首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhadin N  Callender R 《Biochemistry》2011,50(10):1582-1589
Laser-induced temperature jump relaxation spectroscopy was used to probe the effect of osmolytes on the microscopic rate constants of the lactate dehydrogenase-catalyzed reaction. NADH fluorescence and absorption relaxation kinetics were measured for the lactate dehydrogenase (LDH) reaction system in the presence of varying amounts of trimethylamine N-oxide (TMAO), a protein-stabilizing osmolyte, or urea, a protein-destabilizing osmolyte. Trimethylamine N-oxide (TMAO) at a concentration of 1 M strongly increases the rate of hydride transfer, nearly nullifies its activation energy, and also slightly increases the enthalpy of hydride transfer. In 1 M urea, the hydride transfer enthalpy is almost nullified, but the activation energy of the step is not affected significantly. TMAO increases the preference of the closed conformation of the active site loop in the LDH·NAD(+)·lactate complex; urea decreases it. The loop opening rate in the LDH·NADH·pyruvate complex changes its temperature dependence to inverse Arrhenius with TMAO. In this complex, urea accelerates the loop motion, without changing the loop opening enthalpy. A strong, non-Arrhenius decrease in the pyruvate binding rate in the presence of TMAO offers a decrease in the fraction of the open loop, pyruvate binding competent form at higher temperatures. The pyruvate off rate is not affected by urea but decreases with TMAO. Thus, the osmolytes strongly affect the rates and thermodynamics of specific events along the LDH-catalyzed reaction: binding of substrates, loop closure, and the chemical event. Qualitatively, these results can be understood as an osmolyte-induced change in the energy landscape of the protein complexes, shifting the conformational nature of functional substates within the protein ensemble.  相似文献   

2.
Mixtures of organic osmolytes occur in cells of many organisms, raising the question of whether their actions on protein stability are independent or synergistic. To investigate this question it is desirable to develop a system that permits evaluation of the effect of one osmolyte on the efficacy of another to either force-fold or denature a protein. A means of evaluating the efficacy of an osmolyte is provided by its m-value, an experimental quantity that measures the ability of the osmolyte to force a protein to unfold or fold. An experimental system is presented that enables evaluations of the m-values of osmolytes in the presence and absence of a second osmolyte. The experimental system involves use of a marginally stable protein in 10 mM buffer (pH 7, 200 mM salt, and 34 degrees C) that is at the midpoint of its native to denatured transition. These conditions enable determination of m-values for protecting and denaturing osmolytes in the presence and absence of a second osmolyte, permitting assessment of the extent to which the two osmolytes affect each other's efficacy. The two osmolytes investigated in this work are the denaturing osmolyte, urea, and the protecting osmolyte, sarcosine. Results show unequivocally that neither osmolyte alters the efficacy of the other in forcing the protein to fold or unfold-the osmolytes act independently on the protein despite their combined concentrations being in the multi-molar range. These osmolytes avoid altering one another's efficacy at these high concentrations because the number of osmolyte interaction sites on the protein is large and the binding constants are quite small. Consequently, the site occupancies are low enough in number that the two osmolytes neither compete nor cooperate in interacting with the protein.  相似文献   

3.
The properties of a simple model for solvation in mixed solvents are explored in this paper. The model is based on the supposition that solvent replacement is a simple one-for-one substitution reaction at macromolecular sites which are independent of one another. This leads to a new form for the binding polynomial in which all terms are associated with ligand interchange rather than ligand addition. The principal solvent acts as one of the ligands. Thermodynamic analysis then shows that thermodynamic binding (i.e., selective interaction) depends on the properties of K'-1, whereas stoichiometric binding (site occupation) depends on K'. K' is a 'practical' interchange equilibrium constant given by (f3/f1)K, where K is the true equilibrium constant for the interchange of components 3 and 1 on the site and f3 and f4 denote their respective activity coefficients on the mole fraction scale. Values of K' less than unity lead to negative selective interaction. It is selective interaction and not occupation number which determines the thermodynamic effects of solvation. When K' greater than 100 on the mole fraction scale or K' greater than 2 on the molality scale (in water), the differences between stoichiometric binding and selective interaction become less than 1%. The theory of this paper is therefore necessary only for very weak binding constants. When K'-1 is small, large concentrations of the added solvent component are required to produce a thermodynamic effect. Under these circumstances the isotherms for the selective interaction and for the excess (or transfer) free energy are strongly dependent on the behavior of the activity coefficients of both solvent components. Two classes of behavior are described depending on whether the components display positive or negative deviations from Raoult's law. Examples which are discussed are aqueous solutions of urea and guanidinium chloride for positive deviations and of sucrose and glucose for negative deviations. Examination of the few studies which have been reported in the literature shows that most of the qualitative features of the stabilization of proteins by sugars and their destabilization by urea and guanidinium chloride are faithfully represented with the model. This includes maxima in the free energy of stabilization and destabilization, decreased and zero selective interaction at high concentrations, etc. These phenomena had no prior explanation. Deficiencies in the model as a representation of solvation in aqueous solution are discussed in the appendix.  相似文献   

