首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Cushion plants are commonly considered as keystone nurse species that ameliorate the harsh conditions they inhabit in alpine ecosystems, thus facilitating other species and increasing alpine plant biodiversity. A literature search resulted in 25 key studies showing overwhelming facilitative effects of different cushion plants and hypothesizing greater facilitation with increased environmental severity (i.e. higher altitude and/or lower rainfall). At the same time, emerging ecological theory alongside the cushion-specific literature suggests that facilitation might not always occur under extreme environmental conditions, and especially under high altitude and dryness.

Methods

To assess these hypotheses, possible nursing effects of Thylacospermum caespitosum (Caryophyllaceae) were examined at extremely high altitude (5900 m a.s.l.) and in dry conditions (precipitation <100 mm year−1) in Eastern Ladakh, Trans-Himalaya. This is, by far, the highest site, and the second driest, at which the effects of cushions have been studied so far.

Key Results

In accordance with the theoretical predictions, no nursing effects of T. caespitosum on other alpine plants were detected. The number and abundance of species were greater outside cushions than within and on the edge of cushions. None of the 13 species detected was positively associated with cushions, while nine of them were negatively associated. Plant diversity increased with the size of the area sampled outside cushions, but no species–area relationship was found within cushions.

Conclusions

The results support the emerging theoretical prediction of restricted facilitative effects under extreme combinations of cold and dryness, integrating these ideas in the context of the ecology of cushion plants. This evidence suggests that cases of missing strong facilitation are likely to be found in other extreme alpine conditions.  相似文献   

2.

Background

The stress‐gradient hypothesis predicts a shift from facilitative to competitive plant interactions with decreasing abiotic stress. This has been supported by studies along elevation and temperature gradients, but also challenged by the hypothesis of a facilitation collapse at extremely harsh sites. Although facilitation is known to be important in primary succession, few studies have examined these hypotheses along primary succession gradients.

Aim

To examine whether there is a relationship between the presence of the circumpolar cushion plant Silene acaulis and other species, and if so, whether there is a shift between positive and negative interactions along a primary succession gradient in a glacier foreland.

Location

Finse, southern Norway.

Methods

We examined the performance of the common alpine forb Bistorta vivipara, species richness of vascular plants, bryophytes and lichens, and the number of seedlings and fertile vascular plants in S. acaulis cushions, and control plots without S. acaulis, along a succession gradient with increasing distance from a glacier front, and thus decreasing abiotic stress. To examine if S. acaulis cushions modify the abiotic environment, we recorded soil temperature, moisture, organic content and pH in cushions and control plots.

Results

Bistorta vivipara performed better, as shown by bigger leaves in S. acaulis cushions compared to control plots in the harshest part of the gradient close to the glacier. There were few differences in B. vivipara performance between cushion and control plots in the more benign environment further away from the glacier. This suggests a shift from facilitative to mainly neutral interactions by S. acaulis on the performance of B. vivipara with decreasing abiotic stress. A trend, although not significant, of higher vascular species richness and fertility inside S. acaulis cushions along the whole gradient, suggests that S. acaulis also facilitates community‐level species richness. The causal mechanism of this facilitation is likely that the cushions buffer extreme temperatures.

Conclusions

Our results support the stress‐gradient hypothesis for the relationship between the cushion plant S. acaulis and the performance of a single species along a primary succession gradient in a glacier foreland. S. acaulis also tended to increase vascular plant species richness and fertility regardless of stress level along the gradient, suggesting facilitation at the community level. We found no collapse of facilitation at the most stressful end of the gradient in this alpine glacier foreland.  相似文献   

3.
Effects of foundation species above and below tree line   总被引:1,自引:0,他引:1  
The facilitative effects of “foundation species” on community diversity and composition in alpine systems can be strong, but the strength of these effects often varies along gradients that occur above tree line. Here, we explore the effects of foundation species above and below tree line, a globally consistent and often abrupt climatic and ecological transition. The experiment was developed in Northern Rocky Mountains of Wyoming and Montana, USA, in vegetation with similar herbaceous physiognomies without trees, but containing dominant foundation species with “cushion” morphologies. In these systems, we compared the diversity and structure of plant communities occurring within these foundation species to that in the open at three sites below tree line and three sites above tree line. Above tree line, 69–94% of all species were significantly spatially associated with foundation species, whereas below tree line, 29–62% of the species were associated with foundation species. Similar patterns were observed in species accumulation curves with foundation species affecting the accumulation of species by +17 to +47% above tree line vs. –27 to +24% below tree line. Our results were consistent with the idea that facilitative interactions are more common with greater abiotic stress. However, our results also suggest the possibility that the climatic transition representing tree line might also represent a threshold, rather than a simple linear response, in how foundation species affect community diversity. A much larger sample size is warranted to thoroughly test such thresholds, but the fundamental ecological and physiological transition that plants experience at the climate of the tree line may also be reflected in small-scale species interactions that organize communities.  相似文献   

