共查询到20条相似文献,搜索用时 15 毫秒
1.
Agata Jacewicz Lidia Chico Paul Smith Beate Schwer Stewart Shuman 《RNA (New York, N.Y.)》2015,21(3):401-414
Saccharomyces cerevisiae Msl5 orchestrates spliceosome assembly by binding the intron branchpoint sequence 5′-UACUAAC and, with its heterodimer partner protein Mud2, establishing cross intron-bridging interactions with the U1 snRNP at the 5′ splice site. Here we define the central Msl5 KH-QUA2 domain as sufficient for branchpoint RNA recognition. The 1.8 Å crystal structure of Msl5-(KH-QUA2) bound to the branchpoint highlights an extensive network of direct and water-mediated protein–RNA and intra-RNA atomic contacts at the interface that illuminate how Msl5 recognizes each nucleobase of the UACUAAC element. The Msl5 structure rationalizes a large body of mutational data and inspires new functional studies herein, which reveal how perturbations of the Msl5·RNA interface impede the splicing of specific yeast pre-mRNAs. We also identify interfacial mutations in Msl5 that bypass the essentiality of Sub2, a DExD-box ATPase implicated in displacing Msl5 from the branchpoint in exchange for the U2 snRNP. These studies establish an atomic resolution framework for understanding splice site selection and early spliceosome dynamics. 相似文献
2.
L P Woudt J J van den Heuvel M M van Raamsdonk-Duin W H Mager R J Planta 《Nucleic acids research》1985,13(21):7729-7739
3.
S. cerevisae tRNA introns interrupt the gene at a constant position in the anticodon loop. Pre-tRNAs are matured by an endonuclease and a ligase. The endonuclease alone can accurately release the intron from the pre-tRNA. Here, we investigate the mechanism of splice site selection by the endonuclease. We propose that it initially recognizes features in the mature domain common to all tRNAs. Once positioned on the enzyme, the splice sites are recognizable because they are a fixed distance from the mature domain. To test this hypothesis, we developed a system for synthesizing pre-tRNA by bacteriophage T7 RNA polymerase. To search for recognition sites, we made several mutations. Mutations of C56 and U8 strongly affect endonuclease recognition of pre-tRNA. With insertion and deletion mutations, we show that the anticodon stem determines splicing specificity. The sequence and structure of the intron are not strong determinants of splice site selection. 相似文献
4.
Molecular consequences of specific intron mutations on yeast mRNA splicing in vivo and in vitro 总被引:49,自引:0,他引:49
We have altered the TACTAAC sequence in the yeast CYH2m gene intron to TACTACC. This mutation changes the nucleotide at the normal position of the branch in intron RNA lariats produced during pre-mRNA splicing, and it prevents splicing in vivo. In a yeast pre-mRNA splicing system, CYH2m pre-mRNA carrying the TACTACC mutation is not specifically cut or rearranged in any way. Substitution of an A for the first G of the CYH2m intron, converting the highly conserved GTATGT 5' splice site sequence to ATATGT, also blocks intron excision in vivo and in vitro: pre-mRNA carrying this mutation was still cut normally at the mutant 5' splice site in vitro, to give authentic exon 1 and an intron-exon 2 lariat RNA with an A-A 2'-5' phosphodiester linkage at the branch point. This lariat RNA is a dead-end product. The subsequent cleavage at the 3' splice site is therefore sensitive to the sequence of the 5' end of the intron attached at the branch point. 相似文献
5.
The Cbp2 protein is encoded in the nucleus and is required for the splicing of the terminal intron of the mitochondrial COB gene in Saccharomyces cerevisiae . Using a yeast strain that lacks this intron but contains a related group I intron in the precursor of the large ribosomal RNA, we have determined that Cbp2 protein is also required for the normal accumulation of 21S ribosomal RNA in vivo . Such strains bearing a deletion of the CBP2 gene adapt slowly to growth in glycerol/ethanol media implying a defect in derepression. At physiologic concentrations of magnesium, Cbp2 stimulates the splicing of the ribosomal RNA intron in vitro . Nevertheless, Cbp2 is not essential for splicing of this intron in mitochondria nor is it required in vitro at magnesium concentrations >5 mM. A similar intron exists in the large ribosomal RNA (LSU) gene of Saccharomyces douglasii . This intron does need Cbp2 for catalytic activity in physiologic magnesium. Similarities between the LSU introns and COB intron 5 suggest that Cbp2 may recognize conserved elements of the these two introns, and protein-induced UV crosslinks occur in similar sites in the substrate and catalytic domains of the RNA precursors. 相似文献
6.
7.
8.
9.