4.
In this work, we examine the hypothesis about how trapped water molecules at the interface between triosephosphate isomerase (TIM) and either of two phosphorylated inhibitors, 2-phosphoglycolate (2PG) or phosphoglycolohydroxamate (PGH), can explain the anomalous highly negative binding heat capacities (ΔCp,b) of both complexes, TIM–2PG and TIM–PGH. We performed fluorimetric titrations of the enzyme with PGH inhibitor under osmotic stress conditions, using various concentrations of either osmolyte: sucrose, ethylene glycol or glycine betaine. We also analyze the binding processes under various stressor concentrations using a novel calorimetric methodology that allows ΔCp,b determinations in single experiments: Multithermal Titration Calorimetry. The binding constant of the TIM–PGH complex decreased gradually with the concentration of all osmolytes, but at diverse extents depending on the osmolyte nature. According to the osmotic stress theory, this decrease indicates that the number of water molecules associated with the enzyme increases with inhibitor binding, i.e. some solvent molecules became trapped. Additionally, the binding heat capacities became less negative at higher osmolyte concentrations, their final values depending on the osmolyte. These effects were also observed in the TIM–2PG complex using sucrose as stressor. Our results strongly suggest that some water molecules became immobilized when the TIM-inhibitor complexes were formed. A computational analysis of the hydration state of the binding site of TIM in both its free state and its complexed form with 2PG or PGH, based on molecular dynamics (MD) simulations in explicit solvent, showed that the binding site effectively immobilized additional water molecules after binding these inhibitors.  相似文献   

5.
6.
Auton M  Bolen DW  Rösgen J 《Proteins》2008,73(4):802-813
Protein stability and solubility depend strongly on the presence of osmolytes, because of the protein preference to be solvated by either water or osmolyte. It has traditionally been assumed that only this relative preference can be measured, and that the individual solvation contributions of water and osmolyte are inaccessible. However, it is possible to determine hydration and osmolyte solvation (osmolation) separately using Kirkwood-Buff theory, and this fact has recently been utilized by several researchers. Here, we provide a thermodynamic assessment of how each surface group on proteins contributes to the overall hydration and osmolation. Our analysis is based on transfer free energy measurements with model-compounds that were previously demonstrated to allow for a very successful prediction of osmolyte-dependent protein stability. When combined with Kirkwood-Buff theory, the Transfer Model provides a space-resolved solvation pattern of the peptide unit, amino acids, and the folding/unfolding equilibrium of proteins in the presence of osmolytes. We find that the major solvation effects on protein side-chains originate from the osmolytes, and that the hydration mostly depends on the size of the side-chain. The peptide backbone unit displays a much more variable hydration in the different osmolyte solutions. Interestingly, the presence of sucrose leads to simultaneous accumulation of both the sugar and water in the vicinity of peptide groups, resulting from a saccharide accumulation that is less than the accumulation of water, a net preferential exclusion. Only the denaturing osmolyte, urea, obeys the classical solvent exchange mechanism in which the preferential interaction with the peptide unit excludes water.  相似文献   