4.
A humped-back relationship between species richness and community biomass has frequently been observed in plant communities, at both local and regional scales, although often improperly called a productivity-diversity relationship. Explanations for this relationship have emphasized the role of competitive exclusion, probably because at the time when the relationship was first examined, competition was considered to be the significant biotic filter structuring plant communities. However, over the last 15 years there has been a renewed interest in facilitation and this research has shown a clear link between the role of facilitation in structuring communities and both community biomass and the severity of the environment. Although facilitation may enlarge the realized niche of species and increase community richness in stressful environments, there has only been one previous attempt to revisit the humped-back model of species richness and to include facilitative processes. However, to date, no model has explored whether biotic interactions can potentially shape both sides of the humped-back model for species richness commonly detected in plant communities. Here, we propose a revision of Grime's original model that incorporates a new understanding of the role of facilitative interactions in plant communities. In this revised model, facilitation promotes diversity at medium to high environmental severity levels, by expanding the realized niche of stress-intolerant competitive species into harsh physical conditions. However, when environmental conditions become extremely severe the positive effects of the benefactors wane (as supported by recent research on facilitative interactions in extremely severe environments) and diversity is reduced. Conversely, with decreasing stress along the biomass gradient, facilitation decreases because stress-intolerant species become able to exist away from the canopy of the stress-tolerant species (as proposed by facilitation theory). At the same time competition increases for stress-tolerant species, reducing diversity in the most benign conditions (as proposed by models of competition theory). In this way our inclusion of facilitation into the classic model of plant species diversity and community biomass generates a more powerful and richer predictive framework for understanding the role of plant interactions in changing diversity. We then use our revised model to explain both the observed discrepancies between natural patterns of species richness and community biomass and the results of experimental studies of the impact of biodiversity on the productivity of herbaceous communities. It is clear that explicit consideration of concurrent changes in stress-tolerant and competitive species enhances our capacity to explain and interpret patterns in plant community diversity with respect to environmental severity.  相似文献   

5.
Information about the relative importance of competitive or facilitative pollinator‐mediated interactions in a multi‐species context is limited. We studied interspecific pollen transfer (IPT) networks to evaluate quantity and quality effects of pollinator sharing among plant species on three high‐Andean communities at 1600, 1800 and 2000 m a.s.l. To estimate the sign of the effects (positive, neutral or negative), the relation between conspecific and heterospecific pollen deposited on stigmas was analysed with GLMMs. Network analyses showed that communities were characterised by the presence of pollen hub‐donors and receptors. We inferred that facilitative and neutral pollinator‐mediated interactions among plants prevailed over competition. Thus, the benefits from pollinator sharing seem to outweigh the costs (i.e. heterospecific deposition and conspecific pollen loss). The largest proportion of facilitated species was found at the highest elevation community, suggesting that under unfavourable conditions for the pollination service and at lower plant densities facilitation can be more common.  相似文献   

6.
Although the predatory and competitive impacts of biological invasions are well documented, facilitation of native species by non-indigenous species is frequently overlooked. A search through recent ecological literature found that facilitative interactions between invasive and native species occur in a wide range of habitats, can have cascading effects across trophic levels, can re-structure communities, and can lead to evolutionary changes. These are critical findings that, until now, have been mostly absent from analyses of ecological impacts of biological invasions. Here I present evidence for several mechanisms that exemplify how exotic species can facilitate native species. These mechanisms include habitat modification, trophic subsidy, pollination, competitive release, and predatory release. Habitat modification is the most frequently documented mechanism, reflecting the drastic changes generated by the invasion of functionally novel habitat engineers. Further, I predict that facilitative impacts on native species will be most likely when invasive species provide a limiting resource, increase habitat complexity, functionally replace a native species, or ameliorate predation or competition. Finally, three types of facilitation (novel, substitutive, and indirect) define why exotic species can lead to facilitation of native species. It is evident that understanding biological invasions at the community and ecosystem levels will be more accurate if we integrate facilitative interactions into future ecological research. Since facilitative impacts of biological invasions can occur with native endangered species, and can have wide-ranging impacts, these results also have important implications for management, eradication, and restoration.Contribution Number 2293, Bodega Marine Laboratory, University of California at Davis.  相似文献   