Pre-mRNA splicing in yeast 总被引:82,自引:0,他引:82
Splicing of introns from nuclear precursor messenger RNAs (pre-mRNAs) occurs in all eukaryotes. Two aspects of the splicing mechanism need to be understood: how intron sequences are recognized and aligned and how splicing is catalysed. Recent genetic and biochemical studies in the simple eukaryote Saccharomyces cerevisiae are revealing some of the features of the splicing mechanism. 相似文献
10.
11.
CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains 总被引:4,自引:0,他引:4
下载免费PDF全文

Group II introns are ribozymes that catalyze a splicing reaction with the same chemical steps as spliceosome-mediated splicing. Many group II introns have lost the capacity to self-splice while acquiring compensatory interactions with host-derived protein cofactors. Degenerate group II introns are particularly abundant in the organellar genomes of plants, where their requirement for nuclear-encoded splicing factors provides a means for the integration of nuclear and organellar functions. We present a biochemical analysis of the interactions between a nuclear-encoded group II splicing factor and its chloroplast intron target. The maize (Zea mays) protein Chloroplast RNA Splicing 1 (CRS1) is required specifically for the splicing of the group II intron in the chloroplast atpF gene and belongs to a plant-specific protein family defined by a recently recognized RNA binding domain, the CRM domain. We show that CRS1's specificity for the atpF intron in vivo can be explained by CRS1's intrinsic RNA binding properties. CRS1 binds in vitro with high affinity and specificity to atpF intron RNA and does so through the recognition of elements in intron domains I and IV. These binding sites are not conserved in other group II introns, accounting for CRS1's intron specificity. In the absence of CRS1, the atpF intron has little uniform tertiary structure even at elevated [Mg2+]. CRS1 binding reorganizes the RNA, such that intron elements expected to be at the catalytic core become less accessible to solvent. We conclude that CRS1 promotes the folding of its group II intron target through tight and specific interactions with two peripheral intron segments. 相似文献
12.
A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing 总被引:39,自引:0,他引:39
We previously described a dominant suppressor of the splicing defect conferred by an A----C intron branchpoint mutation in S. cerevisiae. Suppression occurs by increasing the frequency with which the mutant branchpoint is utilized. We have now cloned the genomic region encoding the prp16-1 suppressor function and have demonstrated that PRP16 is essential for viability. A 1071 amino acid open reading frame contains sequence motifs characteristic of an NTP binding fold and further similarities to a superfamily of proteins that includes members with demonstrated RNA-dependent ATPase activity. A single nucleotide change necessary to confer the prp16-1 suppressor phenotype results in a Tyr----Asp substitution near the "A site" consensus for NTP binding proteins. We propose that PRP16 is an excellent candidate for mediating one of the many ATP-requiring steps of spliceosome assembly and that accuracy of branchpoint recognition may be coupled to ATP binding and/or hydrolysis. 相似文献
13.
Group II introns are autocatalytic RNAs which self-splice in vitro. However, in vivo additional protein factors might be involved in the splicing process. We used an affinity chromatography method called 'StreptoTag' to identify group II intron binding proteins from Saccharomyces cerevisiae. This method uses a hybrid RNA consisting of a streptomycin-binding affinity tag and the RNA of interest, which is bound to a streptomycin column and incubated with yeast protein extract. After several washing steps the bound RNPs are eluted by addition of streptomycin. The eluted RNPs are separated and the proteins identified by mass-spectrometric analysis. Using crude extract from yeast in combination with a substructure of the bl1 group II intron (domains IV-VI) we were able to identify four glycolytic enzymes; glucose-6-phosphate isomerase (GPI), 3-phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triosephosphate isomerase (TPI). From these proteins GAPDH increases in vitro splicing of the bl1 group II intron by up to three times. However, in vivo GAPDH is not a group II intron-splicing factor, since it is not localised in yeast mitochondria. Therefore, the observed activity reflects an unexpected property of GAPDH. Band shift experiments and UV cross linking demonstrated the interaction of GAPDH with the group II intron RNA. This novel activity expands the reaction repertoire of GAPDH to a new RNA species. 相似文献
14.
15.
For successful splicing in dicot plants the only recognised intron requirements are 5 and 3 splice sites and AU-rich sequences. We have investigated further the importance of AU-rich elements by analyzing the splicing of an AU-rich antisense intron sequence. Activation of cryptic splice sites on either side of the AU-rich sequence permitted the efficient removal of this essentially non-intron sequence by splicing. This splicing event not only confirms the importance of AU-rich sequences but also has implications for the evolution of interrupted genes and the expression of heterologous genes in transgenic plants. 相似文献
16.
Spatiotemporal regulation of protein function is a key feature of living systems; experimental tools that provide such control are of great utility. Here we report a genetically encoded system for controlling a post-translational process, protein splicing, with light. Studies in Saccharomyces cerevisiae demonstrate that fusion of a photodimerization system from Arabidopsis thaliana to an artificially split intein permits rapid activation of protein splicing to yield a new protein product. 相似文献
17.
18.
19.
20.