首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temple HJ  Hoffman JI  Amos W 《Molecular ecology》2006,15(11):3449-3458
Dispersal is a fundamental process influencing evolution, social behaviour, and the long-term persistence of populations. We use both observational and genetic data to investigate dispersal, kin-clustering and intergroup relatedness in the white-breasted thrasher, Ramphocinclus brachyurus, a cooperatively breeding bird that is globally endangered. Mark-resighting data suggested sex-biased dispersal, with females dispersing over greater distances while males remained philopatric. Accordingly, spatial autocorrelation analysis showed highly significant fine-scale genetic structure among males, but not among females. This fine-scale genetic structuring of the male population resulted in very high levels of relatedness between dominant males at neighbouring nests, similar to that seen within cooperative groups in many species where kin selection is cited as a cause of cooperation. By implication, between-group as well as within-group cooperation may be important, potentially creating a feedback loop in which short-distance dispersal by males leads to the formation of male kin clusters that in turn facilitate nepotistic interactions and favour further local recruitment. The strength of spatial autocorrelation, as measured by the autocorrelation coefficient, r, was approximately two to three times greater than that reported in previous studies of animals. Relatively short dispersal distances by both males and females may have a negative impact on the white-breasted thrasher's ability to colonize new areas, and may influence the long-term persistence of isolated populations. This should be taken into account when designating protected areas or selecting sites for habitat restoration.  相似文献   

2.
Anthropogenic habitat fragmentation — ubiquitous in modern ecosystems — has strong impacts on gene flow and genetic population structure. Reptiles may be particularly susceptible to the effects of fragmentation because of their extreme sensitivity to environmental conditions and limited dispersal. We investigate fine-scale spatial genetic structure, individual relatedness, and sex-biased dispersal in a large population of a long-lived reptile (tuatara, Sphenodon punctatus) on a recently fragmented island. We genotyped individuals from remnant forest, regenerating forest, and grassland pasture sites at seven microsatellite loci and found significant genetic structuring (RST = 0.012) across small distances (< 500 m). Isolation by distance was not evident, but rather, genetic distance was weakly correlated with habitat similarity. Only individuals in forest fragments were correctly assignable to their site of origin, and individual pairwise relatedness in one fragment was significantly higher than expected. We did not detect sex-biased dispersal, but natural dispersal patterns may be confounded by fragmentation. Assignment tests showed that reforestation appears to have provided refuges for tuatara from disturbed areas. Our results suggest that fine-scale genetic structuring is driven by recent habitat modification and compounded by the sedentary lifestyle of these long-lived reptiles. Extreme longevity, large population size, simple social structure and random dispersal are not strong enough to counteract the genetic structure caused by a sedentary lifestyle. We suspect that fine-scale spatial genetic structuring could occur in any sedentary species with limited dispersal, making them more susceptible to the effects of fragmentation.  相似文献   

3.
The spatial extent of Sitka black-tailed deer (Odocoileus hemionus sitkensis) populations below the regional scale is relatively unknown, as is dispersal between populations. Here, we use noninvasive samples to genotype 221 Sitka black-tailed deer in three watersheds on Prince of Wales Island, Alaska, separated by a maximum of 44 km, using traditional and spatial genetic approaches. We find that despite geographic proximity, multiple lines of evidence suggest fine-scale genetic structure among the three study sites. The 2 most geographically distant watersheds differed significantly in genetic composition, suggesting an isolation-by-distance pattern. Within study sites, deer exhibited spatial genetic structure within a radius of 1,000 m. Based on a reduced sample of known-sex individuals, females exhibited positive spatial genetic structure within a radius of 500 m but males showed no structure. Moreover, females were more likely to be related to their 5 nearest female neighbors, regardless of distance, than were males. Evidence indicates dispersal by both sexes although it may be more common, or dispersal distances are greater, in males. Nonetheless, analysis of assignment indices and comparison of sex-specific correlograms found no evidence of sex-biased dispersal between watersheds. Patterns of spatial relatedness and connectivity suggest limited dispersal among Sitka black-tailed deer, creating genetic structure on a fine spatial scale, perhaps as small as the watershed.  相似文献   