7.
The diversity of pathways through which mycorrhizal fungi alter plant coexistence hinders the understanding of their effects on plant‐plant interactions. The outcome of plant facilitative interactions can be indirectly affected by mycorrhizal symbiosis, ultimately shaping biodiversity patterns. We tested whether mycorrhizal symbiosis enhances plant facilitative interactions and whether its effect is consistent across different methodological approaches and biological scenarios. We conducted a meta‐analysis of 215 cases (involving 21 nurse and 29 facilitated species), in which the performance of a facilitated plant species is measured in the presence or absence of mycorrhizal fungi. We show that mycorrhizal fungi significantly enhance plant facilitative interactions mainly through an increment in plant biomass (aboveground) and nutrient content, although their effects differ across biological contexts. In semiarid environments mycorrhizal symbiosis enhances plant facilitation, while its effect is non‐significant in temperate ecosystems. In addition, arbuscular but not ecto‐mycorrhizal (EMF) fungi significantly enhance plant facilitation, particularly increasing the P content of the plants more than EMF. Some knowledge gaps regarding the importance of this phenomenon have been detected in this meta‐analysis. The effect of mycorrhizal symbiosis on plant facilitation has rarely been assessed in other ecosystems different from semiarid and temperate forests, and rarely considering other fungal benefits provided to plants besides nutrients. Finally, we are still far from understanding the effects of the whole fungal community on plant‐plant interactions, and on plant species coexistence.  相似文献   

8.
Contrasting phenotypes of alpine cushion species have been recurrently described in several mountain ranges along small‐scale topography gradients, with tight competitive phenotypes in stressful convex topography and loose facilitative phenotypes in sheltered concave topography. The consistency of phenotypic effects along large‐scale climate stress gradients have been proposed as a test of the likely genetic bases of the differences observed at small‐scale. Inversely, plastic phenotypic effects are more likely to vanish at some points along climate stress gradients. We tested this hypothesis for two phenotypes of the alpine cushion species Thylacospermum caespitosum at four points along regional gradients of cold and drought stress in northwest China. We measured the traits of the two cushion phenotypes and quantified their associated plant communities and environmental variables along the regional temperature and aridity gradients. Cushion height, convexity and stem density overall showed significant effect of phenotypes. Difference in tightness of cushions between phenotypes was consistent across climate conditions, whereas differences in cushion convexity and height between phenotypes increased with increasing cold stress. Phenotypic effects on species richness and abundance were consistent along both climate gradients but not effects on species composition, while there were no phenotypic effects on environmental variables. Additionally, RII (relative interaction index) curves were linear along the drought gradient but unimodal along the temperature gradient, likely due to the occurrence of contrasting species pools at the different sites. We conclude that the consistency of phenotypic effects of T. caespitosum was high for species richness and abundance and mainly explained by differences in interference mediated by likely heritable differences in cushion tightness. Additionally, our study shows that the shapes of the relationship between plant responses to neighbours and environmental stresses are not necessarily driven by niche‐based deterministic factors.  相似文献   

9.
Disentangling the different processes structuring ecological communities is a long‐standing challenge. In species‐rich ecosystems, most emphasis has so far been given to environmental filtering and competition processes, while facilitative interactions between species remain insufficiently studied. Here, we propose an analysis framework that not only allows for identifying pairs of facilitating and facilitated species, but also estimates the strength of facilitation and its variation along environmental gradients. Our framework combines the analysis of both co‐occurrence and co‐abundance patterns using a moving window approach along environmental gradients to control for potentially confounding effects of environmental filtering in the co‐abundance analysis. We first validate our new approach against community assembly simulations, and exemplify its potential on a large 1,134 plant community plots dataset. Our results generally show that facilitation intensity was strongest under cold stress, whereas the proportion of facilitating and facilitated species was higher under drought stress. Moreover, the functional distance between individual facilitated species and their facilitating species significantly changed along the temperature–moisture gradient, and seemed to influence facilitation intensity, although no general positive or general negative trend was discernible among species. The main advantages of our robust framework are as follows: It enables detecting facilitating and facilitated species in species‐rich systems, and it allows identifying the directionality and intensity of facilitation in species pairs as well as its variation across long environmental gradients. It thus opens numerous opportunities for incorporating functional (and phylogenetic) information in the analysis of facilitation patterns. Our case study indicated high complexity in facilitative interactions across the stress gradient and revealed new evidence that facilitation, similarly to competition, can operate between functionally similar and dissimilar species. Extending the analyses to other taxa and ecosystems will foster our understanding how complex interspecific interactions promote biodiversity.  相似文献   

