首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
White PA 《Mutation research》2002,515(1-2):85-98
Risk assessment of complex environmental samples suffers from difficulty in identifying toxic components, inadequacy of available toxicity data, and a paucity of knowledge about the behavior of geno(toxic) substances in complex mixtures. Lack of information about the behavior of toxic substances in complex mixtures is often avoided by assuming that the toxicity of a mixture is simply the sum of the expected effects from each mixture component, i.e. no synergistic or antagonistic interactions. Although this assumption is supported by research investigating non-genotoxic end-points, the literature describing the behavior of genotoxic substances in complex mixtures is sparse and, occasionally, contradictory. In this study, the results of polycyclic aromatic hydrocarbon (PAH) analyses on freshwater bivalves were used to prepare realistic mixtures containing up to 16 PAHs. The SOS genotoxicity of the mixtures and each component were then assessed in an effort to evaluate the additivity of PAH genotoxicity. At nominal PAH concentrations above 1 microg/ml, observed genotoxic responses were far lower than those predicted under the assumption of additivity. At nominal concentrations below 0.75 microg/ml, differences are smaller and occasionally negligible, indicating that the genotoxicity of unsubstituted homocyclic PAHs is additive or slightly less than additive. Other researchers who have investigated the mutagenicity, carcinogenicity, and DNA binding activity of mixtures containing unsubstituted homocyclic PAHs have also reported additive effects. Therefore, the mutagenic risk posed by simple, well-characterized mixtures of priority PAHs can reasonably be estimated as the sum of the risks posed by the mixture components. Current data indicate that less-than-additive effects likely result from saturation of metabolic pathways needed to activate mutagenic PAHs.  相似文献   

2.
Biodegradation of polycyclic aromatic hydrocarbons   总被引:67,自引:0,他引:67  
The intent of this review is to provide an outline of the microbial degradation of polycyclic aromatic hydrocarbons. A catabolically diverse microbial community, consisting of bacteria, fungi and algae, metabolizes aromatic compounds. Molecular oxygen is essential for the initial hydroxylation of polycyclic aromatic hydrocarbons by microorganisms. In contrast to bacteria, filamentous fungi use hydroxylation as a prelude to detoxification rather than to catabolism and assimilation. The biochemical principles underlying the degradation of polycyclic aromatic hydrocarbons are examined in some detail. The pathways of polycyclic aromatic hydrocarbon catabolism are discussed. Studies are presented on the relationship between the chemical structure of the polycyclic aromatic hydrocarbon and the rate of polycyclic aromatic hydrocarbon biodegradation in aquatic and terrestrial ecosystems.  相似文献   

3.
4.
In the uncontaminated farm soil, more than 80% of the supplemented acenaphthene, fluoranthene, and pyrene (100 mg/100 g soil) decreased in 90 days, while ratio of removal was about 20%, 30%, and 0%, respectively, in the Kuwaiti oil-contaminated soil. Simultaneous addition of naphthalene, phenanthrene, and anthrathene (100 mg of each compound/100 g soil) led the acenaphthene to a decrease of about 20% to 45% but not of fluoranthene and pyrene. Addition of the farm soil to the Kuwaiti soil did not enhance the decrease of these three PAHs.  相似文献   

5.
6.
7.
Although porphinatoiron complexes have been used extensively as biomimetic catalysts for oxidation of aliphatic and olefinic hydrocarbons, few oxidations of polycyclic aromatic hydrocarbons (PAH) have been reported. In all cases, heterogeneous iodosobenzene/tetraphenylporphinatoiron(III) systems were employed, oxidations were inefficient and control experiments demonstrating the requirement for catalyst were not described. The current study investigates the oxidation of pyrene, benzo[a]pyrene and benzanthracene in a homogeneous m-chloroperoxybenzoic acid/bifacially hindered porphinatoiron system in which the peroxyacid was shown to be unreactive in the absence of catalyst. Pyrene and benzo[a]pyrene were oxidized efficiently, with pyrene yielding mixtures of 1.6- and 1.8-quinones and benzo[a]pyrene yielding mixtures of phenols and quinones. Benzanthracene was oxidized less efficiently, primarily at the meso positions, to give 7.12-quinone. Initial oxidation of meso carbons of benzo[a]pyrene (confirmed by the presence of the 6-hydroxy derivative as a product) and benzanthracene indicates that PAH-to-catalyst charge transfer may be an important oxidation pathway. Oxidation of pyrene was performed by addition of pyrene to observable oxo iron(V) species as well as in a catalytic reaction where excess peroxyacid was added to a solution of pyrene and catalyst and oxo iron(V) is not generated as an observable intermediate. Yields (based on oxidant consumed), were identical under both conditions, strongly supporting oxo iron(V) as a common intermediate.  相似文献   

