首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prions are the infectious agents responsible for transmissible spongiform encephalopathy, and are primarily composed of the pathogenic form (PrP(Sc)) of the host-encoded prion protein (PrP(C)). Recent studies have revealed that protein misfolding cyclic amplification (PMCA), a highly sensitive method for PrP(Sc) detection, can overcome the species barrier in several xenogeneic combinations of PrP(Sc) seed and PrP(C) substrate. Although these findings provide valuable insight into the origin and diversity of prions, the differences between PrP(Sc) generated by interspecies PMCA and by in vivo cross-species transmission have not been described. This study investigated the histopathological and biochemical properties of PrP(Sc) in the brains of tga20 transgenic mice inoculated with Sc237 hamster scrapie prion and PrP(Sc) from mice inoculated with Sc237-derived mouse PrP(Sc), which had been generated by interspecies PMCA using Sc237 as seed and normal mouse brain homogenate as substrate. Tga20 mice overexpressing mouse PrP(C) were susceptible to Sc237 after primary transmission. PrP(Sc) in the brains of mice inoculated with Sc237-derived mouse PrP(Sc) and in the brains of mice inoculated with Sc237 differed in their lesion profiles and accumulation patterns, Western blot profiles, and denaturant resistance. In addition, these PrP(Sc) exhibited distinctive virulence profiles upon secondary passage. These results suggest that different in vivo and in vitro environments result in propagation of PrP(Sc) with different biological properties.  相似文献   

2.
The normal cellular prion protein (PrP(C)) is a glycoprotein with two highly conserved potential N-linked glycosylation sites. All prion diseases, whether inherited, infectious or sporadic, are believed to share the same pathogenic mechanism that is based on the conversion of the normal cellular prion protein (PrP(C)) to the pathogenic scrapie prion protein (PrP(Sc)). However, the clinical and histopathological presentations of prion diseases are heterogeneous, depending not only on the strains of PrP(Sc) but also on the mechanism of diseases, such as age-related sporadic vs. infectious prion diseases. Accumulated evidence suggests that N-linked glycans on PrP(C) are important in disease phenotype. A better understanding of the nature of the N-linked glycans on PrP(C) during the normal aging process may provide new insights into the roles that N-linked glycans play in the pathogenesis of prion diseases. By using a panel of 19 lectins in an antibody-lectin enzyme-linked immunosorbent assay (ELISA), we found that the lectin binding profiles of PrP(C) alter significantly during aging. There is an increasing prevalence of complex oligosaccharides on the aging PrP(C), which are features of PrP(Sc). Taken together, this study suggests a link between the glycosylation patterns on PrP(C) during aging and PrP(Sc).  相似文献   

3.
The principal infectious and pathogenic agent in all prion disorders is a beta-sheet-rich isoform of the cellular prion protein (PrP(C)) termed PrP-scrapie (PrP(Sc)). Once initiated, PrP(Sc) is self-replicating and toxic to neuronal cells, but the underlying mechanisms remain unclear. In this report, we demonstrate that PrP(C) binds iron and transforms to a PrP(Sc)-like form (*PrP(Sc)) when human neuroblastoma cells are exposed to an inorganic source of redox iron. The *PrP(Sc) thus generated is itself redox active, and it induces the transformation of additional PrP(C), simulating *PrP(Sc) propagation in the absence of brain-derived PrP(Sc). Moreover, limited depletion of iron from prion disease-affected human and mouse brain homogenates and scrapie-infected mouse neuroblastoma cells results in 4- to 10-fold reduction in proteinase K (PK)-resistant PrP(Sc), implicating redox iron in the generation, propagation, and stability of PK-resistant PrP(Sc). Furthermore, we demonstrate increased redox-active ferrous iron levels in prion disease-affected brains, suggesting that accumulation of PrP(Sc) is modulated by the combined effect of imbalance in brain iron homeostasis and the redox-active nature of PrP(Sc). These data provide information on the mechanism of replication and toxicity by PrP(Sc), and they evoke predictable and therapeutically amenable ways of modulating PrP(Sc) load.  相似文献   