4.
In this study, we describe patterns of relatedness in Gunnison's prairie dog ( Cynomys gunnisoni ) social groups. Kin selection is often cited as a mechanism for the evolution and maintenance of social groups, and Gunnison's prairie dog females are occasionally described as being strongly philopatric. Overall, randomization tests revealed that females within territorial groups were not more closely related to each other than expected at random. A similar pattern was found among males and between males and females, indicating that there was no sex-biased dispersal occurring in these populations. Ecological variables measured in this study, such as food abundance and food dispersion, were not correlated with relatedness. In addition, territory size and density/m2 did not correlate significantly with relatedness. Although there was variability in the spatial overlap among individuals within groups, there was no indication that relatedness explained this variation. These results suggest that kin selection is not maintaining social groups in these populations, but that competition for access to resources required by both males and females may explain dispersal and social group patterns in these populations.  相似文献   

5.
Sex-biased dispersal is common in many animals, with male-biased dispersal often found in studies of mammals and reptiles, including interpretations of spatial genetic structure, ostensibly as a result of male–male competition and a lack of male parental care. Few studies of sex-biased dispersal have been conducted in turtles, but a handful of studies, in saltwater turtles and in terrestrial turtles, have detected male-biased dispersal as expected. We tested for sex-biased dispersal in the endangered freshwater turtle, the spotted turtle (Clemmys guttata) by investigating fine-scale genetic spatial structure of males and females. We found significant spatial genetic structure in both sexes, but the patterns mimicked each other. Both males and females typically had higher than expected relatedness at distances <25 km, and in many distance classes greater than 25 km, less than expected relatedness. Similar patterns were apparent whether we used only loci in Hardy–Weinberg equilibrium (n = 7) or also included loci with potential null alleles (n = 5). We conclude that, contrary to expectations, sex-biased dispersal is not occurring in this species, possibly related to the reverse sexual dimorphism in this species, with females having brighter colors. We did, however, detect significant spatial genetic structure in males and females, separate and combined, showing philopatry within a genetic patch size of <25 km in C. guttata, which is concerning for an endangered species whose populations are often separated by distances greater than the genetic patch size.  相似文献   

6.
Molecular analysis of dispersal in giant pandas   总被引:1,自引:0,他引:1  
Although dispersal in the giant panda (Ailuropoda melanoleuca) is a demographic mechanism which can potentially counteract the negative effect of habitat fragmentation, little is known about dispersal in this species because of difficulties in observing individuals. Using data from faecal microsatellite genotyping, we compared the spatial distribution of giant pandas in two populations and the proximity of relatives in one key population to infer their dispersal pattern. We conclude that giant pandas exhibit female-biased dispersal because: (i) vAIc (variance of assignment index) for females was significantly larger than for males, suggesting that females comprise both 'local' and 'foreign' genotypes; (ii) the average spatial distance of related female dyads was significantly larger than that of males; (iii) larger r (relatedness), F(ST) (genetic variance among populations) and mAIc (mean of assignment index) values were found in males using the software FSTAT, although the differences were not significant; (iv) males set up territories neighbouring to their birth place; (v) significant population structure using microsatellites with a concomitant lack of mitochondrial structure was found in a previous study, possibly indicating more extensive female dispersal; and (vi) female-biased dispersal was strongly supported by evidence from concomitant ecological studies. Considering previous ecological data and life-history characteristics of the giant panda, female-biased dispersal is most likely to be due to competition for birth dens among females, inbreeding avoidance and enhancing inclusive fitness among related males.  相似文献   

