首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the simplest molecular models at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of the theory it has been shown for the first time that in addition to traditional incorporational errors caused by facilitated (compared with the canonical DNA bases cytosine (Cyt)) tautomerization of 6-(2-deoxy-beta-D-ribofuranosyl)-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-7-one (DCyt), this mutagen causes the replication errors, increasing one million times the population of mispair Gua.DCyt* (asterisk marked mutagenic tautomer) as compared with mispair Gua.Cyt*. It is also proved that DCyt in addition to traditional incorporational errors also induces similar errors by an additional mechanism - due to a facilitated tautomerization of the wobble base pair Ade.DCyt (compared to the same pair Ade.Cyt) to a mispair Ade.DCyt* which is quasirisomorphic Watson-Crick base pair. Moreover, the obtained results allowed interpreting non-inconsistently the existing experimental NMR data.  相似文献   

2.
Interactions of 9-methylguanine (m9Gua) with carboxylate ion of acetic acid (CH3COO-) and Na+ were studied by 1H NMR spectroscopy and ab initio quantum chemical calculations of the B3LYP/6-31++G(d,p) and B3LYP/6-311++G(d,p) levels of theory. Changes in the m9Gua 1H NMR spectrum in the presence of the equimolar amount of sodium acetate (NaAc), which in anhydrous DMSO dissociates to CH3COO- and Na+, were interpreted as a consequence of a complex formation of m9Gua in the amino-keto-N1H tautomeric form (m9GuaN1H) with carboxylate ions via two H-bonds involving amino and N1H-imino protons. Quantum chemical calculations of interactions of the m9GuaN1H ground-state tautomer and the m9GuaN3H high energy one with relative energy 20.01 kcal/mol show that the ground state tautomer forms the ground-state complex CH3COO-:mgGuaN1H, by 5.57 kcal/mol more stable than the CH3COO-:m9GuaN3H complex, and coordination of Na+ with the O6 and N7 atoms reduces this energy difference to 2.57 kcal/mol. Such a coordination of Na+ with tautomer m9GuaN3H therewith decreases its relative energy only to 13.31 kcal/mol. Non-additivity of the two ligands contributions to the 8-times reduction of the relative energy of the high energy tautomer in the CH3COO-:m9GuaN3H:Na+(O6,N7) triple complex was concluded, the role of CH3COO- being dominant. Besides, coordination with Na+ resulted in an iminoproton transfer from the base to CH3COO- in the triple complexes of both tautomers, according to calculations in vacuum. Biological significance of the results is noticed.  相似文献   

3.
The biologically important tautomerization of the Hyp·Cyt, Hyp*·Thy and Hyp·Hyp base pairs to the Hyp*·Cyt*, Hyp·Thy* and Hyp*·Hyp* base pairs, respectively, by the double proton transfer (DPT) was comprehensively studied in vacuo and in the continuum with a low dielectric constant (ε?=?4) corresponding to hydrophobic interfaces of protein–nucleic acid interactions by combining theoretical investigations at the B3LYP/6-311++G(d,p) level of QM theory with QTAIM topological analysis. Based on the sweeps of the energetic, electron-topological, geometric and polar parameters, which describe the course of the tautomerization along the intrinsic reaction coordinate (IRC), it was proved that the tautomerization through the DPT is concerted and asynchronous process for the Hyp·Cyt and Hyp*·Thy base pairs, while concerted and synchronous for the Hyp·Hyp homodimer. The continuum with ε?=?4 does not affect qualitatively the course of the tautomerization reaction for all studied complexes. The nine key points along the IRC of the Hyp·Cyt?Hyp*·Cyt* and Hyp*·Thy?Hyp·Thy* tautomerizations and the six key points of the Hyp·Hyp?Hyp*·Hyp* tautomerization have been identified and fully characterized. These key points could be considered as electron-topological “fingerprints” of concerted asynchronous (for Hyp·Cyt and Hyp*·Thy) or synchronous (for Hyp·Hyp) tautomerization process via the DPT. It was found, that in the Hyp*·Cyt*, Hyp·Thy*, Hyp·Hyp and Hyp*·Hyp* base pairs all H-bonds are significantly cooperative and mutually reinforce each other, while the C2H…O2 H-bond in the Hyp·Cyt base pair and the O6H…O4 H-bond in the Hyp*·Thy base pair behave anti-cooperatively, i.e., they become weakened, while two others become strengthened.  相似文献   

