首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of normal human cell types have been shown to exhibit cellular senescence in vitro. We and others had found that fusion of normal human fibroblasts with immortal human cells yielded hybrids having limited lifespan. This indicated that the phenotype of cellular senescence is dominant and that immortality results from recessive changes in genes involved in growth control. They also supported the hypothesis that senescence results from genetic mechanisms rather than random damage. Since T lymphocytes are a highly differentiated cell type, in contrast to fibroblasts, it was of interest to determine whether similar mechanisms caused senescence in the T cells. We therefore fused normal human T lymphocytes with an immortal human cell line to determine whether they could restore the senescent, nondividing phenotype in hybrids, as do normal human fibroblasts. Eleven of fifteen hybrid clones studied exhibited limited proliferative potential after achieving a range of population doubling similar to that observed in the cell fusion studies involving normal fibroblasts. These results provide evidence that cellular senescence in T lymphocytes occurs via genetic mechanisms.  相似文献   

2.
3.
Normal cells in culture exhibit limited division potential, which is used as a model for cellular aging. In contrast, tumor-derived, carcinogen- or virus-transformed cells are capable of dividing indefinitely (immortal). Fusion of normal with immortal human cells yielded hybrids having limited life span, indicating that cellular senescence is a dominant phenotype and that immortality is recessive. Fusions of various immortal human cell lines with each other led to the identification of four complementation groups for indefinite division. In order to identify the chromosomes and genes involved in growth regulation, that had been modified in immortal cells, we used the technique of microcell fusion to introduce either a normal human chromosome 11 or 4 into cell lines representative of the different complementation groups. Chromosome 11 had no effect on the in vitro life span of the different immortal human tumor lines. However, when a normal human chromosome 4 was introduced into cell lines assigned to complementation group B, the cells lost the immortal phenotype. No effect on the proliferation potential of cell lines representative of the other complementation groups was observed. These results suggest that a gene(s) on human chromosome 4 has been modified in immortal cell lines assigned to complementation group B, to allow escape from senescence. They also provide evidence for a genetic basis for cellular aging.  相似文献   

4.
Previous hybrid studies involving fusion of normal with immortal human cells indicated that the phenotype of cellular senescence is dominant and that immortality results from recessive changes in normal growth regulatory genes. We have further assigned 28 different immortal human cell lines to at least four complementation groups for indefinite division. In order to identify the chromosomes involved in regulating cell proliferation, we have introduced single human chromosomes by microcell fusion into immortal human cells representative of the different complementation groups. Our results demonstrate that the introduction of chromosome 11, implicated in tumor suppression, does not cause cellular senescence in three different immortal human cell lines tested.  相似文献   

5.
OBJECTIVE: Some normal somatic cells in culture divide a limited number of times before entering a non-dividing state called replicative senescence and fusion of normal cells with immortal cells claimed to produce hybrid cells of limited proliferation. We reinvestigated the proliferative capacity of hybrid cells between normal cell and immortal cell. MATERIALS AND METHODS: Normal pig fibroblast cells and cells of immortal mouse fibroblast cell line F7, a derivative of GM05267, were fused by polyethylene glycol treatment and subsequently the fused cells were cultured in a selective medium containing hypoxanthine-aminopterin-thymidine in order to enrich the hybrid cells. The hybrid cells were then monitored for chromosome content and proliferation. RESULTS: Cytogenetic analysis revealed that the hybrid cells contained polyploidy chromosomes derived from normal pig fibroblasts. These hybrid cells exhibit no sign of replicative senescence after more than 190 population doublings in vitro. Instead, these hybrid cells have an accelerated growth and proliferate even in the complete absence of glutamine. In addition, these hybrids produce biologically active factors in the conditioned media, which not only can accelerate their own proliferation but also can reinitiate mitotic activity in the senescent-like normal fibroblast cells. CONCLUSIONS: Our results question the validity of cellular senescence as a dominant trait. Additionally, the generation of hybrid cells using the specific mouse cell line can be applied to the generation of hybrids with other normal cell types and can be used to produce tissue-specific growth-factor(s) to extend the lifespan and/or improve the proliferation of various normal cells, including adult stem cells.  相似文献   

