首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nested age within stage-structured model was developed to simulate Scottnema lindsayae population dynamics in soils of the McMurdo Dry Valleys, and used to evaluate responses of this species to a range of annual temperature regimes. Simulations predicted that many sites are unlikely to support S. lindsayae, consistent with field observations showing that many soils in the dry valleys lack nematodes. The simulated coefficient of population growth (5) varied as a roughly linear function of cumulative annual degree-days (>0°C), providing a possible index to site suitability for S. lindsayae that could be used in conjunction with remotely sensed energy data to estimate species distributions. Low temperatures, coupled with long lifespan and slow development of this species, may make dry-valley soil systems sensitive to perturbations that disrupt population dynamics. Indeed, sensitivity analysis indicated that factors affecting adult longevity were the most important determinants of model behavior, further emphasizing the potential impacts of disturbance on local populations.  相似文献   

2.
The nematode worm Scottnema lindsayae (Cephalobidae) was found near the base of the Beardmore Glacier in the Transantarctic Mountains 83.48°S, over 5° further south than previously recorded. Identification was confirmed using morphological analyses of males, females and juvenile stages, and by DNA sequencing of the ITS1 region of the ribosomal RNA tandem repeat unit. These data revealed no discernable morphological or ITS rDNA sequence variation between the extreme southern population of S. lindsayae and disparate populations from the McMurdo Dry Valleys in south Victoria Land (77–78°S). Based on these results, we suggest that broadcast dispersal, with accompanying high rates of gene flow, establish the extreme southern distribution of the phylum Nematoda. High abundance, low rates of diversification and lack of an apparent biogeographic structure across latitudinal and environmental gradients implies that their presence in simple Antarctic soil ecosystems is stable, so long as physical and biological controls on their distributions remain within viable parameters. Recent evidence that S. lindsayae populations are in decline suggests that their high dispersal rates are insufficient to buffer current, unfavorable environmental changes and may foreshadow longer-term ecosystem disruption.  相似文献   

3.
Global climate change scenarios predict not only higher temperatures, but also increased climatic variability. In cold regions, these changes may bring about a shift in the frequency of soil freeze–thaw cycles (FTCs), which represent a significant physiological challenge, especially for small, poikilothermic animals with limited mobility. To assess the impact of FTCs on cold-adapted soil biota, we evaluated freeze–thaw dynamics (i.e., 0 °C crossings) and demographics of the dominant nematode Scottnema lindsayae (proportion of adults, population size) over 20 years in soils at two locations in Taylor Valley, Antarctica. Based on hourly soil temperature data, we demonstrate that FTCs are a frequent feature in Taylor Valley, but with high inter-annual and spatial variability. Valley topography and soil moisture were found to impact FTC frequency, suggesting that basins within Taylor Valley have different susceptibilities to environmental variability. Increased FTC frequency in 1999–2001 coincided with a shift in S. lindsayae populations, with fewer juveniles reaching maturity. In the years following decreased adult proportions, overall S. lindsayae numbers were reduced, implying a strong negative effect of FTCs on in situ recruitment. Our results suggest that increased FTC frequency in the Dry Valleys slows S. lindsayae development, reducing reproductive success, and may take years to impact population size, which demonstrates the importance of long-term research to accurately predict the consequences of climate change on soil biota and biogeochemical cycling in the cold regions.  相似文献   

4.
We evaluated the response of the Antarctic soil nematodes Scottnema lindsayae and Plectus antarcticus to various salts (NaCl, MgSO4, KNO3 and NaCl + MgSO4) and salt concentrations in prepared salt solutions ranging from 0.1 to 3 M, and in saturation paste extracts of soils collected from multiple locations where nematode abundance varied from zero to numerous, and where electrical conductivity ranged from 108 to >12,000 μS/cm. Nematode salt tolerance was salt specific; both nematode species survived in low-experimental concentrations of NaCl and MgSO4, and neither species survived in KNO3 solutions of any concentration. There was no survival of nematodes in the saturation paste extracts of highly saline soils (4,100 μS/cm), while survival was over 80–97% in less saline soils (1,945 μS/cm). A 1:1 dilution of these highly saline saturation paste extracts increased S. lindsayae survival to 80%, while survival of P. antarcticus was not observed until dilutions of greater than 200%. The results complement previous studies demonstrating niche partitioning of S. lindsayae and P. antarcticus across salinity gradients and strengthen interpretations of the physiological mechanisms underlying previously reported spatial correlation between soil salinity and nematodes abundance in the Antarctic Dry Valleys.  相似文献   