4.
Aberrant metal binding by prion protein in human prion disease   总被引:9,自引:0,他引:9  
Human prion diseases are characterized by the conversion of the normal prion protein (PrP(C)) into a pathogenic isomer (PrP(Sc)). Distinct PrP(Sc) conformers are associated with different subtypes of prion diseases. PrP(C) binds copper and has antioxidation activity. Changes in metal-ion occupancy can lead to significant decline of the antioxidation activity and changes in conformation of the protein. We studied the trace element status of brains from patients with sporadic Creutzfeldt-Jakob disease (sCJD). We found a decrease of up to 50% of copper and an increase in manganese of approximately 10-fold in the brain tissues from sCJD subjects. We have also studied the metal occupancy of PrP in sCJD patients. We observed striking elevation of manganese and, to a lesser extent, of zinc accompanied by significant reduction of copper bound to purified PrP in all sCJD variants, determined by the PrP genotype and PrP(Sc) type, combined. Both zinc and manganese were undetectable in PrP(C) preparations from controls. Copper and manganese changes were pronounced in sCJD subjects homozygous for methionine at codon 129 and carrying PrP(Sc) type-1. Anti-oxidation activity of purified PrP was dramatically reduced by up to 85% in the sCJD variants, and correlated with increased in oxidative stress markers in sCJD brains. These results suggest that altered metal-ion occupancy of PrP plays a pivotal role in the pathogenesis of prion diseases. Since the metal changes differed in each sCJD variants, they may contribute to the diversity of PrP(Sc) and disease phenotype in sCJD. Finally, this study also presented two potential approaches in the diagnosis of CJD; the significant increase in brain manganese makes it potentially detectable by MRI, and the binding of manganese by PrP in sCJD might represent a novel diagnostic marker.  相似文献   

5.
The conversion of the normal cellular prion protein (PrP(C)) into the abnormal scrapie isoform (PrP(Sc)) is a key feature of prion diseases. The pathogenic mechanisms and the subcellular sites of the conversion are complex and not completely understood. In particular, little is known on the role of the early compartment of the secretory pathway in the processing of PrP(C) and in the pathogenesis of prion diseases. In order to interfere with the intracellular traffic of endogenous PrP(C) we have generated two anti-prion single chain antibody fragments (scFv) directed against different epitopes, each fragment tagged either with a secretory leader or with the ER retention signal KDEL. The stable expression of these constructs in PC12 cells allowed us to study their specific effects on the synthesis, maturation, and processing of endogenous PrP(C) and on PrP(Sc) formation. We found that ER-targeted anti-prion scFvs retain PrP(C) in the ER and inhibit its translocation to the cell surface. Retention in the ER strongly affects the maturation and glycosylation state of PrP(C), with the appearance of a new aberrant endo-H sensitive glycosylated species. Interestingly, ER-trapped PrP(C) acquires detergent insolubility and proteinase K resistance. Furthermore, we show that ER-targeted anti-prion antibodies prevent PrP(Sc) accumulation in nerve growth factor-differentiated PC12 cells, providing a new tool to study the molecular pathology of prion diseases.  相似文献   

6.
Prion diseases are characterized by the conversion of the normal cellular prion protein (PrP(C)) into a pathogenic isoform (PrP(Sc)). PrP(C) binds copper, has superoxide dismutase (SOD)-like activity in vitro, and its expression aids in the cellular response to oxidative stress. However, the interplay between PrPs (PrP(C), PrP(Sc) and possibly other abnormal species), copper, anti-oxidation activity and pathogenesis of prion diseases remain unclear. In this study, we reported dramatic depression of SOD-like activity by the affinity-purified PrPs from scrapie-infected brains, and together with significant reduction of Cu/Zn-SOD activity, correlates with significant perturbations in the divalent metals contents. We also detected elevated levels of nitric oxide and superoxide in the infected brains, which could be escalating the oxidative modification of cellular proteins, reducing gluathione peroxidase activity and increasing the levels of lipid peroxidation markers. Taken together, our results suggest that brain metal imbalances, especially copper, in scrapie infection is likely to affect the anti-oxidation functions of PrP and SODs, which, together with other cellular dysfunctions, predispose the brains to oxidative impairment and eventual degeneration. To our knowledge, this is the first study documenting a physiological connection between brain metals imbalances, the anti-oxidation function of PrP, and aberrations in the cellular responses to oxidative stress, in scrapie infection.  相似文献   