6.
Normal human fibroblasts in culture have a limited lifespan, ending in replicative senescence. Introduction of SV40 sequences encoding large T antigen and small t antigen into pre-senescent cells results in an extension of lifespan for an additional 20-30 population doublings. Rare clones of SV40-transformed cells are capable of indefinite growth and are described as immortal; however, the great majority of SV40-transformed cells terminate this extended lifespan in cell death, termed "crisis." We have examined the properties of cells in crisis to obtain further insights into mechanism of cell death and immortalization. Populations at the terminal cell passage show a balance between cell replication and cell death over a period of several weeks, with a progressive increase in cells undergoing cell death. During this period, there is less than a 3-fold increase in attached cell number, with two stages being identifiable on the basis of the focal pattern of cell survival. We also demonstrate that cells in crisis are undergoing apoptosis based on TUNEL assay, subG1 DNA content, annexin V reactivity, and activation of caspases 3 and 8. We suggest a model whereby SV40-transformed cells acquire increased sensitivity to apoptosis based on changes in properties which activate caspase 8 in addition to changes previously described involving shortening of telomeric sequences. While only telomere stabilization could be clearly shown to be essential for survival of cells through crisis, the extended period of cell replication and altered gene expression observed in SV40-transformed cells during crisis are compatible with other genetic alterations in immortal cells.  相似文献   

7.
Normal cells in culture exhibit limited division potential and have been used as a model for cellular senescence. In contrast, tumor-derived or carcinogen- or virus-transformed cells are capable of indefinite division. Fusion of normal human diploid fibroblasts with immortal human cells yielded hybrids having limited life spans, indicating that cellular senescence was dominant. Fusions of various immortal human cell lines with each other led to the identification of four complementation groups for indefinite division. The purpose of this study was to determine whether human chromosome 1 could complement the recessive immortal defect of human cell lines assigned to one of the four complementation groups. Using microcell fusion, we introduced a single normal human chromosome 1 into immortal human cell lines representing the complementation groups and determined that it caused loss of proliferative potential of an osteosarcoma-derived cell line (TE85), a cytomegalovirus-transformed lung fibroblast cell line (CMV-Mj-HEL-1), and a Ki-ras(+)-transformed derivative of TE85 (143B TK-), all of which were assigned to complementation group C. This chromosome 1 caused no change in proliferative potential of cell lines representing the other complementation groups. A derivative of human chromosome 1 that had lost most of the q arm by spontaneous deletion was unable to induce senescence in any of the immortal cell lines. This finding indicates that the q arm of human chromosome 1 carries a gene or set of genes which is altered in the cell lines assigned to complementation group C and is involved in the control of cellular senescence.  相似文献   

8.
Previous studies had demonstrated that a DNA synthesis inhibitor(s) was produced by senescent but not young human diploid fibroblasts (HDF). Analysis of immortal human cell lines led to the finding that SUSM-1, carcinogen-treated immortal human liver fibroblast cells, expressed a potent inhibitor of DNA synthesis that was active in proliferation-competent young HDF but did not affect the SUSM-1 cell line itself. To determine whether one mechanism of escape from senescence to the immortal phenotype involved the loss of response to such DNA synthesis inhibitors, we initiated the present study analyzing a larger number of immortal human cell lines representative of the four complementation groups for indefinite division identified to date. We have found a correlation between the assignment of a cell line to Complementation Group D and the production of DNA synthesis inhibitors coupled with inability to respond to the inhibitory factors. We have also observed a correlation between the ability of immortal cell lines to respond to such DNA synthesis inhibitory factors and assignment to Complementation Group B. These data suggest DNA synthesis inhibitors are involved in the limited lifespan of normal cells and that the immortalization process may involve alterations in the activity of or response to such inhibitors.  相似文献   

9.