5.
Extraction of nematodes from Dry Valley Antarctic soils   总被引:9,自引:3,他引:6  
Nematode density and taxonomic composition from Dry Valley soil processed by the sugar centrifugation (SC) method in Antarctica was compared to those extracted from soils shipped frozen to the USA and processed by either the SC or Baermann Funnel (BF) (at 5°C and 10°C) techniques. Soil selected for the extraction comparisons represented a wide range of soil properties found in the Dry Valleys. More nematodes were recovered from freshly collected Antarctic soil and from stored frozen soil using the SC technique than from BF at either temperature (P<0.05). Temperature had no effect on nematode densities extracted by the BF. Scottnema lindsayae was the most abundant species recovered by all extraction methods, but recovery was significantly lower from stored soils. Thus, nematodes can be extracted qualitatively following frozen storage using SC, but quantitative studies of nematode populations should be based on soils extracted following field sampling.  相似文献   

6.
In January 2001, we surveyed streams and ponds above 300 m a.s.l. in Taylor Valley, South Victoria Land, Antarctica. One pond was examined in detail. Organic materials covered nearly 100% of the adjacent soil to 5–20 m from the shore, with intermittent patches to 80 m. Organic matter averaged 257 g C/m2, and totaled 1,388 kg organic C on the soil around the pond. Soil-moisture content (0.56–12.41%) decreased with distance from shore, whereas pH (7.8–10.8) increased with distance. Electrical conductivity was lowest in the soils <10 m from the pond (416±94 µS/cm). Mineral soil organic C and total N concentrations were greatest between 10 and 30 m from the edge of the pond (1.21±0.37 and 0.13±0.05 mg/g soil, respectively). Soil invertebrates were present in only 50% of samples and included tardigrades, rotifers, and two nematodes, Scottnema lindsayae and Plectus antarcticus. A non-parametric, discriminant function analysis based on soil moisture, soil organic carbon, and electrical conductivity correctly predicted 87.0% of sites that had invertebrates and 70.8% of sites for which invertebrates were absent. Tardigrades, rotifers, and P. antarcticus were found only in the wettest soils nearest the pond whereas S. lindsayae was restricted to drier soils further from shore. Other ponds and streams also showed substantial accumulations of organic matter, suggesting that upland wetlands serve as resource islands in these polar deserts that provide a source of organic matter to nearby soils.  相似文献   

7.
Previous research had shown that three closely related species of Lysobacter, i.e., Lysobacter antibioticus, Lysobacter capsici, and Lysobacter gummosus, were present in different Rhizoctonia-suppressive soils. However, the population dynamics of these three Lysobacter spp. in different habitats remains unknown. Therefore, a specific primer–probe combination was designed for the combined quantification of these three Lysobacter spp. using TaqMan. Strains of the three target species were efficiently detected with TaqMan, whereas related non-target strains of Lysobacter enzymogenes and Xanthomonas campestris were not or only weakly amplified. Indigenous Lysobacter populations were analyzed in soils of 10 organic farms in the Netherlands during three subsequent years with TaqMan. These soils differed in soil characteristics and crop rotation. Additionally, Lysobacter populations in rhizosphere and bulk soil of different crops on one of these farms were studied. In acid sandy soils low Lysobacter populations were present, whereas pH neutral clay soils contained high populations (respectively, <4.0–5.87 and 6.22–6.95 log gene copy numbers g−1 soil). Clay content, pH and C/N ratio, but not organic matter content in soil, correlated with higher Lysobacter populations. Unexpectedly, different crops did not significantly influence population size of the three Lysobacter spp. and their populations were barely higher in rhizosphere than in bulk soil.  相似文献   