7.
Prion diseases such as Creutzfeldt-Jakob disease (CJD) in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals are associated with the accumulation in affected brains of a conformational isomer (PrP(Sc)) of host-derived prion protein (PrP(C)). According to the protein-only hypothesis, PrP(Sc) is the principal or sole component of transmissible prions. The conformational change known to be central to prion propagation, from a predominantly alpha-helical fold to one predominantly comprising beta structure, can now be reproduced in vitro, and the ability of beta-PrP to form fibrillar aggregates provides a plausible molecular mechanism for prion propagation. The existence of multiple prion strains has been difficult to explain in terms of a protein-only infectious agent but recent studies of human prion diseases suggest that strain-specific phenotypes can be encoded by different PrP conformations and glycosylation patterns. The experimental confirmation that a novel form of human prion disease, variant CJD, is caused by the same prion strain as cattle BSE, has highlighted the pressing need to understand the molecular basis of prion propagation and the transmission barriers that limit their passage between mammalian species. These and other advances in the fundamental biology of prion propagation are leading to strategies for the development of rational therapeutics.  相似文献   

8.
The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc). Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc). Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc) during prion disease.  相似文献   

9.
Disease-related prion protein, PrP(Sc), is classically distinguished from its normal cellular precursor, PrP(C), by its detergent insolubility and partial resistance to proteolysis. Molecular diagnosis of prion disease typically relies upon detection of protease-resistant fragments of PrP(Sc) using proteinase K, however it is now apparent that the majority of disease-related PrP and indeed prion infectivity may be destroyed by this treatment. Here we report that digestion of RML prion-infected mouse brain with pronase E, followed by precipitation with sodium phosphotungstic acid, eliminates the large majority of brain proteins, including PrP(C), while preserving >70% of infectious prion titre. This procedure now allows characterization of proteinase K-sensitive prions and investigation of their clinical relevance in human and animal prion disease without being confounded by contaminating PrP(C).  相似文献   

10.
Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrP(Sc), suggesting that these domains of cellular prion protein (PrP(C)) serve as docking sites for PrP(Sc) during prion propagation. To examine the role of polybasic domains in the context of full-length PrP(C), we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ~5 rounds of sPMCA, PrP(Sc) molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrP(Sc) prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrP(Sc) molecules. Remarkably, ΔC-PrP(Sc) and other polybasic domain PrP(Sc) molecules displayed diminished or absent biological infectivity relative to wild-type PrP(Sc), despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrP(Sc) prions interact with PrP(C) molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrP(Sc) propagation. Furthermore, polybasic domain deficient PrP(Sc) molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrP(Sc) molecules may not depend on a single stereotypic mechanism, but that normal PrP(C)/PrP(Sc) interaction through polybasic domains may be required to generate prion infectivity.  相似文献   

11.
Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection.  相似文献   

12.
In transmissible spongiform encephalopathies, the cellular prion protein (PrP(C)) undergoes a conformational change from a prevailing alpha-helical structure to a beta-sheet-rich, protease-resistant isoform, termed PrP(Sc). PrP(C) has two characteristics: a high affinity for Cu(2+) and a strong pH-dependent conformation. Lines of evidence indicate that PrP(Sc) conformation is dependent on copper and that acidic conditions facilitate the conversion of PrP(C) --> PrP(Sc). In each species, PrP(Sc) exists in multiple conformations, which are associated with different prion strains. In sporadic Creutzfeldt-Jakob disease (sCJD), different biochemical types of PrP(Sc) have been identified according to the size of the protease-resistant fragments, patterns of glycosylation, and the metal-ion occupancy. Based on the site of cleavage produced by proteinase K, we investigated the conformational stability of PrP(Sc) under acidic, neutral, and basic conditions in 42 sCJD subjects. Our study shows that only one type of sCJD PrP(Sc), associated with the classical form, shows a pH-dependent conformation, whereas two other biochemical PrP(Sc) types, detected in distinct sCJD phenotypes, are unaffected by pH variations. This novel approach demonstrates the presence of three types of PrP(Sc) in sCJD.  相似文献   