8.
The degradation rates of mixtures of pyrene (PYR), fluoranthene (FLA), and phenanthrene (PHE) by Sphingomonas paucimobilis EPA 505 were measured in the presence of the nonionic surfactant Tween 80. For strain EPA 505, FLA and PHE are growth substrates, while PYR is not. Linear degradation rates ranging from 0.05 to 2.2 mg x L(-1) x h(-1) were observed for FLA, PYR, and PHE at approximately 10(7) colony-forming units (CFU)/mL. At lower biomass, PYR degradation exhibited lognormal degradation. The degradation rates of PYR, FLA, and PHE increased with increasing biomass and substrate concentration. At high FLA concentrations, FLA degradation rates were faster in the presence of surfactant than in the absence of surfactant, suggesting that some of the FLA was transported directly into the cell from the micellar phase. In mixtures, PHE was the preferred substrate and was utilized first, followed by FLA and then PYR. Once the competing substrates were degraded, the remaining substrate was degraded at the same rate or faster than the rate found in the single-substrate system. Based on the results with Tween 80, it appears that PHE, PYR, and FLA are competing for the same enzymatic sites.  相似文献   

9.
The major photoproduct formed between benzo[a]pyrene and thymine is identified as 1-(benzo[a]pyren-6-yl)-thymine by means of spectroscopic analysis and isotopic syntheses. Irradiation of 1-methylcytosine hydrochloride and anthracene gives two isolable photoproducts of which one is assigned the structure 5-(anthracen-9-yl)-1-methylcytosine.  相似文献   

10.
A comparison of Soxhlet extraction and a new extraction technique, fluidized-bed extraction, has been conducted. The extraction of polycyclic aromatic hydrocarbons (PAHs) by this new technique has been optimized considering as experimental variables the variation of the number of extraction cycles and the holding time after reaching the heating temperature by means of a surface response design. The significance of the operational parameters of the fluidized-bed extraction onto the performance characteristics has been investigated. For the determination of the analytes, a cleanup of the extracts followed by gas chromatography with mass spectrometric detection was used. The accuracy of the method was established by extraction and analysis of a reference material, supplied from the European Commission's Joint Research Centre.  相似文献   

11.
Repair of bulky DNA lesions deriving from polycyclic aromatic hydrocarbons   总被引:1,自引:0,他引:1  
Genomic DNA is damaged by a variety of factors exerting an adverse effect on human health, such as environmental pollution, UV light, ionizing radiation, and toxic compounds. Air pollution with products of incomplete combustion of hydrocarbon fuels and wastes of various industries are main sources of polycyclic aromatic hydrocarbons, whose metabolites can damage DNA by forming bulky DNA adducts, which potentially lead to mutations and cancer. Nucleotide excision repair is the main pathway that eliminates these lesions in eukaryotic cells. The excision efficiency of bulky adducts depends on many factors, including the structure of a bulky substituent and the degree of DNA double helix distortion induced by a lesion. Clustered DNA lesions are the most dangerous for the cell. Several DNA repair systems cooperate to recognize and remove such lesions. The review focuses on the mechanisms that repair DNA with single and clustered bulky lesions, taking the natural carcinogen benzo[a]pyrene as an example.  相似文献   