8.
Abstract Critical transition zones, such as aquatic–terrestrial interfaces, have been recognized as important features in landscape ecology. Yet changes in the community structure of soil and sediment biota across aquatic–terrestrial boundaries remain relatively unstudied. We investigated the community structure of the dominant fauna, namely nematodes, rotifers and tardigrades, across lake sediment–soil transects in three basins in a species-poor, polar desert ecosystem (McMurdo Dry Valleys, Antarctica). We also examined substrate (that is, soil and sediment) properties, including moisture, salinity, carbon, nitrogen and phosphate concentration, across these transects. Differences in faunal community structure and biochemical properties were typically explained by hydrologic basin and the sediment–soil gradient, but not by transects within each basin. Bonney Basin contained the least organic carbon, chlorophyll a, nematodes and taxa, whereas there was little difference in many of these measures between Fryxell and Hoare Basins. Nematode (Scottnema lindsayae and Plectus sp.) and rotifer abundance varied along sediment–soil transects. Scottnema lindsayae, the most abundant and widely distributed soil animal in this ecosystem, increased in abundance from sediments to soils, whereas Plectus sp. and rotifer abundance, and taxa richness (that is, nematodes, rotifers and/or tardigrades), decreased; Eudorylaimus sp. and tardigrade abundance did not differ significantly along the transects. Previous studies of soil biodiversity and faunal abundance in this ecosystem have revealed a positive association between these measures and biogeochemistry, if this holds true for lake sediments, our findings suggest sediments in Lake Bonney experience lower rates of nutrient cycling than either Lakes Fryxell or Hoare. Despite differences in faunal abundances along the sediment–soil transects, taxa occurrence was surprisingly similar in soil and sediment, only S. lindsayae was restricted to soil or the lake shore. In contrast, in other ecosystems, soil community composition differs greatly from lake sediments, suggesting that the observed similarity in species occurrence in both soils and sediments may be unique to Antarctica. This finding might result from the extreme low diversity of this ecosystem, presumably limiting competition among fauna, and thus promoting broad ecological niches. Alternatively, environmental conditions in Antarctica may select for species with broad ecological niches.  相似文献   

9.
10.
Anhydrobiotic survival of Pratylenchus penetrans was compared in several soil moisture regimes. Bodies of anhydrobiotic nematodes were coiled. In slow-dried soils, Vineland silt loam (VSL) and Fox loamy sand (FLS), 70 and 58% of the total P. penetrans populations were anhydrobiotic when soil moistures reached ca. 3% and water potential 15 kPa or greater. Coiling began at a much lower water potential in FLS than in VSL. In fast-dried soils, only 31 and 22% of the P. penetrans populations in the same two soil types had entered the anhydrobiotic state at comparable moistures. In the above soils, 76-96% of the P. penetrans were alive immediately after entering the anhydrobiotic state. In slow-dried VSL, some nematodes (1%) survived 770 days. In the other soils, all anhydrobiotic nematodes were dead after 438 days. Anhydrobiosis increased the ability of nematodes to survive subzero temperatures, but it did not increase their ability to survive temperatures above 40 C. Infectivity and reproductivity of rehydrated P. penetrans were not affected by anhydrobiosis.  相似文献   

11.
Restoration of metalliferous mine soils requires using plant species tolerant to high metal concentrations and adapted to nutrient‐poor soil. Legumes can increase plant productivity through N2‐fixation, but they are often scarce in metalliferous sites. We examined survival, growth, and tolerance of four populations of a legume, Anthyllis vulneraria, from two metalliferous (MET) Zn‐Pb mine sites, Avinières (AV) ([Zn‐EDTA] = 26,000 mg/kg) and Eylie (EY) ([Zn‐EDTA] = 4,632 mg/kg), and two non‐metalliferous (NMET) sites located in the south of France with the aim to select the most appropriate populations for restoration of mined soils. In a common garden experiment, plants from each population were reciprocally grown in soil from the provenance of each population. The two NMET populations exhibited high mortality and low growth rates in soil from the mined sites. The AV MET exhibited a high growth rate in metalliferous soils, but showed high mortality in non‐metalliferous soils. The growth of the EY MET was very low in the AV‐contaminated soil, but was the highest of all populations in moderately and non‐metalliferous soils. Plants from the AV MET population showed a high growth and survival in metalliferous soil and would be appropriate in the restoration of metal‐contaminated sites (>30,000 mg Zn kg?1). The EY MET population would be adapted to the restoration of moderate metal‐contaminated soils (<30,000 mg Zn kg?1). Taking into account the broad distribution of A. vulneraria, these two populations could be suitable for the restoration of derelict mine sites in mediterranean and temperate regions of Europe and North America.  相似文献   

12.
Summary The model legume Medicago truncatula was used to trap natural populations of Sinorhizobium meliloti and Sinorhizobium medicae in Tunisian soils to explore their genetic diversity. About 155 Sinorhizobium isolates were trapped from a combination of three soils and four Medicago truncatula populations in order to analyse soil and plant population effects on nodulating Sinorhizobium diversity. The species assignment was done according to the restriction fragment length polymorphism analysis of polymerase chain reaction (PCR/RFLP) of 16S rRNA genes and their infraspecific genetic diversity was assessed with the repetitive extragenic palindromic-polymerase chain reaction (REP-PCR) technique. It appeared that the trapped bacteria were clustered according to the soil of origin, particularly Sinorhizobium medicae isolates. However, regarding the plant population effect, it appeared that no major clustering tendency could be suggested even if the Bulla Regia and Soliman Medicago truncatula populations appeared to nodulate together specific Sinorhizobium medicae genotypes.  相似文献   