10.
Question. Competitive and facilitative interactions among plant species in different abiotic environments potentially link productivity, vegetation structure, species composition and functional diversity. We investigated these interactions among four alpine communities along an environmental productivity gradient in a generally harsh climate. We hypothesised that the importance of competition would be higher in more productive sites. Location. Mt. M. Khatipara (43°27′N, 41°41′E, altitude 2750 m), NW Caucasus, Russia. Communities ranged from low‐productivity alpine lichen heath (ALH) and snowbed communities (SBC), to intermediate productivity Festuca grassland (FVG), and high‐productivity Geranium‐Hedysarum meadow (GHM). Methods. We quantified the relative influence of competition and facilitation on community structure by expressing biomass of target species within each natural community proportionally to biomass of the species in a “null community” with experimental release from interspecific competition by removing all other species (for 6 years). An overall index of change in community composition due to interspecific interactions was calculated as the sum of absolute or proportional differences of the component species. Results. Species responses to neighbour removal ranged from positive to neutral. There was no evidence of facilitation among the selected dominant species. As expected, competition was generally most important in the most productive alpine community (GHM). The intermediate position for low‐productivity communities of stressful environments (ALH, SBC) and the last position of intermediately productive FVG were unexpected. Conclusions. Our results appear to support the Fretwell‐Oksanen hypothesis in that competition in communities of intermediate productivity was less intense than in low‐ or high‐productive communities. However, the zero net effect of competition and facilitation in FVG might be the result of abiotic stress due to strong sun exposure and high soil temperatures after neighbour removal. Thus, non‐linear relationships between soil fertility, productivity and different abiotic stresses may also determine the balance between competition and facilitation.  相似文献   

11.
The stress‐gradient hypothesis predicts a higher frequency of facilitative interactions as resource limitation increases. Under severe resource limitation, it has been suggested that facilitation may revert to competition, and identifying the presence as well as determining the magnitude of this shift is important for predicting the effect of climate change on biodiversity and plant community dynamics. In this study, we perform a meta‐analysis to compare temporal differences of species diversity and productivity under a nurse plant (Retama sphaerocarpa) with varying annual rainfall quantity to test the effect of water limitation on facilitation. Furthermore, we assess spatial differences in the herbaceous community under nurse plants in situ during a year with below‐average rainfall. We found evidence that severe rainfall deficit reduced species diversity and plant productivity under nurse plants relative to open areas. Our results indicate that the switch from facilitation to competition in response to rainfall quantity is nonlinear. The magnitude of this switch depended on the aspect around the nurse plant. Hotter south aspects under nurse plants resulted in negative effects on beneficiary species, while the north aspect still showed facilitation. Combined, these results emphasize the importance of spatial heterogeneity under nurse plants for mediating species loss under reduced precipitation, as predicted by future climate change scenarios. However, the decreased water availability expected under climate change will likely reduce overall facilitation and limit the role of nurse plants as refugia, amplifying biodiversity loss.  相似文献   

12.
The strength of species interactions often varies geographically and locally with environmental conditions. Competitive interactions are predicted to be stronger in benign environments while facilitation is expected to be stronger in harsh ones. We tested these ideas with an aboveground neighbor removal experiment at six salt marshes along the California coast. We determined the effect of removals of either the dominant species, Salicornia pacifica, or the subordinate species on plant cover, aboveground biomass and community composition, as well as soil salinity and moisture. We found that S. pacifica consistently competed with the subordinate species and that the strength of competition varied among sites. In contrast with other studies showing that dominant species facilitate subordinates by moderating physical stress, here the subordinate species facilitated S. pacifica shortly after removal treatments were imposed, but the effect disappeared over time. Contrary to expectations based on patterns observed in east coast salt marshes, we did not see patterns in species interactions in relation to latitude, climate, or soil edaphic characteristics. Our results suggest that variation in interactions among salt marsh plants may be influenced by local‐scale site differences such as nutrients more than broad latitudinal gradients.  相似文献   

