首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acids (C12-C18) and their omega- and (omega-1)-hydroxy derivatives, when converted to p-bromophenacyl (PBP) esters, can be completely separated from one another by high pressure liquid chromatography (HPLC) on a silicic acid column using 0.5% (v/v) isopropanol in n-hexane. In this system, fatty acid PBP esters are eluted at the solvent front, whereas the retention times of the omega- and (omega-1)-hydroxy derivatives are 14-20 and 24-29 min, respectively. The PBP esters can also be separated by reverse phase HPLC on a muBondapak C18 column, a method which has been developed by Fan et al. (Fan, L. L., Masters, B. S. S., and Prough, R. A. (1976) Anal. Biochem. 71, 265-272) for separation of methyl esters of fatty acids and their omega- and (omega-1)-hydroxy derivatives. In the latter method, however, the retention times of omega- and (omega-1)-hydroxy derivatives are only about 2 min apart and an increase in the solvent polarity is needed for elution of the esters of unmodified fatty acids. Fatty acid PBP esters, however, can be obtained as independent peaks which are not disturbed by the solvent front. An application of the former method to measure fatty acid omega oxidation by liver microsomes and by a reconstituted monooxygenase system containing purified cytochrome P-450 is described.  相似文献   

2.
A genomic DNA sequence (fad2-1) encoding seed specific microsomal 0-6 desaturase was isolated from soybean (Glycine max. L cv. Pusa-9702). A positive genomic clone of 1852 nucleotides containing a single uninterrupted 3' end exonic region with an ORF of 1140 bp encoding a peptide of 379 amino acids, a complete 3' UTR of 206 bp and 86 bp of 5' UTR interrupted by a single intron of 420 bp was obtained on screening the sub-genomic library of soybean. Southern blots revealed at least two copies of the gene per haploid genome. Analysis of the translated product showed the presence of three histidine boxes, with the general sequence HXXXH and five probable transmembrane segments reported to be involved in substrate specificity.  相似文献   

3.
Microsomes from liver or kidney of untreated rainbow trout hydroxylated lauric acid specifically at the (omega-1) position. Turnover numbers for liver (2.72 min-1) and kidney (14.1 min-1) were decreased seven- and twofold, respectively, following treatment with beta-naphthoflavone. Laurate hydroxylation activity from untreated trout hepatic microsomes was sensitive to inhibition by SKF-525A, but was not sensitive to metyrapone and only partially inhibited by alpha-naphthoflavone. The temperature optimum of laurate (omega-1) hydroxylation in trout liver microsomes was 25-30 degrees C. The Km and Vmax for (omega-1)- hydroxylaurate formation was 50 microM and 1.63 nmol min-1 mg-1, respectively, in liver and 20 microM and 3.95 nmol min-1 mg-1, respectively, in kidney from untreated trout microsomes. (omega-1) Hydroxylation of laurate, in both liver and kidney microsomes, was sensitive to an antibody raised against a previously purified cytochrome P-450 isozyme (LM2) of trout liver microsomes, which has been shown to be active towards aflatoxin B1. Antibody to the major isozyme of cytochrome P-450 ( LM4b , active towards benzo(a)pyrene) induced by beta-naphthoflavone did not inhibit (omega-1) hydroxylation of laurate in microsomes from untreated or beta-naphthoflavone-treated trout.  相似文献   

4.
As a result of experiments conducted the marine phospholipids preparation enriched by omega-3 fatty acids was defined to modify fatty acids content due to changes of fatty acids level change in the neutral lipids and phospholipids fractions. As well it was identified, that at the oxidative stress induced by administration of CCl4 the growth of arachidonic and docozahexaenoic acids in the neutral lipids fractions was observed if compare with the norm. At the same time, the presented fatty acids in the phospholipids fractions remained unchanged. At oxidative stress the phospholipids fraction reacts to levels of arachidonic and docozahexaenoic acids just only as a result of administrating phospholipids with omega-3 fatty acids. The most attractive is the change of correlation C20:4/C22:6--increasing at administration of CCl4 and decreasing both at phospolipids and vitamin E injection. Thus, at the oxidative stress the first reacting ones are the fatty acids of neutral lipids microsomal membranes.  相似文献   

