreading of the fluorescence signal into adjacent regions was observed, indicating that movement from cell to cell can be monitored. Our results demonstrate that rsFastLIME-s, bsDRONPA-s, and PADRON C-s are versatile fluorescent markers in plants, Furthermore, the proteins also show strong fluorescence in mammalian cells including COS-7 and HeLa cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号