7.
Little genetic information is available to evaluate hypotheses concerning the parameters that affect population genetic structure in primate taxa that exhibit interspecific variation in social systems, such as squirrel monkeys (Saimiri). Here, we used genetic data to assess dispersal patterns, kin structure, and preferential association with same-sex kin in a wild population of Saimiri sciureus macrodon. We also analyzed behavioral data to assess whether individuals that maintain shorter interindividual distances show increased insect foraging success. If there was greater male than female dispersal, then we expected mean pairwise relatedness, F ST values, and intragroup mean corrected assignment indices to be greater among adult females than among adult males. We also expected matrices of pairwise affinity indices (PAIs) for “association” (time spent ≤5 m) and “proximity” (time spent ≤10 m) among female dyads to positively correlate with a matrix of female pairwise relatedness. Not only did we find support for female philopatry, but we also found significant positive relationships between the relatedness matrix and each of the PAI matrices: females were more likely to be associated with (and proximal to) close female relatives than more distant relatives or unrelated individuals. Foraging analyses revealed that females had higher insect capture rates than males, and this sex difference may be related to a smaller mean interindividual distance among closely related female group members. Our result shows how estimates of genetic relatedness are useful for testing predictions regarding the evolution of sex-biased dispersal patterns, as well as potential relationships between kin-biased social behaviors and foraging success.  相似文献   

8.
Philopatry and sex-biased dispersal have a strong influence on population genetic structure, so the study of species dispersal patterns and evolutionary mechanisms shaping them are of great interest. Particularly nongregarious mammalian species present an underexplored field of study: despite their lower levels of sociality compared to group-living species, interactions among individuals do occur, providing opportunities for cryptic kin selection. Among the least gregarious primates are orang-utans (genus: Pongo), in which preferential associations among females have nevertheless been observed, but for which the presence of kin structures was so far unresolved because of the equivocal results of previous genetic studies. To clarify relatedness and dispersal patterns in orang-utans, we examined the largest longitudinal set of individuals with combined genetic, spatial and behavioural data. We found that males had significantly higher mitochondrial DNA (mtDNA) variation and more unique haplotypes, thus underscoring their different maternal ancestries compared to females. Moreover, pedigree reconstruction based on 24 highly polymorphic microsatellite markers and mtDNA haplotypes demonstrated the presence of three matrilineal clusters of generally highly related females with substantially overlapping ranges. In orang-utans and possibly other nongregarious species, comparing average biparental relatedness (r) of males and females to infer sex-biased dispersal is extremely problematic. This is because the opportunistic sampling regime frequently employed in nongregarious species, combined with overlapping space use of distinct matrilineal clusters, leads to a strong downward bias when mtDNA lineage membership is ignored. Thus, in nongregarious species, correct inferences of dispersal can only be achieved by combining several genetic approaches with detailed spatial information.  相似文献   

9.
The local resource competition hypothesis and the local mate competition hypothesis were developed based on avian and mammalian systems to explain sex-biased dispersal. Most avian species show a female bias in dispersal, ostensibly due to resource defence, and most mammals show a male bias, ostensibly due to male-male competition. These findings confound phylogeny with mating strategy; little is known about sex-biased dispersal in other taxa. Resource defence and male-male competition are both intense in Plethodon cinereus, a direct-developing salamander, so we tested whether sex-biased dispersal in this amphibian is consistent with the local resource competition hypothesis (female-biased) or the local mate competition hypothesis (male-biased). Using fine-scale genetic spatial autocorrelation analyses, we found that females were philopatric, showing significant positive genetic structure in the shortest distance classes, with stronger patterns apparent when only territorial females were tested. Males showed no spatial genetic structure over the shortest distances. Mark-recapture observations of P. cinereus over 5 years were consistent with the genetic data: males dispersed farther than females during natal dispersal and 44% of females were recaptured within 1 m of their juvenile locations. We conclude that, in this population of a direct-developing amphibian, females are philopatric and dispersal is male-biased, consistent with the local mate competition hypothesis.  相似文献   