5.
As a result of the experimental researches conducted it has been shown that administration of some normal animal marine phospholipids (PL) including in their structure omega-3 polyunsaturated fatty acids (PUFA) provides for quantitative changes of individual PL, fatty acids (FA) content and quantity in general and individual PL of liver, heart, brain and gonads microsomes. While estimating general microsomal PL fraction FA content under the action of PL omega-3 PUFA FA concentration change, unsaturation index (omega 6/omega 3) and relation of arachidonic acid to docosahexenic (AA/DHA) decrease have been identified. The decrease of AA/DHA relationship occurs due to AA and DHA quantitative changes. In the case of AA increase in some tissues there is observed the decrease of docosapentaenic acid and increase of DHA and eucosapentaenic (EPA) acidds. As a result of studying FA content in the individual PL composition it has been identified that certain PL classes characteristic for some tissues respond by changes of some certain FA. The relationship omega 6/omega 3 has been shown as decreasing in phosphatidilcholine (PC) all tissues microsomes (liver, gonads, heart, brain), in phosphatidilethanolamine (PEA) of liver and cardiac microsomes, in phosphatidilserine (PS) this relationship relationship decreases in the liver, brain and heart, for phosphatidilinositole (PI) the changes take place in liver, gonads, brain. Simultaneously, the decrease of AA/DHA relationship in the individual PL decrease of AA and increase of EPA and DHA depend on the tested tissues. The marine phospholipids might be supposed to render their effect on AA metabolism resulting in AA/DHA relationship in PEA and PS relationship displays itself as specific and depends on the tissues functions. The preference of PEA and PS use by certain tissues microsomes could be explained by their membrane protective capability.  相似文献   

6.
In plants, the endoplasmic reticulum (ER)-associated oleate desaturase (FAD2) is the key enzyme responsible for the production of linoleic acid in non-photosynthetic tissues. In this study, we report the characterization of a seed-specific isoform of microsomal omega-6 fatty acid desaturase gene (FAD2-1B) sharing high sequence similarity with FAD2-1 from soybean. Several potential promoter elements including seed-specific motifs are found in the 5'-flanking region of FAD2-1B gene. The ORF of FAD2-1B is 1161 bp long and encodes a protein of 387 amino acids. This deduced protein holds three histidine boxes and four putative membrane-spanning helices, and possesses a signal for endoplasmic reticulum retention at C-terminal. Yeast cells transformed with the plasmid construct containing soybean FAD2-1B accumulate an appreciable amount of linoleic acid (18:2), normally not present in wild-type yeast cells, indicating that the cloned gene encodes a functional FAD2 enzyme. Both semi-quantitative RT-PCR and in silico analysis show that FAD2-1B gene is specifically expressed in developing seeds of soybean.  相似文献   

7.
During feeding experiments with [omega-14C]oleic acid and [omega-14c]nervonic acid to adult rats, 14C-labelled C26, C28 and C30 fatty acids were recovered from the intestinal mucosa, liver, plasma, kidney and stools. The structures of these fatty acids were determined by g.l.c., radio-g.l.c. and mass spectrometry. The Schmidt and Ginger degradation methods indicated that most of the 14C found in these extra-long fatty acids remained in the omega position. These radioactive extra-long fatty acids were found mainly in the polar lipids of rats killed 3 or 15 h after being fed on labelled oleic acid or nervonic acid. Rats killed 63 h later yielded only traces of these extra-long fatty acids. When the rats were given antibiotics or received the same radioactive fatty acids by intravenous injection, the labelled extra-long fatty acids could not be detected in any of the tissues. We conclude that they were probably synthesized by elongation of oleic acid and nervonic acid by intestinal micro-organisms (probably yeasts) and then absorbed by the intestinal mucosa.  相似文献   

8.
Mayak  Shimon  Legge  Raymond L.  Thompson  John E. 《Planta》1981,153(1):49-55
Isolated membranes from the petals of senescing carnation flowers (Dianthus caryophyllus L. cv. White-Sim) catalyze the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. A microsomal membrane fraction obtained by centrifugation at 131,000 g for 1 h proved to be more active than the membrane pellet isolated by centrifugation at 10,000 g for 20 min. The ethylene-producing activity of the microsomal membranes is oxygen-dependent, heat-denaturable, sensitive to n-propyl gallate, and saturable with ACC. Corresponding cytosol fractions from the petals are incapable of converting ACC to ethylene. Moreover, the addition of soluble fraction back to the membrane fraction strongly inhibits the ACC to ethylene conversion activity of the membranes. The efficiency with which isolated membranes convert ACC to ethylene is lower than that exhibited by intact flowers based on the relative yield of membranes per flower. This may be due to the presence of the endogenous soluble inhibitor of the reaction, for residual soluble fraction inevitably remains trapped in membrane vesicles isolated from a homogenate.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminoxyacetic acid - AVG aminoethoxyvinylglycine - EPPS N-2-hydroxyethylpiperazine propane sulfonic acid  相似文献   