7.
A binding site for novel inhibitors of K15 type (derivatives of perfluoroisopropyldinitrobenzene) with the components of reaction center (RC) of photosystem 2 (PS-2) of higher plants has been investigated. It has been shown that multiple washing the PS-2 submembrane chloroplast fragments (BBY-particles) treated with the K15 inhibitor, including multiple dilution in buffer in the presence of high concentrations of mono- and divalent ions, prolonged (up to 2-5 h) incubation, centrifugation, and subsequent resuspension in buffer deprived of the inhibitor, does not lead to restoration of functional activity of the PS-2. After addition of dithionite, inducing reduction and consequent decomposition of the inhibitor, and subsequent removal of dithionite by washing, the functional activity of PS-2 was completely restored. Incubation in the presence of sodium dodecyl sulfate (SDS), leading to solubilization of the sample to the level of protein components, induced the appearance of a fraction of free K15 retaining the initial inhibitory efficiency. To create a covalent binding of the inhibitor with protein, retained under the conditions of denaturing SDS polyacrylamide gel electrophoresis, the azido-containing analog of K15 (K15-N3) was used. The need for radioactive label for identification of K15 was avoided by the revealed ability of K15-type inhibitors to emit fluorescence, which retained its features under the experimental conditions. With the technique of photoaffinity binding and denaturing SDS-PAGE in the presence of 6 M urea of submembrane chloroplast fragments enriched in PS-2 the D2-polypeptide, an integral component of the reaction center of PS-2, has been shown to be a binding site for K15-type inhibitors. This conclusion is in agreement with a suggestion (put forward in our earlier publications) that K15-type inhibitors are bound to PS-2 reaction center, replacing QA in its binding site. Hence, an agent specifically binding to polypeptide D2 has been found for the first time. The data are compared with information about inhibitory action and binding sites of the known inhibitors of electron transfer in PS-2.  相似文献   

8.
Wu P  Bolen DW 《Proteins》2006,63(2):290-296
Upon addition of protecting osmolyte to an aqueous solution of an intrinsically unstructured protein, spectral observables are often seen to change in a sigmoid fashion as a function of increasing osmolyte concentration. Commonly, such data are analyzed using the linear extrapolation model (LEM), a method that defines a scale from 0%-100% folded species at each osmolyte concentration by means of extending pre- and post-folding baselines into the transition region. Defining the 0%-100% folding scale correctly for each osmolyte is an important part of the analysis, leading to evaluation of the fraction of folded protein existing in the absence of osmolytes. In this study, we used reduced and carboxyamidated RNase T1 (RCAM-T1) as an intrinsically unstructured protein, and determined the thermodynamic stability of RCAM-T1 induced by naturally occurring osmolytes. Because the folded fraction of the protein population determined by experiments of thermal and urea-induced denaturation is nonzero in the absence of osmolytes at 15 degrees C, the commonly used LEM can lead to false values of DeltaG[stackD-->N0] for protein folding due to the arbitrary assumption that the protein is 100% unfolded in the presence of buffer alone. To correct this problem, titration of the protein solution with urea and extrapolating back to zero urea concentration gives the spectral value for 100% denatured protein. With fluorescence as the observable we redefine F/F0 to F/F0extrap = 1.0 and require that the denatured-state baseline have this value as its intercept. By so doing, the 0%-100% scale-corrected DeltaG[D-->N0] values of RCAM-T1 folding in the presence of various osmolytes are then found to be identical, with small error, demonstrating that DeltaG[D-->N0] is independent of the osmolytes used. Such a finding is an important step in validating this quantity derived from the LEM as having the properties expected of an authentic thermodynamic parameter. The rank order of osmolyte efficacies in stabilizing RCAM-T1 is sarcosine > sucrose > sorbitol > proline > betaine > glycerol.  相似文献   

9.
The aquaglyceroporins of Escherichia coli, EcGlpF, and of Plasmodium falciparum, PfAQP, are probably the best characterized members of the solute-conducting aquaporin (AQP) subfamily. Their crystal structures have been elucidated and numerous experimental and theoretical analyses have been conducted. However, opposing reports on their rates of water permeability require clarification. Hence, we expressed EcGlpF and PfAQP in yeast, prepared protoplasts, and compared water and glycerol permeability of both aquaglyceroporins in the presence of different osmolytes, i.e. sucrose, sorbitol, PEG300, and glycerol. We found that water permeability of PfAQP strongly depends on the external osmolyte, with full inhibition by sorbitol, and increasing water permeability when glycerol, PEG300, and sucrose were used. EcGlpF expression did not enhance water permeability over that of non-expressing control protoplasts regardless of the osmolyte. Glycerol permeability of PfAQP was also inhibited by sorbitol, but to a smaller extent, whereas EcGlpF conducted glycerol independently of the osmolyte. Mixtures of glycerol and urea passed PfAQP equally well under isosmotic conditions, whereas under hypertonic conditions in a countercurrent with water, glycerol was clearly preferred over urea. We conclude that PfAQP has high and EcGlpF low water permeability, and explain the inhibiting effect of sorbitol on PfAQP by its binding to the extracellular vestibule. The preference for glycerol under hypertonic conditions implies that in a physiological setting, PfAQP mainly acts as a water/glycerol channel rather than a urea facilitator.  相似文献   