4.
In order to gain deeper insight into structure, charge distribution, and energies of A-T base pairs, we have performed quantum chemical ab initio and density functional calculations at the HF (Hartree-Fock) and B3LYP levels with 3-21G*, 6-31G*, 6-31G**, and 6-31++G** basis sets. The calculated donor-acceptor atom distances in the Watson-Crick A-T base pair are in good agreement with the experimental mean values obtained from an analysis of 21 high resolution DNA structures. In addition, for further correction of interaction energies between adenine and thymine, the basis set superposition error (BSSE) associated with the hydrogen bond energy has been computed via the counterpoise method using the individual bases as fragments. In the Watson-Crick A-T base pair there is a good agreement between theory and experimental results. The distances for (N2...H23-N19), (N8-H13...O24), and (C1...O18) are 2.84, 2.94, and 3.63 A, respectively, at B3LYP/6-31G** level, which is in good agreement with experimental results (2.82, 2.98, and 3.52 A). Interaction energy of the Watson-Crick A-T base pair is -13.90 and -10.24 kcal/mol at B3LYP/6-31G** and HF/6-31G** levels, respectively. The interaction energy of model (9) A-T base pair is larger than others, -18.28 and -17.26 kcal/mol, and for model (2) is the smallest value, -13.53 and -13.03 kcal/mol, at B3LYP/6-31G** and B3LYP/6-31++G** levels, respectively. The computed B3LYP/6-31G** bond enthalpies for Watson-Crick A-T pairs of -14.4 kcal/mol agree well with the experimental results of -12.1 kcal/mol deviating by as little as -2.3 kcal/mol. The BSSE of some cases is large (9.85 kcal/mol) and some is quite small (0.6 kcal/mol).  相似文献   

5.
A number of nucleic acid base pairs and complexes between the bases and the amide group of acrylamide have been studied experimentally by using mass spectrometry and theoretically by the method of atom-atom potential function calculations. It has been found from temperature dependencies of peak intensities in mass spectra of m2.2.9(3) Gua.m1Ura, m9 Ade.m1Cyt, m2.2.9(3) Gua.m1Gua.m1Cyt pairs that enthalpy values, delta H, of the complex formation are equal to 14.2 +/- 1.1, 13.5 +/- 1.3 and 16.4 +/- 1.4 kcal/M, respectively, and those of acrylamide with m1.3(2) Ura and m1Thy corresponds to 9.7 +/- 1.0 and 6.8 +/- 0.6 kcal/M. There is a good agreement of the experimental data with calculations when taking into account both the amino-oxo and the amino-hydroxy tautomeric forms of guanine. A combined use of the data allows us to determine the energy, the modes of interaction and the structure of the complexes. The results are discussed in connection with the modelling of molecular structure of biopolymers by the method of classical potential functions, protein-nucleic acids recognition and fidelity of nucleic acids biosynthesis.  相似文献   

6.
The interaction of mono- and divalent metal ions with the nucleic acid base pairs A:T and G:C has been studied using ab initio self-consistent field Hartree-Fock computations with minimal basis sets. Energy-optimized structures of the two base pairs with a final base-base distance of L = 10.35 A have been determined and were further used in calculations on ternary complexes Mn+ - A:B together with previously computed coordination geometries of the cations at adenine (Ade), thymine (Thy), and guanine (Gua). Besides the binding energy of the various metal ions to the base pairs, changes in the stability of the H bonds between Ade and Thy or Gua and Cyt have been determined. Polarization effects of the metal ion on the ligand turned out to increase the binding between complementary bases. Regardless of the metal species, cation binding to Gua N(3) and Thy O(2) leads to a special increase in H-bond stability, whereas binding to Ade N(3) changes the H-bond stability least. Situated in between are the stabilizing effects caused by Gua and Ade N(7) coordination. A remarkable relation between the stability of the H bond and the distance from metal binding site to H bonds was found. This relationship has been rationalized in terms of partial charges of the atoms participating in H bonding, which can reveal the trend in the electrostatic part of total H bond energy. It can be shown that a short distance between coordination site and acceptor hydrogen increases the H-bond strength substantially, while a long distance shows minor effects as supposed. On the other hand, the opposite effect is observed for the influence of the distance between binding site and donor atom. A comparison of our findings with a new model of transition metal ion facilitated rewinding of denatured DNA proposed by S. Miller, D. VanDerveer, and L. Marzilli is given [(1985) J. Am. Chem. Soc. 107, 1048-1055].  相似文献   