13.
Creutzfeldt-Jakob disease (CJD) in Libyan Jews, linked to the E200K mutation in PRNP (E200KCJD), is the most prevalent of the inherited prion diseases. As other prion diseases, E200KCJD is characterized by the brain accumulation of PrP(Sc), a pathologic conformational isoform of a normal glycoprotein denominated PrP(C). To investigate whether the E200K mutation is enough to de novo confer PrP(Sc) properties to mutant PrP, as suggested by experiments in Chinese hamster ovary cells, we examined the biochemical behavior of E200KPrP in brains and fibroblasts from sporadic as well as homozygous and heterozygous E200KCJD patients, asymptomatic transgenic mice carrying the E200K mutation, as well as in normal and scrapie-infected mouse neuroblastoma cells expressing E200KPrP. E200KPrP was examined for protease sensitivity, solubility in detergents, releasibility by phosphoinositol phospholypase-C and localization in cholesterol enriched membrane microdomains (rafts). In all tissues except in brains of CJD patients and ScN2a cells, E200KPrP displayed properties similar to those of PrP(C). Our results indicate that the E200K mutation does not automatically convey the properties of PrP(Sc) to new PrP molecules. A conversion process occurs mainly in the prion disease affected brain, suggesting the presence of a tissue-specific or age-dependent factor, in accord with the late onset nature of inherited CJD.  相似文献   

14.
The pathogenic isoform (PrP(Sc)) of the host-encoded cellular prion protein (PrP(C)) is considered to be an infectious agent of transmissible spongiform encephalopathy (TSE). The detailed mechanism by which the PrP(Sc) seed catalyzes the structural conversion of endogenous PrP(C) into nascent PrP(Sc) in vivo still remains unclear. Recent studies reveal that bacterially derived recombinant PrP (recPrP) can be used as a substrate for the in vitro generation of protease-resistant recPrP (recPrP(res)) by protein-misfolding cyclic amplification (PMCA). These findings imply that PrP modifications with a glycosylphosphatidylinositol (GPI) anchor and asparagine (N)-linked glycosylation are not necessary for the amplification and generation of recPrP(Sc) by PMCA. However, the biological properties of PrP(Sc) obtained by in vivo transmission of recPrP(res) are unique or different from those of PrP(Sc) used as the seed, indicating that the mechanisms mediated by these posttranslational modifications possibly participate in reproductive propagation of PrP(Sc). In the present study, using baculovirus-derived recombinant PrP (Bac-PrP), we demonstrated that Bac-PrP is useful as a PrP(C) substrate for amplification of the mouse scrapie prion strain Chandler, and PrP(Sc) that accumulated in mice inoculated with Bac-PrP(res) had biochemical and pathological properties very similar to those of the PrP(Sc) seed. Since Bac-PrP modified with a GPI anchor and brain homogenate of Prnp knockout mice were both required to generate Bac-PrP(res), the interaction of GPI-anchored PrP with factors in brain homogenates is essential for reproductive propagation of PrP(Sc). Therefore, the Bac-PMCA technique appears to be extremely beneficial for the comprehensive understanding of the GPI anchor-mediated stimulation pathway.  相似文献   

15.
Prions are unconventional infectious agents responsible for transmissible spongiform encephalopathies. Compelling evidences indicate that prions are composed exclusively by a misfolded form of the prion protein (PrP(Sc)) that replicates in the absence of nucleic acids. One of the most challenging problems for the prion hypothesis is the existence of different strains of the infectious agent. Prion strains have been characterized in most of the species. Biochemical characteristics of PrP(Sc) used to identify each strain include glycosylation profile, electrophoretic mobility, protease resistance, and sedimentation. In vivo, prion strains can be differentiated by the clinical signs, incubation period after inoculation and the lesion profiles in the brain of affected animals. Sources of prion strain diversity are the inherent conformational flexibility of the prion protein, the presence of PrP polymorphisms and inter-species transmissibility. The existence of the strain phenomenon is not only a scientific challenge, but it also represents a serious risk for public health. The dynamic nature and inter-relations between strains and the potential for the generation of a large number of new prion strains is the perfect recipe for the emergence of extremely dangerous new infectious agents.  相似文献   

16.
Prion diseases are neurodegenerative disorders which cause Creutzfeldt-Jakob disease in humans, scrapie in sheep and bovine spongiform encephalopathy in cattle. The infectious agent is a protease resistant isoform (PrP(Sc)) of a host encoded prion protein (PrP(C)). PrP(Sc) proteins are characterized according to size and glycoform pattern. We analyzed the glycoform patterns of PrP(C) obtained from humans, sheep, cattle and mice to find interspecies variability for distinct differentiation among species. To obtain reliable results, the imaging technique was used for measurement of the staining band intensities and reproducible profiles were achieved by many repeated immunoblot analysis. With a set of antibodies, we discovered two distinct patterns which were not species-dependent. One pattern is characterized by high signal intensity for the di-glycosylated isoform using antibodies that bind to the N-terminal region, whereas the other exhibits high intensity for protein bands at the size of the nonglycosylated isoform using antibodies recognizing the C-terminal region. This pattern is the result of an overlap of the nonglycosylated full-length and the glycosylated N-terminal truncated PrP(C) isoforms. Our data demonstrate the importance of antibody selection in characterization of PrP(C).  相似文献   