10.
The detailed mechanism of protein folding–unfolding processes with the aid of osmolytes has been a leading topic of discussion over many decades. We have used replica-exchange molecular dynamics simulation to propose the molecular mechanism of interaction of a 20-residue mini-protein with urea and trimethylamine N-oxide (TMAO) that act as denaturing and protecting osmolyte, respectively, in binary osmolyte solutions. Urea is found to exert its action by interacting directly with the protein residues. Temperature tolerance of TMAO’s action is particularly emphasised in this study. At lower range of temperature, TMAO acts as a successful protein protectant. Interestingly, the study discloses the tendency of TMAO molecules to prefer self-association at the protein surface at elevated temperature. A greater number of TMAO molecules in the protein hydration shell at higher temperature is also observed. Dihedral angle principal component analysis and free energy landscape plots sampled all possible conformations adopted by the protein that reveal highly folded behaviour of the protein in pure water and binary TMAO solutions and highly unfolded behaviour in presence of urea.  相似文献   

11.
Felitsky DJ  Record MT 《Biochemistry》2004,43(28):9276-9288
Two thermodynamic models have been developed to interpret the preferential accumulation or exclusion of solutes in the vicinity of biopolymer surface and the effects of these solutes on protein processes. The local-bulk partitioning model treats solute (and water) as partitioning between the region at/or near the protein surface (the local domain) and the bulk solution. The solvent exchange model analyzes a 1:1 competition between water and solute molecules for independent surface sites. Here we apply each of these models to interpret thermodynamic data for the interactions of urea and the osmoprotectant glycine betaine (N,N,N-trimethylglycine; GB) with the surface exposed in unfolding the marginally stable lacI HTH DNA binding domain. The partition coefficient K(P) quantifying accumulation of urea at this protein surface (K(P) approximately equal 1.1) is only weakly dependent on urea concentration up to 6 M urea. However, K(P) quantifying exclusion of GB from the vicinity of this protein surface increases from 0.83 (extrapolated to 0 M GB) to 1.0 (indicating that local and bulk GB concentrations are equal) at 4 M GB (activity > 40 M). We interpret the significant concentration dependence of K(P) for GB, predicted to be general for excluded, nonideal solutes such as GB, as a modest (8%) attenuation of the GB concentration dependence of solute nonideality in the local domain relative to that in the bulk solution. Above 4 M, K(P) for the interaction of GB with the surface exposed in protein unfolding is predicted to exceed unity, which explains the maximum in thermal stability observed for RNase and lysozyme at 4 M GB (Santoro, M. M., Liu, Y. F., Khan, S. M. A., Hou, L. X., and Bolen, D. W. (1992) Biochemistry 31, 5278-5283). Both thermodynamic models provide good two-parameter fits to GB and urea data for lacI HTH unfolding over a wide concentration range. The solute partitioning model allows for a full spectrum of attenuation effects in the local domain, encompasses the cases treated by the competitive binding model, and provides a somewhat better two-parameter fit of effects of high GB concentration on lacI HTH stability. Parameters of this fit should be applicable to isothermal and thermal unfolding data for all proteins with similar compositions of surface exposed in unfolding.  相似文献   

12.
Intracellular organic osmolytes are present in certain organisms adapted to harsh environments and these osmolytes protect intracellular macromolecules against the denaturing environmental stress. In natural selection of organic osmolytes as protein stabilizers, it appears that the osmolyte property selected for is the unfavorable interaction between the osmolyte and the peptide backbone, a solvophobic thermodynamic force that we call the osmophobic effect. Because the peptide backbone is highly exposed to osmolyte in the denatured state, the osmophobic effect preferentially raises the free energy of the denatured state, shifting the equilibrium in favor of the native state. By focusing the solvophobic force on the denatured state, the native state is left free to function relatively unfettered by the presence of osmolyte. The osmophobic effect is a newly uncovered thermodynamic force in nature that complements the well-recognized hydrophobic interactions, hydrogen bonding, electrostatic and dispersion forces that drive protein folding. In organisms whose survival depends on the intracellular presence of osmolytes that can counteract denaturing stresses, the osmophobic effect is as fundamental to protein folding as these well-recognized forces.  相似文献   

