首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lignification of the leaf vein bundle sheath (BS) has been observed in many species and would reduce conductance from xylem to mesophyll. We hypothesized that lignification of the BS in lower‐order veins would provide benefits for water delivery through the vein hierarchy but that the lignification of higher‐order veins would limit transport capacity from xylem to mesophyll and leaf hydraulic conductance (Kleaf). We further hypothesized that BS lignification would mediate the relationship of Kleaf to vein length per area. We analysed the dependence of Kleaf, and its light response, on the lignification of the BS across vein orders for 11 angiosperm tree species. Eight of 11 species had lignin deposits in the BS of the midrib, and two species additionally only in their secondary veins, and for six species up to their minor veins. Species with lignification of minor veins had a lower hydraulic conductance of xylem and outside‐xylem pathways and lower Kleaf. Kleaf could be strongly predicted by vein length per area and highest lignified vein order (R2 = .69). The light‐response of Kleaf was statistically independent of BS lignification. The lignification of the BS is an important determinant of species variation in leaf and thus whole plant water transport.  相似文献   

2.
吴一苓  李芳兰  胡慧 《植物学报》2022,57(3):388-398
叶脉由贯穿于叶肉内部的维管组织及其外围机械组织构成,多样化的脉序及网络结构使叶脉系统发生变异和功能分化。该文综述了叶脉系统结构与功能的最新研究进展。通过聚焦叶脉分级系统的结构与功能及其在叶片经济谱(LES)中的重要性,解释叶脉性状与其它叶片功能性状之间的关系及机制。不同等级叶脉在机械支撑与水分运输方面存在功能分化,其中1–3级粗脉在维持叶片形状和叶表面积以及物理支撑方面发挥重要作用,有利于维持叶片最大受光面积;4级及以上细脉具有水分调节功能,它们与气孔相互协调,影响叶片水分运输、蒸腾散热和光合作用速率。叶片生长过程与叶脉发育的动态变化模式决定叶脉密度,并影响叶脉密度与叶片大小之间的关系:叶面积与粗脉密度呈显著负相关,与粗脉直径呈显著正相关,而与细脉密度无关。与叶脉性状相关的叶片经济谱框架模型预测,叶脉密度较高的叶片寿命短、比叶重较小,叶片最大碳同化速率、代谢速率以及资源获取策略潜力较高。  相似文献   

3.
龚容  高琼 《植物生态学报》2015,39(3):300-308
叶片是植物进行光合、呼吸、蒸腾作用的主要器官, 早期的研究主要集中于水分在叶片中的运输路径, 而对叶脉结构及其生态学意义研究甚少。近年来关于叶片叶脉结构、气孔结构的功能及叶片水力学特性的意义研究已经成为植物生理生态的研究热点。该文综述了叶脉的结构性状的指标(叶脉密度、直径、间距等), 叶片水力学结构特性对植物生长、水分运输、气体交换、光合作用等生理功能的影响, 及其与植物对干旱适应性之间的关系。叶脉结构是决定叶片生理功能的基础, 因此在未来的工作中应分析比较不同种类植物叶脉结构形态与导水、光合、呼吸、同化作用之间的关系, 建立植物茎干-枝-叶系统水力传导的机理性模型, 用以探索不同植物功能结构和高效用水生理生态学机制, 据此评估不同种类植物在未来气候情景下的地位。  相似文献   

4.
Our current understanding of the photosynthetic process in species utilizing the C4 photosynthetic pathway suggests that photosynthetic efficiency should be enhanced by: 1) maximizing the conductance of the gas phase transport pathway from the leaf exterior to the mesophyll cell surfaces; 2) maximizing cytoplasmic connections and metabolite transport between bundle sheath and mesophyll parenchyma cells; and 3) minimizing the conductance of the gas phase transport pathway from the bundle sheath cells to the leaf exterior. In this study we have examined several species in the Poaceae with C4 photosynthesis to determine if there is any evidence for anatomical specialization which would lead to enhanced photosynthetic efficiency by these processes. Observations with light and scanning electron microscopes revealed specializations in mesophyll cell morphology and arrangement which include branched cells forming intercellular channels. These specializations are hypothesized to contribute to photosynthetic efficiency through its influence on the above transport processes.  相似文献   