Background

The pig, Sus scrofa domestica includes both the miniature and commercial domestic breed. These animals have influenced the human life and economies and have been studied throughout history. Although the miniature breeds are more recent and have increasingly been used in a variety of biomedical studies, their cell lines have rarely been established. Therefore, we sought to establish primary and immortal cell lines derived from both the miniature and domestic pig to better enable insight into possible in vivo growth differences.

Results

The in vitro lifespan of primary domestic pig fibroblast (PF) and miniature pig fibroblast (MPF) cells using a standard 3T3 protocol was determined. Both of the primary PF and MPF cells were shown to have a two-step replicative senescence barrier. Primary MPF cells exhibited a relatively shorter lifespan and slower proliferation rate compared to those of primary PF cells. Beyond senescence barriers, lifespan-extended PF and MPF cells were eventually established and indicated spontaneous cellular immortalization. In contrast to the immortalized PF cells, immortal MPF cells showed a transformed phenotype and possessed more frequent chromosomal abnormalities and loss of p53 regulatory function. The lifespan of primary MPF and PF cells was extended by inactivation of the p53 function using transduction by SV40LT without any detectable senescent phenotype.

Conclusion

These results suggest that p53 signaling might be a major determinant for the replicative senescence in the MPF cells that have the shorter lifespan and slower growth rate compared to PF cells in vitro.  相似文献   

10.
Cellular lifespan and senescence signaling in embryonic stem cells   总被引:8,自引:0,他引:8  
Miura T  Mattson MP  Rao MS 《Aging cell》2004,3(6):333-343
Most mammalian cells when placed in culture will undergo a limited number of cell divisions before entering an unresponsive non-proliferating state termed senescence. However, several pathways that are activated singly or in concert can allow cells to bypass senescence at least for limited periods. These include the telomerase pathway required to maintain telomere ends, the p53 and Rb pathways required to direct senescence in response to DNA damage, telomere shortening and mitogenic signals, and the insulin-like growth factor--Akt pathway that may regulate lifespan and cell proliferation. In this review, we summarize recent findings related to these pathways in embryonic stem (ES) cells and suggest that ES cells are immortal because these pathways are tightly regulated.  相似文献   

11.
Normal human cells exhibit a limited replicative life span in culture, eventually arresting growth by a process termed senescence. Progressive telomere shortening appears to trigger senescence in normal human fibroblasts and retinal pigment epithelial cells, as ectopic expression of the telomerase catalytic subunit, hTERT, immortalizes these cell types directly. Telomerase expression alone is insufficient to enable certain other cell types to evade senescence, however. Such cells, including keratinocytes and mammary epithelial cells, appear to require loss of the pRB/p16(INK4a) cell cycle control mechanism in addition to hTERT expression to achieve immortality. To investigate the relationships among telomerase activity, cell cycle control, senescence, and differentiation, we expressed hTERT in two epithelial cell types, keratinocytes and mesothelial cells, and determined the effect on proliferation potential and on the function of cell-type-specific growth control and differentiation systems. Ectopic hTERT expression immortalized normal mesothelial cells and a premalignant, p16(INK4a)-negative keratinocyte line. In contrast, when four keratinocyte strains cultured from normal tissue were transduced to express hTERT, they were incompletely rescued from senescence. After reaching the population doubling limit of their parent cell strains, hTERT(+) keratinocytes entered a slow growth phase of indefinite length, from which rare, rapidly dividing immortal cells emerged. These immortal cell lines frequently had sustained deletions of the CDK2NA/INK4A locus or otherwise were deficient in p16(INK4a) expression. They nevertheless typically retained other keratinocyte growth controls and differentiated normally in culture and in xenografts. Thus, keratinocyte replicative potential is limited by a p16(INK4a)-dependent mechanism, the activation of which can occur independent of telomere length. Abrogation of this mechanism together with telomerase expression immortalizes keratinocytes without affecting other major growth control or differentiation systems.  相似文献   