12.
13.
14.
多环芳烃类化合物在土壤上的吸附   总被引:31,自引:0,他引:31  
研究了几种多环芳烃化合物在土壤上的吸附行为.通过一个连续投药-取样试验装置,在没有任何其它有机试剂干扰的情况下,测定了荧蒽与菲在土壤上的吸附量.研究表明,这两种多环芳烃化合物在土壤上的吸附量与土壤有机质含量之间呈显著相关.对多环芳烃化合物的分子结构及理化特性,如辛醇-水分配系数、溶解度等参数与LogKoc关系的研究发现多环芳烃化合物的LogKoc与化合物的水溶性、辛酸-水分配系数以及分子结构中的苯环数线性相关.  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAH) are widespread in methane-rich subsurface environments, such as oil reservoirs and fuel-contaminated aquifers; however, little is known about the biodegradation of these compounds under methanogenic conditions. To assess the metabolism of PAH in the absence of electron acceptors, a crude oil-degrading methanogenic enrichment culture was tested for the ability to biodegrade naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), and 2, 6-dimethylnaphthalene (2, 6-diMN). When methane was measured as an indicator of metabolism, nearly 400 μmol of methane was produced in the 2-MN- and 2, 6-diMN-amended cultures relative to substrate-unamended controls, which is close to the amount of methane stoichiometrically predicted based on the amount of substrate added (51-56 μmol). In contrast, no substantial methane was produced in the naphthalene- and 1-MN-amended enrichments. In time course experiments, metabolite analysis of enrichments containing 2-MN and 2, 6-diMN revealed the formation of 2-naphthoic acid and 6-methyl-2-naphthoic acid, respectively. Microbial community analysis by 454 pyrosequencing revealed that these PAH-utilizing enrichments were dominated by archaeal members most closely affiliated with Methanosaeta and Methanoculleus species and bacterial members most closely related to the Clostridiaceae, suggesting that these organisms play an important role in the methanogenic metabolism of the substituted naphthalenes in these cultures.  相似文献   

16.
Detoxification of polycyclic aromatic hydrocarbons by fungi   总被引:8,自引:0,他引:8  
Summary The polycyclic aromatic hydrocarbons (PAHs) are a group of hazardous environmental pollutants, many of which are acutely toxic, mutagenic, or carcinogenic. A diverse group of fungi, includingAspergillus ochraceus, Cunninghamella elegans, Phanerochaete chrysosporium, Saccharomyces cerevisiae, andSyncephalastrum racemosum, have the ability to oxidize PAHs. The PAHs anthracene, benz[a]anthracene, benzo[a]pyrene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene, as well as several methyl-, nitro-, and fluoro-substituted PAHs, are metabolized by one or more of these fungi. Unsubstituted PAHs are oxidized initially to arene oxides,trans-dihydrodiols, phenols, quinones, and tetralones. Phenols andtrans-dihydrodiols may be further metabolized, and thus detoxified, by conjugation with sulfate, glucuronic acid, glucose, or xylose. Although dihydrodiol epoxides and other mutagenic and carcinogenic compounds have been detected as minor fungal metabolites of a few PAHs, most transformations performed by fungi reduce the mutagenicity and thus detoxify the PAHs.  相似文献   

17.
The growth of Pseudomonas fluorescens 16N2 on naphthalene was accompanied with accumulation of salicylate in the culture medium and induction of gentisate 1,2-dioxygenase and catechol 1,2-dioxygenase. The transformation of anthracene by the cells growing on hexadecane led to the formation of 3-hydroxy-2-naphthoate and salicylate. Pathways for naphthalene and anthracene degradation are proposed.  相似文献   

18.
19.
Polycyclic aromatic hydrocarbons (PAHs) in C1 and C2 Carbonaceous Chondrites appear to be the product of a high-temperature synthesis. This observation counters a prevailing view that PAHs in meteorites are a thermal alternation product of preexisting aliphatic compounds, which in turn required the presence of low-temperature mineral phases such as magnetite and hydrated phyllosilicates for their formation. Such a process would necessarily lead to a more low-temperature assemblage of PAHs, as many low-temperature minerals and compounds are extant in meteorites.Ivuna, a C1 carbonaceous chondrite, has been shown to contain abundant amounts of the three-ring PAHs phenanthrene/anthracene, but no detectable levels of the two- and four-ring PAHs naphthalene and pyrene/fluoranthene. Ivuna and other C1 carbonaceous chondrites are known to have been extensively altered by water. The aqueous solubities of PAHs indicate that some PAHs would have been mobilized during the aqueous alteration phase in meteorite parent bodies. Model geochromatography experiments using crushed serpentine or beach sand as the solid phase and water for elution suggest that the complete separation of two, three, and four-ring PAHs could be expected to occur in the parent body of C1 carbonaceous chondrites. It is proposed that aqueous fluids driven by heat in the parent body of Ivuna migrated from the interior to the surface, in the process transporting, separating and concentrating PAHs at various zones in the parent body.The presence of indigenous PAHs and absence of indigenous amino acids in the H4 ordinary chondrite Forest Vale provides support for the contention that different processes and environments contributed to the synthesis of the organic matter in the solar system.  相似文献   

20.
Photosynthesis Research - Graphene quantum dots (GQDs) and nanoribbons (GNRs) are classes of nanographene molecules that exhibit highly tunable photophysical properties. There have been great...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号