5.
BACKGROUND AND AIMS: Morphological diversity of leaves is usually quantified with geometrical characters, while in many cases a simple set of biophysical parameters are involved in constraining size and shape. One of the main physiological functions of the leaf is transpiration and thus one can expect that leaf hydraulic parameters can be used to predict potential morphologies, although with the caveat that morphology in turn influences physiological parameters including light interception and boundary layer thickness and thereby heat transfer and net photosynthesis. METHODS: An iterative model was used to determine the relative sizes and shapes that are functionally possible for single-veined leaves as defined by their ability to supply the entire leaf lamina with sufficient water to prevent stomatal closure. The model variables include the hydraulic resistances associated with vein axial and radial transport, as well as with water movement through the mesophyll and the leaf surface. KEY RESULTS: The four parameters included in the model are sufficient to define a hydraulic functional design space that includes all single-veined leaf shapes found in nature, including scale-, awl- and needle-like morphologies. This exercise demonstrates that hydraulic parameters have dissimilar effects: surface resistance primarily affects leaf size, while radial and mesophyll resistances primarily affect leaf shape. CONCLUSIONS: These distinctions between hydraulic parameters, as well as the differential accessibility of different morphologies, might relate to the convergent evolutionary patterns seen in a variety of fossil lineages concerning overall morphology and anatomical detail that frequently have evolved in linear and simple multi-veined leaves.  相似文献   

6.
There is a need to develop rice plants with improved photosynthetic capacity and efficiency in order to enhance potential grain yield. Alterations in internal leaf morphology may be needed to underpin some of these improvements. One target is the production of a 'Kranz-like' anatomy, commonly considered to be required to achieve the desired levels of photosynthesis seen in C(4) crops. Kranz anatomy typically has two or three mesophyll cells interspersing adjacent veins. As a first step to determining the potential for such anatomical modifications in rice leaves, a population of rice deletion mutants was analysed for alterations in vein patterning and mesophyll cells in the interveinal regions. Significant variation is demonstrated in vein arrangement and the sequential distribution of major and minor veins across the leaf width, although there is a significant correlation between the total number of veins present and the width of the leaf. Thus the potential is demonstrated for modifying rice leaf structure. Six distinct rice mutant lines, termed altered leaf morphology (alm) mutants, were analysed for the architecture of their interveinal mesophyll cell arrangement. It is shown that in these mutant lines, the distance between adjacent minor veins and adjacent minor and major veins is essentially determined by the size of the interveinal mesophyll cells rather than changes in mesophyll cell number across this region, and hence interveinal distance changes as a result of cell expansion rather than cell division. This observation will be important when developing screens for traits relevant for the introduction of Kranz anatomy into rice. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details).  相似文献   

7.
叶片形状和大小在不同的生长温度下变化非常大,但少有从水力结构的角度解释其变化原因的研究。本研究测定了生长于两个不同温度下(24℃/18℃昼/夜;32℃/26℃昼/夜)的烟草叶片的解剖结构,导水率,叶片长宽比和叶面积。生长在24℃/18℃下的烟草叶片与生长在32℃/18℃的叶片相比,更狭窄,并有更小的叶柄导管直径,更低的叶脉密度和导水率。然而,在不同的生长温度下,烟草叶面积并没有显著差异。叶片导水率与叶脉密度呈正相关,但与叶片长宽比呈负相关。结果表明在不同的生长温度下叶片解剖结构和叶片导水率可能对于改变叶宽比起着重要作用。  相似文献   