12.
The transformed phenotype is believed to be dominant in fusions between limited lifespan cells and transformed cells, based on heterokaryon experiments and on the isolation of transformed hybrids from mass cultures of fused cells. A series of fusions has been performed between limited lifespan Lesch-Nyhan fibroblast cells and a permanent HeLa cell line with a complementary genetic marker. The growth of independently isolated hybrid clones was followed in parallel with Lesch-Nyhan cells. In fusions involving Lesch-Nyhan cells which had completed about 50% of their lifespan, all hybrids initially show fibroblastic properties. Thirty-five hybrids had a limited lifespan slightly longer than Lesch-Nyhan controls. Three other hybrid clones, and all mass cultures of hybrids, showed the appearance of transformed colonies at a rate of approx. one transformant in 2 × 105 hybrid cells. These transformed cells showed anchorage independence, low serum requirement, chromosome loss, and have been maintained in culture for 50–100 population doublings with no signs of senescence. Fusions involving enucleated HeLa cells did not show transformation. Fusions with senescent Lesch-Nyhan cells yielded hybrids which grew beyond the normal Lesch-Nyhan cell lifespan, but which again showed limited lifespan and low frequency transformation. It is concluded that limited lifespan is expressed in a dominant manner in these fusions, and that transformation or “escape from senescence” is a low frequency event requiring the presence of the HeLa nucleus.  相似文献   

13.
14.
15.
Mouse embryonic stem cells have an unlimited lifespan in cultures if they are prevented from differentiating. After differentiating, they produce cells which divide only a limited number of times. These changes seen in cultures parallel events that occur in the developing embryo, where immortal embryonic cells differentiate and produce mortal somatic ones. The data strongly suggest that differentiation initiates senescence, but this view entails additional assumptions in order to explain how the highly differentiated sexual gametes manage to remain potentially immortal. Cells differentiate by blocking expression from large parts of their genome and it is suggested that losses or gains of genetic totipotency determine cellular lifespans. Cells destined to be somatic do not regain totipotency and senesce, while germ-line cells regain complete genome expression and immortality after meiosis and gamete fusions. Losses of genetic totipotency could induce senescence by lowering the levels of repair and maintenance enzymes.  相似文献   

16.
Summary Limited lifespan human diploid fibroblast cells have been fused with the HeLa derived cell line HEB 7A which possesses transformed growth characteristics and unlimited division potential. HEB 7A expresses keratin intermediate filaments, while the fibroblast cells express only vimentin intermediate filaments. Independently arising clones of hybrids were examined for the presence of keratin by indirect immunofluorescence. Of 11 limited lifespan hybrids, all were keratin negative and possessed the growth characteristics of the fibroblast parent. Of 8 transformed hybrids, 6 arising early after fusion and 2 arising late, all were keratin-positive and simultaneously expressed the transformed growth characteristics of loss of density dependent growth inhibition, low serum dependence, and anchorage independence. It is concluded that the growth properties of these hybrids are associated with the type of intermediate filament expressed. The intermediate filament expression is therefore a marker of proliferative potential in these hybrids. This work was supported by grant no. AG 02664 from NIA (to C.L.B.) and by grant nos. 1R01 HD 18129-01 from NIH and PCM83-09068 from NSF (to R.H.S.). Editor’s Statement The tight correlation between the expression of the intermediate filaments of the immortal parent in hybrids of limited lifespan fibroblasts and HeLa cells with the transformed phenotype is of interest. It may offer important clues to the mechanism involved in cellular senescence. Gordon H. Sato  相似文献   