10.
In lekking species, males cluster on specific areas for display (the leks) and females generally prefer to copulate with males on large aggregations. The maintenance of leks in which only a few males reproduce might be explained if subordinate males gain indirect fitness benefits. By joining a lek on which relatives are displaying, subordinates might attract more females to the lek thereby increasing the mating opportunities of their kin. In black grouse, a genetic structure among leks has previously been found suggesting that relatives could display together. Using 11 microsatellite loci, we extended this result by testing for the presence of kin structures in nine black grouse leks (101 males). The genetic differentiation among flocks was higher in males than in females, suggesting female-biased dispersal and male philopatry. Because of this genetic structure, males were more related within than among leks. However, the mean relatedness within each lek hardly differed from zero. The lekking males were not more related than random assortments of males from the winter flocks and there were no kin clusters within leks. Thus, black grouse males do not choose to display with and close to relatives. Male philopatry alone was not sufficient to induce elevated levels of relatedness on the leks either because of male partial dispersal or a rapid turnover of the successful males. The indirect fitness benefits associated with males' settlement decision are probably limited compared to the direct benefits of joining large aggregations such as increased current and future mating opportunities.  相似文献   

11.
African Great Lake cichlid populations are divided into thousands of genetic subpopulations. The low gene flow between these subpopulations is thought to result from high degrees of natal philopatry, heavy predation pressure, and a patchy distribution of preferred habitats. While predation pressure and habitat distribution are fairly straightforward to assess, data on dispersal distances and rates are scarce. In fishes, direct observations of dispersal events are unlikely, but dispersal can be studied using molecular markers. Using seven microsatellite loci, we examined dispersal in the cooperatively breeding cichlid fish, Neolamprologus pulcher. As this species is found in well-defined groups clustered into subpopulations, we could assess dispersal on a narrow (within subpopulation) and broad (between subpopulation) scale. While fish were generally more related to others in their own subpopulation than they were to fish from other subpopulations, large males diverged from this pattern. Large males were more related to other large males from different subpopulations than they were to large males from their own subpopulation, suggesting more frequent dispersal by large males. Across subpopulations, relatedness between large males was higher than the relatedness among large females; this pattern was not detected in small males and small females. Within a subpopulation, individuals appeared to be preferentially moving away from relatives, and movement was unrestricted by the physical distance between groups. Our results highlight the importance of examining multiple spatial scales when studying individual dispersal biases.  相似文献   

12.
Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F ST estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F ST values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.  相似文献   

13.
Abstract.— The objective of this study was to assess breeding and dispersal patterns of both males and females in a monogyne (a single queen per colony) population of ants. Monogyny is commonly associated with extensive nuptial flights, presumably leading to considerable gene flow over large areas. Opposite to these expectations we found evidence of both inbreeding and sex-biased gene flow in a monogyne population of Formica exsecta . We found a significant degree of population subdivision at a local scale (within islands) for queens (females heading established colonies) and workers, but not for colony fathers (the males mated to the colony queens). However, we found little evidence of population subdivision at a larger scale (among islands). More conclusive support for sex-biased gene flow comes from the analysis of isolation by distance on the largest island, and from assignment tests revealing differences in female and male philopatry. The genetic similarity between pairs of queens decreased significantly when geographical distance increased, demonstrating limited dispersal and isolation by distance in queens. By contrast, we found no such pattern for colony fathers. Furthermore, a significantly greater fraction of colony queens were assigned as having originated from the population of residence, as compared to colony fathers. Inbreeding coefficients were significantly positive for workers, but not for mother queens. The queen-male relatedness coefficient of 0.23 (regression relatedness) indicates that mating occurs between fairly close relatives. These results suggest that some monogyne species of ants have complex dispersal and mating systems that can result in genetic isolation by distance over small geographical scales. More generally, this study also highlights the importance of identifying the relevant scale in analyses of population structure and dispersal.  相似文献   