13.
Soil nematodes are capable of employing an anhydrobiotic survivalstrategy in response to adverse environmental conditions. TheMcMurdo Dry Valleys of Antarctica represent a unique environmentfor the study of anhydrobiosis because extremes of cold, salinity,and aridity combine to limit biological water availability.We studied nematode anhydrobiosis in Taylor Valley, Antarctica,using natural variation in soil properties. The coiled morphologyof nematodes extracted from dry valley soils suggests that theyemploy anhydrobiosis, and these coiled nematodes showed enhancedrevival when re-hydrated in water as compared to vermiform nematodes.Nematode coiling was correlated with soil moisture content,salinity, and water potential. In the driest soils studied (gravimetricwater content <2%), 20–80% of nematodes were coiled.Soil water potential measurements also showed a high degreeof variability. These measurements reflect microsite variationin soil properties that occurs at the scale of the nematode.We studied nematode anhydrobiosis during the austral summer,and found that the proportion of nematodes coiled can vary diurnally,with more nematodes vermiform and presumably active at the warmesttime of day. However, dry valley nematodes uncoiled rapidlyin response to soil wetting from snowmelt, and most nematodeactivity in the Dry Valleys may be confined to periods followingrare snowfall and melting events. Anhydrobiosis represents animportant temporal component of a dry valley nematode's lifespan. The ability to utilize anhydrobiosis plays a significantrole in the widespread distribution and success of these organismsin the Antarctic Dry Valleys and beyond.  相似文献   

14.
The occurrence and the distribution of rhizobial populations naturally associated to Acacia seyal Del. were characterized in 42 soils from Senegal. The diversity of rhizobial genotypes, as characterized by polymerase chain reaction restriction fragment length polymorphism (RFLP) analysis of 16S–23S rDNA, performed on DNA extracted from 138 nodules resulted in 15 clusters. Results indicated the widespread occurrence of compatible rhizobia associated to A. seyal in various ecogeographic areas. However, the clustering of rhizobial populations based on intergenic spacer (IGS) RFLP profiles did not reflect their geographic origin. Four genera were discriminated on the basis of 16S rRNA gene sequences of the strains representative for the IGS-RFLP profiles. The majority of rhizobia associated to A. seyal were affiliated to Mesorhizobium and Sinorhizobium 64 and 29%, respectively, of the different IGS-RFLP profiles. Our results demonstrate the coexistence inside the nodule of plant-pathogenic non-N2-fixing Agrobacterium and Burkholderia strains, which induced the formation of ineffective nodules, with symbiotic rhizobia. Nodulation was recorded in saline soils and/or at low pH values or in alkaline soils, suggesting adaptability of natural rhizobial populations to major ecological environmental stress and their ability to establish symbiotic associations within these soil environments. These results contribute to the progressing research efforts to uncover the biodiversity of rhizobia and to improve nitrogen fixation in agroforestry systems in sub-Saharan Africa.  相似文献   

15.
Leaf mass per unit area (LMA), carbon and nitrogen contents, leaf construction cost, and photosynthetic capacity (P max) of Adiantum reniforme var. sinensis, an endangered fern endemic to the Three Gorges region in southwest China, were compared in five populations differing in habitat such as soil moisture and irradiance. The low soil moisture and high irradiance habitat population exhibited significantly higher LMA, area-based leaf construction (CCA), and carbon content (CA), but lower leaf nitrogen content per unit dry mass (NM) than the other habitat populations. The high soil moisture and low irradiance habitat populations had the lowest CCA, but their cost/benefic ratios of CCA/P max were similar to the medium soil moisture and irradiance habitat population due to their lower leaf P max. Hence A. reniforme var. sinensis prefers partially shaded, moist but well-drained, slope habitats. Due to human activities, however, its main habitats now are cliffs or steeply sloped bare rocks with poor and thin soil. The relatively high energy requirements and low photosynthetic capacity in these habitats could limit the capability of the species in extending population or interspecific competition and hence increase its endangerment.  相似文献   

16.
Nematodes of three genera (Acrobeloides sp., Aphelenchus avenae, and Scutellonema brachyurum) were induced to coil and enter anhydrobiosis in drying soil of two types: sandy loam and loamy sand. Coiling was studied in relationship to soil moisture characteristics. Coiling and the physiological state of anhydrobiosis occurred before the water in sandy soils reached a water potential of -15 bars. Coiling was maximum at 3-6 bars, depending on the soil type and nematode species. It appeared that induction of coiling and anhydrohiosis were determined by the physical forces exerted by the water film surrounding the nematode, which, for these three species, was 6-9 monomolecular layers of water, rather than the % moisture and relative humidity of the soil per se.  相似文献   