8.
Typical symptoms of potassium deficiency, characterized as chlorosis or withered necrosis, occur concomitantly with downregulated photosynthesis and impaired leaf water transport. However, the prominent limitations and mechanisms underlying the concerted decreases of leaf photosynthesis and hydraulic conductance are poorly understood. Monocots and dicots were investigated based on responses of photosynthesis and hydraulic conductance and their components and the correlated anatomical determinants to potassium deficiency. We found a conserved pattern in which leaf photosynthesis and hydraulic conductance concurrently decreased under potassium starvation. However, monocots and dicots showed two different hydraulic‐redesign strategies: Dicots tended to show a decreased minor vein density, whereas monocots reduced the size of the bundle sheath and its extensions, rather than the minor vein density; both of these strategies may restrain xylem and outside‐xylem hydraulic conductance. Additionally, potassium‐deprived leaves developed with fewer mesophyll cell‐to‐cell connections, leading to a reduced area being available for liquid‐phase flow. Further quantitative analysis revealed that mesophyll conductance to CO2 and outside‐xylem hydraulic resistance were the major contributors to photosynthetic limitation and increased hydraulic resistance, at more than 50% and 60%, respectively. These results emphasize the importance of potassium in the coordinated regulation of leaf photosynthesis and hydraulic conductance through modifications of leaf anatomy.  相似文献   

9.
Hydraulic architecture of leaf venation in Laurus nobilis L.   总被引:3,自引:3,他引:0  
Veins are the main irrigation system of the leaf lamina and an understanding of the hydraulic architecture of the vein networks is essential for understanding leaf function. However, determination of leaf hydraulic parameters is challenging, because for most leaves the vein system is reticulate, contains a hierarchy of different vein sizes, and consists of leaky conduits. We present a new approach that allows for measurements of pressure differences between the petiole and any vein within the leaf. Measurements of Laurus nobilis leaves indicate that first‐ and second‐order veins have high axial conductance and relatively small radial permeability, thus allowing water to reach distal areas of the leaf with only a small loss of water potential. Higher order veins tend to be more hydraulically resistant and permit greater radial leakage. This design allows for a relatively equitable distribution of water potential and thus reflects the capacity of the venation to provide a relatively homogeneous water supply across the leaf lamina, with only the leaf margins being hydraulically disadvantaged relative to the rest of the leaf.  相似文献   

10.
Just as a soggy paper straw is prone to yielding under the applied suction of a thirsty drinker, the xylem tracheids in leaves seem prone to collapse as water potential declines, impeding their function. Here we describe the collapse, under tension, of lignified cells peripheral to the leaf vein of a broad-leaved rainforest conifer, Podocarpus grayi de Laub. Leaves of Podocarpus are characterized by an array of cylindrical tracheids aligned perpendicular to the leaf vein, apparently involved in the distribution of water radially through the mesophyll. During leaf desiccation the majority of these tracheids collapsed from circular to flat over the water potential range -1.5 to -2.8 MPa. An increase in the percentage of tracheids collapsed during imposed water stress was mirrored by declining leaf hydraulic conductivity (K(leaf)), implying a direct effect on water transport efficiency. Stomata responded to water stress by closing at -2.0 MPa when 45% of cells were collapsed and K(leaf) had declined by 25%. This was still substantially before the initial indications of cavitation-induced loss of hydraulic conductance in the leaf vein, at -3 MPa. Plants droughted until 49% of tracheids had collapsed were found to fully recover tracheid shape and leaf function 1 week after rewatering. A simple mechanical model of tracheid collapse, derived from the theoretical buckling pressure for pipes, accurately predicted the collapse dynamics observed in P. grayi, substantiating estimates of cell wall elasticity and measured leaf water potential. The possible adaptive advantages of collapsible vascular tissue are discussed.  相似文献   

11.
Higher leaf vein density (D(vein) ) enables higher rates of photosynthesis because enhanced water transport allows higher leaf conductances to CO(2) and water. If the total cost of leaf venation rises in proportion to the density of minor veins, the most efficient investment in leaf xylem relative to photosynthetic gain should occur when the water transport capacity of the leaf (determined by D(vein) ) matches potential transpirational demand (determined by stomatal size and density). We tested whether environmental plasticity in stomatal density (D(stomata) ) and D(vein) were linked in the evergreen tree Nothofagus cunninghamii to achieve a balance between liquid and gas phase water conductances. Two sources of variation were examined; within-tree light acclimation, and differences in sun leaves among plants from ecologically diverse populations. Strong, linear correlations between D(vein) and D(stomata) were found at all levels of comparison. The correlations between liquid- and vapour-phase conductances implied by these patterns of leaf anatomy were confirmed by direct measurement of leaf conductance in sun and shade foliage of an individual tree. ? Our results provide strong evidence that the development of veins and stomata are coordinated so that photosynthetic yield is optimized relative to carbon investment in leaf venation.  相似文献   