14.
Banks SC  Peakall R 《Molecular ecology》2012,21(9):2092-2105
Sex-biased dispersal is expected to generate differences in the fine-scale genetic structure of males and females. Therefore, spatial analyses of multilocus genotypes may offer a powerful approach for detecting sex-biased dispersal in natural populations. However, the effects of sex-biased dispersal on fine-scale genetic structure have not been explored. We used simulations and multilocus spatial autocorrelation analysis to investigate how sex-biased dispersal influences fine-scale genetic structure. We evaluated three statistical tests for detecting sex-biased dispersal: bootstrap confidence intervals about autocorrelation r values and recently developed heterogeneity tests at the distance class and whole correlogram levels. Even modest sex bias in dispersal resulted in significantly different fine-scale spatial autocorrelation patterns between the sexes. This was particularly evident when dispersal was strongly restricted in the less-dispersing sex (mean distance <200 m), when differences between the sexes were readily detected over short distances. All tests had high power to detect sex-biased dispersal with large sample sizes (n ≥ 250). However, there was variation in type I error rates among the tests, for which we offer specific recommendations. We found congruence between simulation predictions and empirical data from the agile antechinus, a species that exhibits male-biased dispersal, confirming the power of individual-based genetic analysis to provide insights into asymmetries in male and female dispersal. Our key recommendations for using multilocus spatial autocorrelation analyses to test for sex-biased dispersal are: (i) maximize sample size, not locus number; (ii) concentrate sampling within the scale of positive structure; (iii) evaluate several distance class sizes; (iv) use appropriate methods when combining data from multiple populations; (v) compare the appropriate groups of individuals.  相似文献   

15.
Yue GH  Xia JH  Liu F  Lin G 《PloS one》2012,7(6):e37976
Movement of individuals influences individual reproductive success, fitness, genetic diversity and relationships among individuals within populations and gene exchange among populations. Competition between males or females for mating opportunities and/or local resources predicts a female bias in taxa with monogamous mating systems and a male-biased dispersal in polygynous species. In birds and mammals, the patterns of dispersal between sexes are well explored, while dispersal patterns in protandrous hermaphroditic fish species have not been studied. We collected 549 adult individuals of Asian seabass (Lates calcarifer) from four locations in the South China Sea. To assess the difference in patterns of dispersal between sexes, we genotyped all individuals with 18 microsatellites. Significant genetic differentiation was detected among and within sampling locations. The parameters of population structure (F(ST)), relatedness (r) and the mean assignment index (mAIC), in combination with data on tagging-recapture, supplied strong evidences for female-biased dispersal in the Asian seabass. This result contradicts our initial hypothesis of no sex difference in dispersal. We suggest that inbreeding avoidance of females, female mate choice under the condition of low mate competition among males, and male resource competition create a female-biased dispersal. The bigger body size of females may be a cause of the female-biased movement. Studies of dispersal using data from DNA markers and tagging-recapture in hermaphroditic fish species could enhance our understanding of patterns of dispersal in fish.  相似文献   

16.
We present a microgeographic analysis of mitochondrial DNA (mtDNA) in Bechstein's bats using three sources of control region sequence variability, including a novel mtDNA microsatellite, to assess individual relatedness both within and among 10 maternity colonies. Comparison of marker variability among 268 adult females revealed little genetic variability within each colony. However, most colonies were clearly distinguished by colony-specific mitochondrial haplotypes (total n = 28). Low intracolony variability and strong haplotype segregation among colonies, was reflected by an extraordinary high FST of 0.68, indicating a very low intercolony dispersal rate of approximately one female in five generations. Haplotype distribution among 18 solitary males showed that males frequently disperse between colony locations, indicating the absence of dispersal barriers. Bechstein's bat maternity colonies are thus closed groups that comprise 20-40 females probably belonging to only one or, at most, two matrilines. The genetic population structure of Bechstein's bats is in agreement with the hypothesis that females seek familiar and, at least, partially related cooperation partners for raising their young. Alternatively strong philopatry might reflect the importance of profound roost or habitat knowledge for successful reproduction in female Bechstein's bats.  相似文献   