7.
The conformational analysis of the DNA structural unit--the nucleotide with thymine base and electroneutral phosphate group at 5'-position-has been carried out with the applied quantum mechanics methods at the MP2/6-311++G(d,p) // B3LYP/6-31G(d,p) theory level. As many as 660 conformations with relative Gibbs energies under standard conditions from 0 to 11.1 kcal/mole have been found. Among them, six conformations are similar to the structure of the nucleotide of AI-DNA, one--to AII- and seven--to the DNA in BI-form. The lowest Gibbs energy among the DNA-like conformations (deltaG = 2.7 kcal/mole) belongs to BI-DNA-like structure. It is shown that the glycoside chemical bond is the most labile one. The role of intramolecular CH...O hydrogen bonds in formation of the 5'-thymidilic acid molecule structure is demonstrated.  相似文献   

8.
Oxanine (Oxa) is a deaminated base lesion derived from guanine in which the N(1)-nitrogen is substituted by oxygen. This work reports the mutagenicity of oxanine as well as oxanine DNA glycosylase (ODG) activities in mammalian systems. Using human DNA polymerase beta, deoxyoxanosine triphosphate is only incorporated opposite cytosine (Cyt). When an oxanine base is in a DNA template, Cyt is efficiently incorporated opposite the template oxanine; however, adenine and thymine are also incorporated opposite Oxa with an efficiency approximately 80% of a Cyt/Oxa (C/O) base pair. Guanine is incorporated opposite Oxa with the least efficiency, 16% compared with cytosine. ODG activity was detected in several mammalian cell extracts. Among the known human DNA glycosylases tested, human alkyladenine glycosylase (AAG) shows ODG activity, whereas hOGG1, hNEIL1, or hNEIL2 did not. ODG activity was detected in spleen cell extracts of wild type age-matched mice, but little activity was observed in that of Aag knock-out mice, confirming that the ODG activity is intrinsic to AAG. Human AAG can excise Oxa from all four Oxa-containing double-stranded base pairs, Cyt/Oxa, Thy/Oxa, Ade/Oxa, and Gua/Oxa, with no preference to base pairing. Surprisingly, AAG can remove Oxa from single-stranded Oxa-containing DNA as well. Indeed, AAG can also remove 1,N(6)-ethenoadenine from single-stranded DNA. This study extends the deaminated base glycosylase activities of AAG to oxanine; thus, AAG is a mammalian enzyme that can act on all three purine deamination bases, hypoxanthine, xanthine, and oxanine.  相似文献   

9.
The formation of water clusters, polyhydrates of nucleotide bases and their associates during simultaneous condensation of water and base molecules in vacuo onto a surface of a needle emitter cooled to 170 K was studied by field ionization mass spectrometry. It was found that different emitter temperatures are characterized by a specific distribution of intensities of cluster currents, depending on the number of water molecules in clusters. These distributions correlate with structural peculiarities and the relative energetics of formation of water clusters, polyhydrates of nucleotide bases and their associates at low temperature. The features observed in mass spectra for clusters m9Ade (H2O)5, m1Ura (H2O)4 and m9Ade m1Ura (H2O)2 are treated as a result of formation of energetically favorable structures stabilized by H-bonded bridges of water molecules. The relative association constants and formation enthalpies of the noncomplementary pairs Ade Cyt, Gua Ura and the associates which model the aminoacid-base complexes m1Ura Gln and m1.3(2)Thy Gln were determined from the temperature dependencies of the intensities of mass spectra peaks in the range 290-320 K.  相似文献   