12.
Trade-offs between plant leaf hydraulic and economic traits   总被引:1,自引:0,他引:1       下载免费PDF全文
《植物生态学报》2015,39(10):1021
Leaf is the most important organ for carbon-water coupling of a plant because it is the primary medium for photosynthesis. It also acts as the hydraulic bottleneck and safety valve against hydraulic catastrophic dysfunctions. The leaf economics spectrum, which reflects the balance between investments and returns of leaf economic traits, provides a useful framework for examining species strategies as shaped by their evolutionary history. Changes in leaf hydraulic traits will influence leaf economic traits as well as plant survival and growth. Exploring trade-offs between leaf hydraulic and economic traits is thus of significance for modeling carbon-water relations, understanding the mechanisms of water/carbon investments, and extending the leaf economic spectrum. In this review, we first examined the trade-offs between leaf hydraulic and economic traits. Specially, we analyzed the relationships between leaf hydraulic conductivity and hydraulic vulnerability, water potential at the turgor loss point, water capacitance, safety margin, and leaf morphological, structural and functional traits. We then discussed potential mechanisms regulating leaf hydraulic and economic traits from leaf morphology, anatomy, venation, and stomatal functions. Finally, we proposed future research to: (1) develop an integrated whole-plant economics spectrum, including carbon-nitrogen-water resources and root-stem-leaf hydraulic transport system that will help revealing ecophysiological mechanisms of plant structure-functional coupling, carbon sequestration and water use; (2) explore a generalized trade-offs among leaf hydraulic safety, hydraulic efficiency and carbon fixation efficiency to advance our understanding of the relationships between biophysical structure and physiological metabolism in plant leaf construction under drought stress; and (3) explore the carbon-water metabolic relationship and coupling of water transport and growth rate for the metabolic theory and predictions at community scale.  相似文献   

13.
植物叶片水力与经济性状权衡关系的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
金鹰  王传宽 《植物生态学报》2015,39(10):1021-1032
叶片既是植物光合产物形成的主要场所, 又是整株植物的水力瓶颈、应对灾难性水力失调的安全阀门, 是植物碳水耦合权衡的重要器官。叶经济型谱反映了叶片经济性状“投资-收益”的权衡, 为验证植物进化过程中形成的物种对策提供了适用的理论框架。叶片水力性状变化会影响叶片经济性状及植物存活和生长。因此, 探索植物叶片水力与经济性状的权衡关系, 对建立植物碳-水耦合模型、揭示植物水-碳投资机理、扩展植物性状型谱等均有重要意义。该文首先综述了叶片水力性状、经济性状及两者之间的权衡关系, 分析了叶片导水率与水力脆弱性、失膨点水势、水容、安全阈值等水力性状以及与叶片的形态、结构和气体交换功能性状之间的关系。然后, 从叶片形态、解剖和叶脉网络结构以及气孔功能方面探讨了叶片水力性状与经济性状的调节机制。最后, 提出今后应加强三方面的研究: (1)探索建立植物根-茎-叶水力输导系统的碳-氮-水资源的整株经济型谱, 以揭示植物功能结构耦合、高效固碳用水的生理生态学机制; (2)探索叶片水力安全、水力效率和固碳效率之间的普适性权衡关系, 以深入理解抗旱植物叶片构建的生物物理结构与生理代谢的关系; (3)探索个体水平碳水代谢关系、水分运输与生长速率的耦合, 为代谢推演理论和植物群落尺度预测提供基础。  相似文献   