17.
In a population of the monogynous, polyandrous ant Cataglyphis cursor , we analysed the spatial genetic structure of queens, colony fathers and workers at a microgeographical scale to infer the extent of sex-biased dispersal and to assess the impact of limited dispersal on the patterns of relatedness within the colony. To this end, four microsatellite markers were scored for the queen and an average of 26 workers from each of 35 mapped colonies. We used pair-wise kinship coefficients between all pairs of genotypes, including the reconstructed colony father genotypes (1) to test and quantify isolation by distance patterns within each sex or caste through the analysis of kinship–distance curves, and (2) to compute the average relatedness between categories of colony members. The kinship–distance curve was much steeper for colony queens than colony fathers, indicating male-biased dispersal. However, colony fathers also displayed a non-random spatial genetic structure, so that even males show some dispersal limitation at the scale of the population, which extends over less than 250 m. The degree of relatedness between the different sexes and castes of colonies was well predicted from the number of mates per queen and the inbreeding of queens, and the impact of limited dispersal was very weak at this scale of observation. We discuss the interest of kinship–distance curves to assess sex-biased dispersal on a local scale and we compare our results with large-scale analyses of genetic structure in Cataglyphis cursor and other monogynous ant species.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 465–473.  相似文献   

18.
In species with low levels of dispersal the chance of closely related individuals breeding may be a potential problem; sex-biased dispersal is a mechanism that may decrease the possibility of cosanguineous mating. Fragmentation of the habitat in which a species lives may affect mechanisms such as sex-biased dispersal, which may in turn exacerbate more direct effects of fragmentation such as decreasing population size that may lead to inbreeding depression. Relatedness statistics calculated using microsatellite DNA data showed that rainforest fragmentation has had an effect on the patterns of dispersal in the prickly forest skink (Gnypetoscincus queenslandiae), a rainforest endemic of the Wet Tropics of north eastern Australia. A lower level of relatedness was found in fragments compared to continuous forest sites due to a significantly lower level of pairwise relatedness between males in rainforest fragments. The pattern of genetic relatedness between sexes indicates the presence of male-biased dispersal in this species, with a stronger pattern detected in populations in rainforest fragments. Male prickly forest skinks may have to move further in fragmented habitat in order to find mates or suitable habitat logs.  相似文献   

19.
Complex sex-biased dispersal patterns often characterize social-group-living species and may ultimately drive patterns of cooperation and competition within and among groups. This study investigates whether observational data or genetic data alone can elucidate the potentially complex dispersal patterns of social-group-living black and white colobus monkeys ( Colobus guereza , 'guerezas'), or whether combining both data types provides novel insights. We employed long-term observation of eight neighbouring guereza groups in Kibale National Park, Uganda, as well as microsatellite genotyping of these and two other neighbouring groups. We created a statistical model to examine the observational data and used dyadic relatedness values within and among groups to analyse the genetic data. Analyses of observational and genetic data both supported the conclusion that males typically disperse from their natal groups and often transfer into nearby groups and probably beyond. Both data types also supported the conclusion that females are more philopatric than males but provided somewhat conflicting evidence about the extent of female philopatry. Observational data suggested that female dispersal is rare or nonexistent and transfers into neighbouring groups do not occur, but genetic data revealed numerous pairs of closely related adult females among neighbouring groups. Only by combining both data types were we able to understand the complexity of sex-biased dispersal patterns in guerezas and the processes that could explain our seemingly conflicting results. We suggest that the data are compatible with a scenario of group dissolution prior to the start of this study, followed by female transfers into different neighbouring groups.  相似文献   

20.
Inbreeding depression, asymmetries in costs or benefits of dispersal, and the mating system have been identified as potential factors underlying the evolution of sex-biased dispersal. We use individual-based simulations to explore how the mating system and demographic stochasticity influence the evolution of sex-specific dispersal in a metapopulation with females competing over breeding sites, and males over mating opportunities. Comparison of simulation results for random mating with those for a harem system (locally, a single male sires all offspring) reveal that even extreme variance in local male reproductive success (extreme male competition) does not induce male-biased dispersal. The latter evolves if the between-patch variance in reproductive success is larger for males than females. This can emerge due to demographic stochasticity if the habitat patches are small. More generally, members of a group of individuals experiencing higher spatio-temporal variance in fitness expectations may evolve to disperse with greater probability than others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号