10.
Nucleotide incorporation and extension opposite N2-ethyl-Gua by DNA polymerase iota was measured and structures of the DNA polymerase iota-N2-ethyl-Gua complex with incoming nucleotides were solved. Efficiency and fidelity of DNA polymerase iota opposite N2-ethyl-Gua was determined by steady state kinetic analysis with Mg2+ or Mn2+ as the activating metal. DNA polymerase iota incorporates dCMP opposite N2-ethyl-Gua and unadducted Gua with similar efficiencies in the presence of Mg2+ and with greater efficiencies in the presence of Mn2+. However, the fidelity of nucleotide incorporation by DNA polymerase iota opposite N2-ethyl-Gua and Gua using Mn2+ is lower relative to that using Mg2+ indicating a metal-dependent effect. DNA polymerase iota extends from the N2-ethyl-Gua:Cyt 3' terminus more efficiently than from the Gua:Cyt base pair. Together these kinetic data indicate that the DNA polymerase iota catalyzed reaction is well suited for N(2)-ethyl-Gua bypass. The structure of DNA polymerase iota with N2-ethyl-Gua at the active site reveals the adducted base in the syn configuration when the correct incoming nucleotide is present. Positioning of the ethyl adduct into the major groove removes potential steric overlap between the adducted template base and the incoming dCTP. Comparing structures of DNA polymerase iota complexed with N2-ethyl-Gua and Gua at the active site suggests movements in the DNA polymerase iota polymerase-associated domain to accommodate the adduct providing direct evidence that DNA polymerase iota efficiently replicates past a minor groove DNA adduct by positioning the adducted base in the syn configuration.  相似文献   

11.
T P Pitner  J D Glickson 《Biochemistry》1975,14(14):3083-3087
Kinetics of internal rotation about the C(6)-N(6) bond of N-6,N-6-dimethyladenine (M2-6A) was investigated by -1H nuclear magnetic resonance line-shape analysis of the methyl resonances (220 MHz). Rates of rotation were determined for M2-6A deuterated at N(1) and for neutral M2-6A. Activation parameters for monodeuterated M2-6A at 22 degrees are Ea = 13.8kcal/mol, log A = 12.6, incrementG++=14.9 kcal/mol, incrementH++ = 13.1 kcal/mol, incrementS++ = minus 5.8 eu; for neutral M2-6A: Ea = 15.5 kcal/mol, log A = 14.9, incrementG++ = 12.6 kcal/mol, incrementH++ = 14.9 kcal/mol, incrementS++ =7.8 eu. Vertical stacking of bases interferes with internal rotation of the dimethylamino group.  相似文献   

12.
The hairpin ribozyme requires functional groups from Ade38 to achieve efficient bond cleavage or ligation. To identify molecular features that contribute to catalysis, structures of position 38 base variants 2,6-diaminopurine (DAP), 2-aminopurine (AP), cytosine (Cyt), and guanine (Gua) were determined between 2.2 and 2.8 A resolution. For each variant, two substrate modifications were compared: (1) a 2'-O-methyl-substituent at Ade-1 was used in lieu of the nucleophile to mimic the precatalytic state, and (2) a 3'-deoxy-2',5'-phosphodiester linkage between Ade-1 and Gua+1 was used to mimic a reaction-intermediate conformation. While the global fold of each variant remained intact, the results revealed the importance of Ade38 N1 and N6 groups. Absence of N6 resulting from AP38 coincided with failure to localize the precatalytic scissile phosphate. Cyt38 severely impaired catalysis in a prior study, and its structures here indicated an anti base conformation that sequesters the imino moiety from the scissile bond. Gua38 was shown to be even more deleterious to activity. Although the precatalytic structure was nominally affected, the reaction-intermediate conformation indicated a severe electrostatic clash between the Gua38 keto oxygen and the pro-Rp oxygen of the scissile bond. Overall, position 38 modifications solved in the presence of 2'-OMe Ade-1 deviated from in-line geometry, whereas variants with a 2',5' linkage exhibited S-turn destabilization, as well as base conformational changes from syn to anti. These findings demonstrate the importance of the Ade38 Watson-Crick face in attaining a reaction-intermediate state and the sensitivity of the RNA fold to restructuring when electrostatic and shape features fail to complement.  相似文献   