13.
Lonhienne TG  Winzor DJ 《Biochemistry》2002,41(22):6897-6901
A method based on isothermal calorimetry is described for the direct kinetic assay of pyruvate kinase. In agreement with earlier findings based on the standard coupled assay system for this enzyme in the presence of a fixed ADP concentration, the essentially rectangular hyperbolic dependence of initial velocity upon phosphoenolpyruvate concentration is rendered sigmoidal by the allosteric inhibitor phenylalanine. This effect of phenylalanine can be countered by including a high concentration of a space-filling osmolyte such as proline in the reaction mixtures. This investigation thus affords a dramatic example that illustrates the need to consider potential consequences of thermodynamic nonideality on the kinetics of enzyme reactions in crowded molecular environments such as the cell cytoplasm.  相似文献   

14.
15.
Duff MR  Grubbs J  Serpersu E  Howell EE 《Biochemistry》2012,51(11):2309-2318
Previous osmotic stress studies on the role of solvent in two structurally unrelated dihydrofolate reductases (DHFRs) found weaker binding of dihydrofolate (DHF) to either enzyme in the presence of osmolytes. To explain these unusual results, weak interactions between DHF and osmolytes were proposed, with a competition between osmolyte and DHFR for DHF. High osmolyte concentrations will inhibit binding of the cognate pair. To evaluate this hypothesis, we devised a small molecule approach. Dimerization of folate, monitored by nuclear magnetic resonance, was weakened 2-3-fold upon addition of betaine or dimethyl sulfoxide (DMSO), supporting preferential interaction of either osmolyte with the monomer (as it possesses a larger surface area). Nuclear Overhauser effect (NOE) spectroscopy experiments found a positive NOE for the interaction of the C3'/C5' benzoyl ring protons with the C9 proton in buffer; however, a negative NOE was observed upon addition of betaine or DMSO. This change indicated a decreased tumbling rate, consistent with osmolyte interaction. Osmotic stress experiments also showed that betaine, DMSO, and sucrose preferentially interact with folate. Further, studies with the folate fragments, p-aminobenzoic acid and pterin 6-carboxylate, revealed interactions for both model compounds with betaine and sucrose. In contrast, DMSO was strongly excluded from the pterin ring but preferentially interacted with the p-aminobenzoyl moiety. These interactions are likely to be important in vivo because of the crowded conditions of the cell where weak contacts can more readily compete with specific binding interactions.  相似文献   

16.
A sequence specific DNA binding protein has been demonstrated in extracts of Drosophila melanogaster third instar larval nuclei which binds close to a chromosome-scaffold associated region. This protein has proven difficult to work with because of its strong tendency to aggregate. Here I show that the protein can be readily maintained in solution in the presence of high concentrations of urea. Surprisingly, the protein turns out to be remarkably resistant to denaturation by urea. It is capable of mediating sequence specific DNA binding in the presence of urea at concentrations up to 8M. When incubated in 4M urea the binding activity appears to slowly degrade, but in 1.3M urea the protein is active, soluble and stable over extended periods of time at room temperature. The molecular basis of this unexpected finding must await the purification of the protein. The ability to keep the protein both soluble and active should now permit its isolation.  相似文献   

17.
The urea induced equilibrium denaturation behavior of glutaminyl-tRNA synthetase from Escherichia coli (GlnRS) in 0.25 m potassium l-glutamate, a naturally occurring osmolyte in E. coli, has been studied. Both the native to molten globule and molten globule to unfolded state transitions are shifted significantly toward higher urea concentrations in the presence of l-glutamate, suggesting that l-glutamate has the ability to counteract the denaturing effect of urea. d-Glutamate has a similar effect on the equilibrium denaturation of glutaminyl-tRNA synthetase, indicating that the effect of l-glutamate may not be due to substrate-like binding to the native state. The activation energy of unfolding is not significantly affected in the presence of 0.25 m potassium l-glutamate, indicating that the native state is not preferentially stabilized by the osmolyte. Dramatic increase of coefficient of urea concentration dependence (m) values of both the transitions in the presence of glutamate suggests destabilization and increased solvent exposure of the denatured states. Four other osmolytes, sorbitol, trimethylamine oxide, inositol, and triethylene glycol, show either a modest effect or no effect on native to molten globule transition of glutaminyl-tRNA synthetase. However, glycine betaine significantly shifts the transition to higher urea concentrations. The effect of these osmolytes on other proteins is mixed. For example, glycine betaine counteracts urea denaturation of tubulin but promotes denaturation of S228N lambda-repressor and carbonic anhydrase. Osmolyte counteraction of urea denaturation depends on osmolyte-protein pair.  相似文献   