17.
Telomere loss: mitotic clock or genetic time bomb?   总被引:38,自引:0,他引:38  
C B Harley 《Mutation research》1991,256(2-6):271-282
The Holy Grail of gerontologists investigating cellular senescence is the mechanism responsible for the finite proliferative capacity of somatic cells. In 1973, Olovnikov proposed that cells lose a small amount of DNA following each round of replication due to the inability of DNA polymerase to fully replicate chromosome ends (telomeres) and that eventually a critical deletion causes cell death. Recent observations showing that telomeres of human somatic cells act as a mitotic clock, shortening with age both in vitro and in vivo in a replication dependent manner, support this theory's premise. In addition, since telomeres stabilize chromosome ends against recombination, their loss could explain the increased frequency of dicentric chromosomes observed in late passage (senescent) fibroblasts and provide a checkpoint for regulated cell cycle exit. Sperm telomeres are longer than somatic telomeres and are maintained with age, suggesting that germ line cells may express telomerase, the ribonucleoprotein enzyme known to maintain telomere length in immortal unicellular eukaryotes. As predicted, telomerase activity has been found in immortal, transformed human cells and tumour cell lines, but not in normal somatic cells. Telomerase activation may be a late, obligate event in immortalization since many transformed cells and tumour tissues have critically short telomeres. Thus, telomere length and telomerase activity appear to be markers of the replicative history and proliferative potential of cells; the intriguing possibility remains that telomere loss is a genetic time bomb and hence causally involved in cell senescence and immortalization.  相似文献   

18.
Normal human somatic cells, unlike cancer cells, stop dividing after a limited number of cell divisions through the process termed cellular senescence or replicative senescence, which functions as a tumor-suppressive mechanism and may be related to organismal aging. By means of the cDNA subtractive hybridization, we identified eight genes upregulated during normal chromosome 3-induced cellular senescence in a human renal cell carcinoma cell line. Among them is the DNCI1 gene encoding an intermediate chain 1 of the cytoplasmic dynein, a microtubule motor that plays a role in chromosome movement and organelle transport. The DNCI1 mRNA was also upregulated during in vitro aging of primary human fibroblasts. In contrast, other components of cytoplasmic dynein showed no significant change in mRNA expression during cellular aging. Cell growth arrest by serum starvation, contact inhibition, or gamma-irradiation did not induce the DNCI1 mRNA, suggesting its specific role in cellular senescence. The DNCI1 gene is on the long arm of chromosome 7 where tumor suppressor genes and a senescence-inducing gene for a group of immortal cell lines (complementation group D) are mapped. This is the first report that links a component of molecular motor complex to cellular senescence, providing a new insight into molecular mechanisms of cellular senescence.  相似文献   

19.
Vascular endothelial cells have a finite cell lifespan and eventually enter an irreversible growth arrest, cellular senescence. The functional changes associated with cellular senescence are thought to contribute to human aging and age-related cardiovascular disorders, e.g. atherosclerosis. In this study, induction of Angiotensin II (Ang II) promoted a growth arrest with phenotypic characteristics of cell senescence, such as enlarged cell shapes, increased senescence-associated beta-galactosidase (SA-beta-gal) positive staining cell, and depressed cell proliferation. Apoptotic changes were increased in senescent cells, with a small subset of the senescent cells showing aberrant morphology such as pronounced nuclear fragmentation or multiple micronuclei. The results suggest cell apoptosis is possibly an important factor in the process of pathologic and physiologic senescence of endothelial cells as well as vascular aging.  相似文献   

20.
Normal human cells such as human diploid fibroblasts (HDF) have a finite proliferative lifespan in culture. Previous studies have shown that the limited lifespan phenotype is dominant in cell hybrids formed by fusion of HDF to at least 23 different kinds of immortal human cells. However, two independent studies reported that hybrid clones formed by the fusion of HDF to the HeLa variant D98 had unlimited division potential. Those results were potentially very important because they implied that a) there is a dominant mechanism for immortalization of human cells in addition to the well-documented recessive mechanism, and b) a dominant mechanism would lend itself to identification of the immortalizing gene. Consequently, we carried out more detailed studies of the behavior of D98 cells in hybrids. Our results indicate that the majority of D98 x HDF hybrid clones exhibit a clear-cut finite proliferative lifespan phenotype. In addition, these hybrid cell populations often give rise to an immortal focus of cells that can be seen to take over the population of mortal cells at the end of their lifespan. This phenomenon reconciles our data with the previous reports of immortal D98 x HDF hybrid clones and leads us to conclude that D98 cells do not express a dominant immortalizing gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号