13.
Comprehensive conformational analysis of the biologically active nucleoside 2',3'-didehydro-2',3'-dideoxyaguanosine (d4G) has been performed at the MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p) level of theory. The energetic, geometrical and polar characteristics of twenty d4G conformers as well as their conformational equilibrium were investigated. The electron density topological analysis allowed us to establish that the d4G molecule is stabilized by nine types of intramolecular interactions: O5'H...N3, O5'H...C8, C8H...O5', C2'H...N3, C5'H1...N3, C5'H2...N3, C8H...H1C5', C8H...H2'C5' and N2H1...O5'. The obtained results of conformational analysis permit us to think that d4G may be a terminator of the DNA chain synthesis in the 5'-3' direction. Thus it can be inferred that d4G competes with canonical 2'-deoxyaguanosine in binding an active site of the corresponding enzyme.  相似文献   

14.
Hydrogen-bonding effects in the crystalline structure of N-acetyl-valine, NAV, were studied using the (14)N and (2)H quadrupole coupling tensors via density functional theory. The calculations were carried out at the B3LYP level with the 6-311++G(d,p) and 6-311+G(d) basis sets. The theoretical quadrupole coupling components and their relative orientation in the molecular frame axes at the nitrogen site are compared to experimental values. This nucleus is involved in a rather strong intermolecular O=CNH...O=CNH hydrogen bond, r(N-H...O(1))=2.04 A and angleN-H...O(1)=171.53 degrees. A reasonably good agreement between the experimentally obtained (2)H quadrupole coupling tensors and the B3LYP/6-311++G(d,p) calculations is achievable only in molecular model where a complete hydrogen-bonding network is considered.  相似文献   

15.
It was shown earlier, from database analysis, model building studies, and molecular dynamics simulations that formation of cross-strand bifurcated or Extra Watson-Crick hydrogen (EWC) bonds between successive base pairs may lead to extra rigidity to DNA double helices of certain sequences. The strengths of these hydrogen bonds are debatable, however, as they do not have standard linear geometry criterion. We have therefore carried out detailed ab initio quantum chemical studies using RHF/6-31G(2d,2p) and B3LYP/6-31G(2p,2d) basis sets to determine strengths of several bent hydrogen bonds with different donor and acceptors. Interaction energy calculations, corrected for the basis set superposition errors, suggest that N-H...O type bent EWC hydrogen bonds are possible along same strands or across the strands between successive base pairs, leading to significant stability (ca. 4-9 kcal/mol). The N-H...N and C-H...O type interactions, however, are not so stabilizing. Hence, consideration of EWC N-H...O H-bonds can lead to a better understanding of DNA sequence directed structural features.  相似文献   

16.
Comprehensive conformational analysis of the biologically active nucleoside 2',3'-didehydro-2',3'-dideoxyadenosine (d4A) has been performed at the MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p) level of theory. The energetic, geometrical and polar characteristics of twenty one d4A conformers as well as their conformational equilibrium were investigated. The electron density topological analysis allowed us to establish that the d4A molecule is stabilized by eight types of intramolecular interactions: O5'H...N3, O5'H...C8, C8H...O5', C2'H...N3, C5'H1...N3, C5'H2...N3 Ta C8H...H1/2C5'. The obtained results of conformational analysis lead us to think that d4A may be a terminator of the DNA chain sythesis in the 5'-3' direction. Thus it can be inferred that d4A competes with canonical 2'-deoxyadenosine in binding an active site of the corresponding enzyme.  相似文献   

17.
Model building and molecular mechanics and dynamics calculations have been performed on a number of complexes of the post-activated form of the neocarzinostatin chromophore (NCS) with the B-DNA oligomer 5'GAGCG:5'CGCTC. Stable structures with the naphthoic acid moiety intercalated at all base pairs can be constructed. The observed bistranded lesions consisting of an abasic site at the Cyt residue in AGC and a direct break at the Thy residue on the complementary strand can be explained by assuming that NCS in the (R,R) form intercalates between the Ade2-Thy9/Gua3-Cyt8 base step with its 'diradical' core oriented towards the 3'-end of the (+) strand. Sites at C5', C4' and C1' in the minor groove are within a short enough distance from the two radical centers on NCS to permit hydrogen atom abstraction and the formation of the bistranded lesions. Strand cleavage at Thy9 may occur as a single lesion if NCS is intercalated into the Gua3-Cyt8/Cyt4-Gua7 base step with its active core towards the 3'-end of the (-) strand. The results are analyzed, and the utility and limitations of this type of model building are discussed.  相似文献   