18.
Production of the compatible solute glycine betaine from its precursors choline or glycine betaine aldehyde confers a considerable level of tolerance against high osmolarity stress to the soil bacterium Bacillus subtilis. The glycine betaine aldehyde dehydrogenase GbsA is an integral part of the osmoregulatory glycine betaine synthesis pathway. We strongly overproduced this enzyme in an Escherichia coli strain that expressed a plasmid-encoded gbsA gene under T7φ10 control. The recombinant GbsA protein was purified 23-fold to apparent homogeneity by fractionated ammonium sulfate precipitation, ion-exchange chromatography on Q-Sepharose, and subsequent hydrophobic interaction chromatography on phenyl-Sepharose. Molecular sieving through Superose 12 and sedimentation centrifugation through a glycerol gradient suggested that the native enzyme is a homodimer with 53.7-kDa subunits. The enzyme was specific for glycine betaine aldehyde and could use both NAD+ and NADP+ as cofactors, but NAD+ was strongly preferred. A kinetic analysis of the GbsA-mediated oxidation of glycine betaine aldehyde to glycine betaine revealed K m values of 125 μM and 143 μM for its substrates glycine betaine aldehyde and NAD+, respectively. Low concentrations of salts stimulated the GbsA activity, and the enzyme was highly tolerant of high ionic conditions. Even in the presence of 2.4 M KCl, 88% of the initial enzymatic activity was maintained. B. subtilis synthesizes high levels of proline when grown at high osmolarity, and the presence of this amino acid strongly stimulated the GbsA activity in vitro. The enzyme was stimulated by moderate concentrations of glycine betaine, and its activity was highly tolerant against molar concentrations of this osmolyte. The high salt tolerance and its resistance to its own reaction product are essential features of the GbsA enzyme and ensure that B. subtilis can produce high levels of the compatible solute glycine betaine under conditions of high osmolarity stress. Received: 2 May 1997 / Accepted: 2 July 1997  相似文献   

19.
We have used trimethylamine N-oxide (TMAO), a protecting osmolyte, to dissect the complex thermodynamic linkages involved in the interaction between the chemokine interleukin-8 (IL-8) and the N-domain of its receptor CXCR1. Our results show that TMAO induces folding in the CXCR1 receptor N-domain and that the N-domain upon folding binds ligand with higher affinity. This represents, to our knowledge, the smallest domain that has been shown to be folded in osmolyte. Using the phase diagram method to analyze this thermodynamic relationship graphically, we also observe that TMAO favors ligand dimerization and that the dimeric ligand binds the receptor domain with lower affinity. We have thus been able to dissect coupling among three distinct processes, receptor domain folding, ligand dimerization, and ligand-receptor domain binding in this chemokine-receptor system. We also observe that the affinity of the related chemokine, melanoma growth stimulatory activity (MGSA), increases concurrent with N-domain folding similar to IL-8 but shows more profound differences on ligand dimerization. These studies establish a novel and innovative use of osmolytes to dissect linkages among different processes and exploit the phase diagram as a tool to graphically represent and dissect complex thermodynamic relationships in biological systems. On the basis of our observations and earlier work, we discuss the relevance of ligand dimerization in chemokine regulation.  相似文献   

20.
The nick-translation reaction of E. coli DNA polymerase I (Pol I) was used as a model system to demonstrate the ability of macromolecular crowding to alter the response of an enzyme to a number of basic parameters, such as pH, temperature or inhibitors. In the presence of high concentrations of non-specific polymers, nick translation occurred under a variety of otherwise strongly inhibitory conditions. The conditions tested included a range of pH values or temperatures or inhibitory concentrations of urea, formamide or ethidium bromide. These crowding effects are accentuated at higher ionic strengths, suggesting their origin in increased binding between the polymerase and its DNA template-primer under crowded conditions. Kinetic measurements were consistent with such a mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号