14.
Leaf tensile properties were compared between the mesic deciduous tree Prunus serrulata (var. "Kwanzan") and the xeric and sclerophyllous chaparral evergreen shrub Heteromeles arbutifolia (M. Roem). All values for biomechanical parameters for H. arbutifolia were significantly greater than those of P. serrulata. The fracture planes also differed between the two species with P. serrulata fracturing along the secondary veins, while H. arbutifolia most often fractured across the leaf irrespective of the vein or mesophyll position, thus yielding qualitative differences in the stress-strain curves of the two species. Anatomically, P. serrulata exhibits features typical for a deciduous mesophytic leaf such as a thin cuticle, a single layer of palisade mesophyll, isodiametric spongy mesophyll, and extensive reticulation of the laminar veins. Heteromeles arbutifolia leaves, however, are typically two- to three-fold thicker with a 35% higher dry mass/fresh mass ratio. The vascular tissue is restricted to the interface of the palisade and spongy mesophyll near the center of the leaf. Both epidermal layers have a thick cuticle. The palisade mesophyll is tightly packed and two to three layers thick. The spongy mesophyll cells are ameboid in shape and tightly interlinked both to other spongy cells as well as to the overlying palisade layer. We conclude that the qualitative and quantitative biomechanical differences between the leaves of these two species are likely due to a complex interaction of internal architectural arrangement and the physical/chemical differences in the properties of their respective cell walls. These studies illustrate the importance that morphological and anatomical correlates play with mechanical behavior in plant material and ultimately reflect adaptations present in the leaves of chaparral shrubs that are conducive to surviving in arid environments.  相似文献   

15.
叶脉网络功能性状及其生态学意义   总被引:6,自引:0,他引:6       下载免费PDF全文
叶脉网络结构是叶脉系统在叶片里的分布和排列样式。早期叶脉网络结构研究主要集中在其分类学意义上; 近年来叶脉网络功能性状及其在植物水分利用上的意义已成为植物生态学研究的热点。该文介绍了叶脉网络功能性状的指标体系(包括叶脉密度、叶脉直径、叶脉之间的距离、叶脉闭合度等), 综述了叶脉网络功能性状与叶脉系统功能(包括水分、养分和光合产物等物质运输、机械支撑和虫害防御等)的关系, 叶脉网络功能性状与叶片其他功能性状(包括比叶重、叶寿命、光合速率、叶片大小、气孔密度等)的协同变异和权衡关系, 以及叶脉网络功能性状随环境因子(包括水分、温度、光照等)的变化规律等方面的最新研究进展。此外, 叶脉网络功能性状的研究成果也被应用于古环境重建、城市交通规划、流域规划及全球变化研究中。由于叶脉网络功能性状是环境因子与系统发育共同作用的结果, 未来开展分子—叶片—植物—生态系统等多尺度的叶脉网络功能性状研究, 理清叶脉网络功能性状与气孔失水—茎干导水—根系吸水等植物水分利用的关系, 将为预测植物及生态系统对全球变化的响应提供新的启示。  相似文献   

16.
光合作用是地球上最重要的化学反应。虽然针对植物光合作用已经进行了广泛深入的研究,但从三维层面探讨植物叶片光合功能及其调节作用的工作较少。叶片结构、光合机构组分、叶片内光能吸收和传递均具有明显的三维特性,极大影响叶片内CO2转运、叶肉细胞的电子传递和碳同化,进而使叶片光合功能及其调控表现出复杂的三维特征。因此,从三维角度分析叶片光合特性有助于理解光合作用机理,也能够为提高植物光合作用效率提供理论支持。  相似文献   

17.
High resolution chlorophyll a fluorescence imaging was used to compare the photosynthetic efficiency of PSII electron transport (estimated by Fq'/Fm') in guard cell chloroplasts and the underlying mesophyll in intact leaves of six different species: Commelina communis, Vicia faba, Amaranthus caudatus, Polypodium vulgare, Nicotiana tabacum, and Tradescantia albifora. While photosynthetic efficiency varied between the species, the efficiencies of guard cells and mesophyll cells were always closely matched. As measurement light intensity was increased, guard cells from the lower leaf surfaces of C. communis and V. faba showed larger reductions in photosynthetic efficiency than those from the upper surfaces. In these two species, guard cell photosynthetic efficiency responded similarly to that of the mesophyll when either light intensity or CO2 concentration during either measurement or growth was changed. In all six species, reducing the O2 concentration from 21% to 2% reduced guard cell photosynthetic efficiency, even for the C4 species A. caudatus, although the mesophyll of the C4 species did not show any O2 modulation of photosynthetic efficiency. This suggests that Rubisco activity is significant in the guard cells of these six species. When C. communis plants were water-stressed, the guard cell photosynthetic efficiency declined in parallel with that of the mesophyll. It was concluded that the photosynthetic efficiency in guard cells is determined by the same factors that determine it in the mesophyll.  相似文献   