18.
Exhaustive conformational analysis of the 5'-deoxyadenylic acid molecule, has been carried out by the quantum-mechanical density functional theory method at the MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p) theory level. As many as 726 of its conformations have been revealed with the relative gas phase Gibbs energies under standard conditions from 0 to 12.1 kcal/mole. It has been shown, that the energetically most favorable conformation has north sugar puckering and synorientation of the nitrogenous base and is stabilized by intramolecular O(p1)H(p1)-N3 and O3'H-O(p) hydrogen bonds. Four conformations have been shown to have their geometry similar to that of AI-DNA and four - of BI-DNA. One conformer of the 5'-deoxyadenylic acid molecule is similar to its sodium salt hexahydrate structure in crystalline state resolved by the X-ray diffraction method and taken from literature. It is shown that effective charges of C4' and C5' atoms are the most sensitive to the molecule conformation ones. The role of the intramolecular OH-N hydrogen bonds in formation of the 5'-deoxyadenylic acid molecule structure has been demonstrated.  相似文献   

19.
The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.  相似文献   

20.
It was established for the first time by DFT and MP2 quantum-mechanical (QM) methods either in vacuum, so in the continuum with a low dielectric constant (ε = 4), typical for hydrophobic interfaces of specific protein-nucleic acid interactions, that the repertoire for the tautomerisation of the biologically important adenine·cytosine* (A·C*) mismatched DNA base pair, formed by the amino tautomer of the A and the imino mutagenic tautomer of the C, into the A*·C base mispair (?G = 2.72 kcal?mol?1 obtained at the MP2 level of QM theory in the continuum with ε = 4), formed by the imino mutagenic tautomer of the A and the amino tautomer of the C, proceeds via the asynchronous concerted double proton transfer along two antiparallel H-bonds through the transition state (TSA·C*?A*·C). The limiting stage of the A·C*→A*·C tautomerisation is the final proton transfer along the intermolecular N6H···N4 H-bond. It was found that the A·C*/A*·C DNA base mispairs with Watson–Crick geometry are associated by the N6H?N4/N4H?N6, N3H?N1/N1H?N3 and C2H?O2 H-bonds, respectively, while the TSA·C*?A*·C is joined by the N6–H–N4 covalent bridge and the N1H?N3 and C2H?O2 H-bonds. It was revealed that the A·C*?A*·C tautomerisation is assisted by the true C2H?O2 H-bond, that in contrast to the two others conventional H-bonds exists along the entire intrinsic reaction coordinate (IRC) range herewith becoming stronger at the transition from vacuum to the continuum with ε = 4. To better understand the behavior of the intermolecular H-bonds and base mispairs along the IRC of the A·C*?A*·C tautomerisation, the profiles of their electron-topological, energetical, geometrical, polar and charge characteristics are reported in this study. It was established based on the profiles of the H-bond energies that all three H-bonds are cooperative, mutually strengthening each other. The nine key points, providing a detailed physicochemical picture of the A·C*?A*·C tautomerisation, were revealed and thoroughly examined along the IRC. It was shown that the A*·C base mispair with the population ~1 % obtained at the MP2 level of QM theory in the continuum with ε = 4 is thermodynamically and dynamically stable structure. Its lifetime was calculated to be 5.76·10?10 s at the MP2 level of QM theory in the continuum with ε = 4. This lifetime, from the one side, enables all six low-frequency intermolecular vibrations to develop, but, from the other side, it is by order less than the time (several ns) required for the replication machinery to forcibly dissociate a base pair into the monomers during DNA replication. This means that the A*·C base mispair “slips away from the hands” of the replication machinery into the A·C* mismatched base pair. Consequently, the authors came to the conclusion that exactly the A·C* base mispair is an active player of the point mutational events and is effectively dissociated by the replication machinery into the A and C* monomers in contrast to the A*·C base mispair, playing the mediated role of a provider of the A·C* base mispair in DNA that is synthesised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号