13.
As mean temperatures increase and heatwaves become more frequent, species are expanding their distributions to colonise new habitats. The resulting novel species interactions will simultaneously shape the temperature-driven reorganization of resident communities. The interactive effects of climate change and climate change-facilitated invasion have rarely been studied in multi-trophic communities, and are likely to differ depending on the nature of the climatic driver (i.e., climate extremes or constant warming). We re-created under laboratory conditions a host-parasitoid community typical of high-elevation rainforest sites in Queensland, Australia, comprising four Drosophila species and two associated parasitoid species. We subjected these communities to an equivalent increase in average temperature in the form of periodic heatwaves or constant warming, in combination with an invasion treatment involving a novel host species from lower-elevation habitats. The two parasitoid species were sensitive to both warming and heatwaves, while the demographic responses of Drosophila species were highly idiosyncratic, reflecting the combined effects of thermal tolerance, parasitism, competition, and facilitation. After multiple generations, our heatwave treatment promoted the establishment of low-elevation species in upland communities. Invasion of the low-elevation species correlated negatively with the abundance of one of the parasitoid species, leading to cascading effects on its hosts and their competitors. Our study, therefore, reveals differing, sometimes contrasting, impacts of extreme temperatures and constant warming on community composition. It also highlights how the scale and direction of climate impacts could be further modified by invading species within a bi-trophic community network.  相似文献   

14.
Question: Does the facilitative effect of cushion plants increase with elevation as a result of increases in environmental harshness? Does this hypothesis apply in the Sino‐Himalayan Mountains? Location: Lakaka Pass on the Baima Snow Mountains (28°20′N, 99°05′E), SW China. Methods: We evaluated the spatial association of several plant species with the cushion plant Arenaria polytrichoides (Caryophyllaceae) at two elevations (4500 m and 4700 m) in the study site and monitored temperature, moisture and nutritional status of soil beneath and outside the cushions. Results: While 14 species grow more frequently associated with the cushions at the higher elevation, at the lower site only three species were positively associated with cushions. Eleven of the species that occurred at both elevations changed their spatial association from neutral or negative with cushions at the lower site to positive at the higher elevation site. Substrate temperatures were rather similar between the cushions and areas of bare ground. Cushions maintained higher moisture than areas of bare ground at both elevations. Soils beneath cushions contained significantly more available nitrogen and potassium compared to open areas at the higher elevation. Conclusions: Our results show that facilitation by A. polytrichoides cushions increases with elevation in the Sino‐Himalayan region. This facilitation effect of A. polytrichoides cushions is probably due to the improved nutrient availability provided by cushion plants in the higher elevation, and these conditions probably permit increased plant recruitment, growth and survival.  相似文献   

15.
Community genetics hypothesizes that within a foundation species, the genotype of an individual significantly influences the assemblage of dependent organisms. To assess whether these intra-specific genetic effects are ecologically important, it is required to compare their impact on dependent organisms with that attributable to environmental variation experienced over relevant spatial scales. We assessed bark epiphytes on 27 aspen (Populus tremula L.) genotypes grown in a randomized experimental array at two contrasting sites spanning the environmental conditions from which the aspen genotypes were collected. We found that variation in aspen genotype significantly influenced bark epiphyte community composition, and to the same degree as environmental variation between the test sites. We conclude that maintaining genotypic diversity of foundation species may be crucial for conservation of associated biodiversity.  相似文献   

16.
Ecosystem engineers are organisms able to modulate environmental forces and, hence, may change the habitat conditions for other species. In so doing, ecosystem engineers may affect both species richness and evenness of communities and, in consequence, change species diversity. If these changes in community attributes are related to the magnitude of the habitat changes induced by the engineers, it seems likely that engineer species will have greater effects on diversity in sites where they cause larger habitat changes. We addressed this issue by evaluating the effects of three alpine cushion plants on species richness, evenness, and diversity of high-Andean plant communities. Given that the difference in microclimatic conditions between cushions and the external environment increases with elevation, we proposed that these organisms should have greater effects on community attributes at higher than at lower elevation sites. Results showed that the three cushion species had positive effects on species richness, diversity, and evenness of plant communities. It was also observed that the magnitude of these effects changed with elevation: positive effects on species richness and diversity increased towards upper sites for the three cushions species, whereas positive effects on evenness increased with elevation for one cushion species but decreased with elevation for other two cushion species. These results suggest that the presence of cushions is important to maintain plant diversity in high-Andean communities, but this positive effect on diversity seems to increase as the difference in environmental conditions between cushions and the external environment increases with elevation.  相似文献   