18.
Leaves constitute a substantial fraction of the total resistance to water flow through plants. A key question is how hydraulic resistance within the leaf is distributed among petiole, major veins, minor veins, and the pathways downstream of the veins. We partitioned the leaf hydraulic resistance (R(leaf)) for sugar maple (Acer saccharum) and red oak (Quercus rubra) by measuring the resistance to water flow through leaves before and after cutting specific vein orders. Simulations using an electronic circuit analog with resistors arranged in a hierarchical reticulate network justified the partitioning of total R(leaf) into component additive resistances. On average 64% and 74% of the R(leaf) was situated within the leaf xylem for sugar maple and red oak, respectively. Substantial resistance-32% and 49%- was in the minor venation, 18% and 21% in the major venation, and 14% and 4% in the petiole. The large number of parallel paths (i.e. a large transfer surface) for water leaving the minor veins through the bundle sheath and out of the leaf resulted in the pathways outside the venation comprising only 36% and 26% of R(leaf). Changing leaf temperature during measurement of R(leaf) for intact leaves resulted in a temperature response beyond that expected from changes in viscosity. The extra response was not found for leaves with veins cut, indicating that water crosses cell membranes after it leaves the xylem. The large proportion of resistance in the venation can explain why stomata respond to leaf xylem damage and cavitation. The hydraulic importance of the leaf vein system suggests that the diversity of vein system architectures observed in angiosperms may reflect variation in whole-leaf hydraulic capacity.  相似文献   

19.
Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration1,2. Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψleaf). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance3. Leaf hydraulic conductance (Kleaf = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. Kleaf is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, Kleaf responds strongly to the internal and external leaf environment3. Kleaf can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes4, and Kleaf declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation5-10. Because Kleaf can constrain gs and photosynthetic rate across species in well watered conditions and during drought, and thus limit whole-plant performance they may possibly determine species distributions especially as droughts increase in frequency and severity11-14.We present a simple method for simultaneous determination of Kleaf and gs on excised leaves. A transpiring leaf is connected by its petiole to tubing running to a water source on a balance. The loss of water from the balance is recorded to calculate the flow rate through the leaf. When steady state transpiration (E, mmol • m-2 • s-1) is reached, gs is determined by dividing by vapor pressure deficit, and Kleaf by dividing by the water potential driving force determined using a pressure chamber (Kleaf= E /- Δψleaf, MPa)15.This method can be used to assess Kleaf responses to different irradiances and the vulnerability of Kleaf to dehydration14,16,17.  相似文献   

20.
Leaf structure and translocation in sugar beet   总被引:17,自引:12,他引:5       下载免费PDF全文
Anatomical and ultrastructural details of a translocating 10-cm leaf of sugar beet (Beta vulgaris L. var. Klein Wanzleben) were correlated with translocation rate data. The minor veins were found to be 13 times as extensive as the major veins and measure 70 cm/cm2 leaf lamina. Measurements disclosed that a 33-μ length of minor vein services 29 mesophyll cells with the result that translocate moves an average of 73 μ or 2.2 cell diameters during transport from mesophyll cells to a minor vein. High-resolution, freeze-dry autoradiography revealed that assimilates accumulate in organelle-rich cells of the minor vein phloem. Correlation of phloem volume and loading rate for minor veins yielded an uptake rate of 735 μmoles of sucrose per g fresh weight of phloem. The arrangement and structural features of minor veins appeared to be consistent with the concept that vein loading precedes translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号