17.
Conversion of the cellular prion protein (PrP(C)) into the abnormal scrapie isoform (PrP(Sc)) is the hallmark of prion diseases, which are fatal and transmissible neurodegenerative disorders. ER-retained anti-prion recombinant single-chain Fv fragments have been proved to be an effective tool for inhibition of PrP(C) trafficking to the cell surface and antagonize PrP(Sc) formation and infectivity. In the present study, we have generated the secreted version of 8H4 intrabody (Sec-8H4) in order to compel PrP(C) outside the cells. The stable expression of the Sec-8H4 intrabodies induces proteasome degradation of endogenous prion protein but does not influence its glycosylation profile and maturation. Moreover, we found a dramatic diverting of PrP(C) traffic from its vesicular secretion and, most importantly, a total inhibition of PrP(Sc) accumulation in NGF-differentiated Sec-8H4 PC12 cells. These results confirm that perturbing the intracellular traffic of endogenous PrP(C) is an effective strategy to inhibit PrP(Sc) accumulation and provide convincing evidences for application of intracellular antibodies in prion diseases.  相似文献   

18.
Prion diseases form a group of neurodegenerative disorders with the unique feature of being transmissible. These diseases involve a pathogenic protein, called PrP(Sc) for the scrapie isoform of the cellular prion protein (PrP(C)) which is an abnormally-folded counterpart of PrP(C). Many questions remain unresolved concerning the function of PrP(C) and the mechanisms underlying prion replication, transmission and neurodegeneration. PrP(C) is a glycosyl-phosphatidylinositol-anchored glycoprotein expressed at the cell surface of neurons and other cell types. PrP(C) may be present as distinct isoforms depending on proteolytic processing (full length and truncated), topology(GPI-anchored, transmembrane or soluble) and glycosylation (non- mono- and di-glycosylated). The present review focuses on the implications of PrP(C) glycosylation as to the function of the normal protein, the cellular pathways of conversion into PrP(Sc), the diversity of prion strains and the related selective neuronal targeting.  相似文献   

19.
Prion protein (PrP)(Sc), the only known component of the prion, is present mostly in the brains of animals and humans affected with prion diseases. We now show that a protease-resistant PrP isoform can also be detected in the urine of hamsters, cattle, and humans suffering from transmissible spongiform encephalopathies. Most important, this PrP isoform (UPrP(Sc)) was also found in the urine of hamsters inoculated with prions long before the appearance of clinical signs. Interestingly, intracerebrally inoculation of hamsters with UPrP(Sc) did not cause clinical signs of prion disease even after 270 days, suggesting it differs in its pathogenic properties from brain PrP(Sc). We propose that the detection of UPrP(Sc) can be used to diagnose humans and animals incubating prion diseases, as well as to increase our understanding on the metabolism of PrP(Sc) in vivo.  相似文献   

20.
Conversion of cellular prion protein (PrP(C)) into a pathological conformer (PrP(Sc)) is thought to be promoted by PrP(Sc) in a poorly understood process. Here, we report that in wild-type mice, the expression of PrP(C) rendered soluble and dimeric by fusion to immunoglobulin Fcgamma (PrP-Fc(2)) delays PrP(Sc) accumulation, agent replication, and onset of disease following inoculation with infective prions. In infected PrP-expressing brains, PrP-Fc(2) relocates to lipid rafts and associates with PrP(Sc) without acquiring protease resistance, indicating that PrP-Fc(2) resists conversion. Accordingly, mice expressing PrP-Fc(2) but lacking endogenous PrP(C) are resistant to scrapie, do not accumulate PrP-Fc(2)(Sc), and do not transmit disease to others. These results indicate that various PrP isoforms engage in a complex in vivo, whose distortion by PrP-Fc(2) affects prion propagation and scrapie pathogenesis. The unique properties of PrP-Fc(2) suggest that soluble PrP derivatives may represent a new class of prion replication antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号