17.
Many cushion plants ameliorate the harsh environment they inhabit in alpine ecosystems and act as nurse plants, with significantly more species growing within their canopy than outside. These facilitative interactions seem to increase with the abiotic stress, thus supporting the stress-gradient hypothesis. We tested this prediction by exploring the association pattern of vascular plants with the dominant cushion plant Thylacospermum caespitosum (Caryophyllaceae) in the arid Trans-Himalaya, where vascular plants occur at one of the highest worldwide elevational limits. We compared plant composition between 1112 pair-plots placed both inside cushions and in surrounding open areas, in communities from cold steppes to subnival zones along two elevational gradients (East Karakoram: 4850–5250 m and Little Tibet: 5350–5850 m). We used PERMANOVA to assess differences in species composition, Friedman-based permutation tests to determine individual species habitat preferences, species-area curves to assess whether interactions are size-dependent and competitive intensity and importance indices to evaluate plant-plant interactions. No indications for net facilitation were found along the elevation gradients. The open areas were not only richer in species, but not a single species preferred to grow exclusively inside cushions, while 39–60% of 56 species detected had a significant preference for the habitat outside cushions. Across the entire elevation range of T. caespitosum, the number and abundance of species were greater outside cushions, suggesting that competitive rather than facilitative interactions prevail. This was supported by lower soil nutrient contents inside cushions, indicating a resource preemption, and little thermal amelioration at the extreme end of the elevational gradient. We attribute the negative associations to competition for limited resources, a strong environmental filter in arid high-mountain environment selecting the stress-tolerant species that do not rely on help from other plants during their life cycle and to the fact the cushions do not provide a better microhabitat to grow in.  相似文献   

18.
We investigated how deciduousness of overstory tree species influences the community structure and species composition in the understory. The results suggest that deciduous overstory trees have positive effects on light‐demanding species, and that the processes underlying such effects may involve reduced competition for light or facilitation through increased water availability.  相似文献   

19.
We used an individual-based spatially-explicit model to assess the role of facilitation and plant strategies in shaping the 'community biomass–species richness' relationship. Facilitation had few impacts on community's richness under both the most benign (high community biomass) and the most severe (low community biomass) environments where its intensity was weak. From medium to high environmental severity, facilitation increased community richness, because all plant strategies were facilitated. In contrast, from low to medium environmental severity facilitation decreased community richness, because only the most competitive species were facilitated, which induced a decrease in the richness of the stress-tolerant species overwhelming the increase in richness of the competitive species. Above all, our simulations show how 'strategy-dependent' interactions among species combine to shape the humped-back biomass–species richness relationship. It also demonstrates that facilitative effects might have long-term negative effects on species richness, which result is not included in current facilitation models.  相似文献   

20.
Positive and negative species interactions are important factors in structuring vegetation communities. Studies in many ecosystems have focussed on competition; however, facilitation has often been found to outweigh competition under harsh environmental conditions. The balance between positive and negative species interactions is known to shift along spatial, temporal and environmental gradients and thus is likely to be affected by climate change. Winter temperature and precipitation patterns in Interior Alaska are rapidly changing and could lead to warmer winters with a shallow, early melting snow cover in the near future. We conducted snow manipulation and neighbour removal experiments to test whether the relative importance of positive and negative species interactions differs between three winter climate scenarios in a subarctic tundra community. In plots with ambient, manually advanced or delayed snowmelt, we assessed the relative importance of neighbours for survival, phenology, growth and reproduction of two dwarf shrub species. Under ambient conditions and after delayed snowmelt, positive and negative neighbour effects were generally balanced, but when snowmelt was advanced we found overall facilitative neighbour effects on survival, phenology, growth and reproduction of Empetrum nigrum, the earlier developing of the two target species. As earlier snowmelt was correlated with colder spring temperatures and a higher number of frosts, we conclude that plants experienced harsher environmental conditions after early snowmelt and that neighbours could have played an important role in ameliorating the physical environment at the beginning of the growing season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号