17.
Prolonged use of broad-spectrum antibiotics has led to the emergence of drug-resistant pathogens, both in medicine and in agriculture. New threats such as biological warfare have increased the need for novel and efficacious antimicrobial agents. Natural habitats not previously examined as sources of novel antibiotic-producing microorganisms still exist. One such habitat is the rhizosphere of desert shrubs. Here, we show that one desert shrub habitat, the rhizosphere of desert big sagebrush (Artemisia tridentata) is a source of actinomycetes capable of producing an extensive array of antifungal metabolites. Culturable microbial populations from both the sagebrush rhizosphere and nearby bulk soils from three different sites were enumerated and compared, using traditional plate-count techniques and antibiotic activity bioassays. There were no statistical differences between the relative numbers of culturable non-actinomycete eubacteria, actinomycetes and fungi in the rhizosphere versus bulk soils, but PCR amplification of the 16S rRNA gene sequences of the total soil DNA and denaturing gradient gel electrophoresis showed that the community structure was different between the rhizosphere and the bulk soils. A high percentage of actinomycetes produced antimicrobials; and the percentage of active producers was significantly higher among the rhizosphere isolates, as compared with the bulk soil isolates. Also, the rhizosphere strains were more active in the production of antifungal compounds than antibacterial compounds. 16S rRNA gene sequence analysis showed that sagebrush rhizospheres contained a variety of Streptomyces species possessing broad spectrum antifungal activity. Scanning electron microscopy studies of sagebrush root colonization by one of the novel sagebrush rhizosphere isolates, Streptomyces sp. strain RG, showed that it aggressively colonized young sagebrush roots, whereas another plant rhizosphere-colonizing strain, S. lydicus WYEC108, not originally isolated from sagebrush, was a poor colonizer of the roots of this plant, as were two other Streptomyces isolates from forest soil. These results support the hypothesis that the rhizosphere of desert big sagebrush is a promising source of habitat-adapted actinomycetes, producing antifungal antibiotics.  相似文献   

18.
Soils collected from five districts of Hawaii county were infested with Rhtzoctonia solani in small inoculum particles and successfully planted with radish to induce suppression, Suppressiveness was induced in some, but not all, replicates of all. soils. When fresh inoculum was added, suppressiveness was demonstrated in some, but not all, replicates of two soils, but not in the other three soils. Acidity of soil was not important in successful induction of suppression. Characteristics of induced suppression in soil from one site (S. Kohala) were further investigated. Reduction of microbial population by heat treatment of suppressive soil completely nullified its inhibitory effect. The populations of actinomycetes, fungi in general and Trichoderma spp. in suppressive and conducive soil were not significantly different. However, the population of bacteria in suppressive soil was almost four times higher than that in conducive soil. The survival time of R. solani in suppressive soil was shorter than that in conducive soil. Hyphae of R. solani also lysed faster in suppressive soil than in conducive soil. It is suggested that suppressiveness of the South Kohala soil created by monoculture is due to enhanced competitive pressure generated by an increased bacterial population, which in turn causes the rapid autolysis of R. solani hyphae.  相似文献   

19.
20.
The soil seed bank represents the potential plant population since it is the source for population replacement. The genetic structure of a Stipa kryiovii (Roshev.) plant population and its soil seed bank was investigated in the Xilinguole Steppe of Inner Mongolia using random amplified polymorphic DNA (RAPD) analyses. The population was sampled at two sites that were in close proximity to each other (0.5 km apart). Thirty plants and 18 seed bank samples were taken from each site to determine the genetic diversity between sites and between sources (plant or seed). The material was analyzed using 13 primers to produce 92 loci. Eighty-six were multi-loci, of which 23 loci (26.74%) of allele frequencies showed significant differences (P ≤ 0.05). The genetic similarity between two seed bank sites was 0.9843 while the genetic similarity between two plant sites was 0.9619. Their similarities were all greater than that between the seed bank and plant populations. An analysis of their genetic structure showed that 87.86% of total variation was derived by two-loci. Genetic structures between plant and soil seed bank populations in S. krylovii were different due to the variance of mean gametic disequilibria and mean gene diversity. AMOVA results showed that the majority of variance (88.62%) occurred within sites, 12.75% was from between-groups. Further research is needed to investigate the selective function in maintaining the genetic diversity of Stipa krylovii plant populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号