9.
10.
As a result of the investigations conducted it was displayed, that alpha-tocopherol and phospholipids including into their composition omega-3-acids, differed in their influencing the composition of heart microsomes membranes lipids. The insufficient quantity of vitamin E in the animals ration was defined as leading to the cardiac microsomes lisophospholipids (lisophosphatidylcholin, lisophospatidylethanolamin), diphosphatidylglycerol increase as well as to the tendency to sphingomyeline and phosphatidylethanolamin decrease. While administrating both alpha-tocopherol and the complex of phospholipids with omega-3-fatty acids, the correction of the phospholipids composition microsomes membranes is observed as tending towards their stabilization, however the marine phospholipids complex is more active than alpha-tocopherol. Administration of phospholipids with omega-3-fatty acids during the period of 30 days provided for the increase of relationship: polyunsaturated fatty acids to saturated fatty acids in the cardiac microsomal membranes, evidencing about increasing the unsaturated cellular membranes. While administrating the phospholipids, into the cardiac microsomes the eicozepentaenic acid was identified, failing to be in the norm, docozahexaenic acid content increased. The results obtained testify, that at the pathology there are changes in the quantitative relationship of membrane phospholipids and fatty acids, being a result of changing the biomembranes permeability as well as their functions disturbances. The adverse effect of E-deficiency to the membrane structure was revealed as capable to be regulated by the marine phospholipid complex, including omega-3-fatty acids.  相似文献   

11.
Diacetylenic fatty acid monolayers at the air/water interface and multilayers on suitable supports polymerise when exposed to ultraviolet radiation. It has been found that polymerisation still occurs when monolayers are diluted with cholesterol or gramicidin. The rigid, crystalline nature of the films formed makes them useful biomembrane models. Phospholipids made from the fatty acids were less reactive. Multilayers deposited on hydrophobic supports would polymerise but not monolayers on water.  相似文献   

12.
This study aimed to determine the effect of reducing the dietary linoleic acid (LA) intake from ~5% to <2.5% energy (%E) on n-3 long chain PUFA (LCPUFA) status in humans. Thirty-six participants followed a <2.5%E LA diet for 4 weeks. Nutrient intakes were estimated from diet diaries and blood samples were collected for assessment of fatty acid composition in plasma and erythrocyte phospholipids. LA intakes were reduced from 4.6%E to 2%E during the low LA intervention (P<0.001) while n-3 LCPUFA intakes were unchanged. LA and total n-6 PUFA content of plasma and erythrocyte phospholipids were significantly reduced after the low LA diet phase (P<0.001). The n-3 LCPUFA content of plasma phospholipids was significantly increased after the low LA diet compared to baseline (6.22% vs. 5.53%, P<0.001). These data demonstrate that reducing LA intake for 4 weeks increases n-3 LCPUFA status in humans in the absence of increased n-3 LCPUFA intake.  相似文献   

13.
Terminal acetylenic fatty acid mechanism-based inhibitors (Ortiz de Montellano, P. R., and Reich, N. O. (1984) J. Biol. Chem. 259, 4136-4141) were used as probes in determining the substrate specificity of rabbit lung cytochrome P-450 isozymes of pregnant animals in both microsomes and reconstituted systems. Lung microsomal and reconstituted P-450 form 5-catalyzed lauric acid omega- and (omega-1)-hydroxylase activities were inhibited by a 12-carbon terminal acetylenic fatty acid, 11-dodecynoic acid (11-DDYA), and an 18-carbon terminal acetylenic fatty acid, 17-octadecynoic acid (17-ODYA). Rabbit lung microsomal lauric acid omega-hydroxylase activity was more sensitive to inhibition by 11-DDYA than was (omega-1)-hydroxylase activity. In reconstituted systems containing purified P-450 form 5, both omega- and (omega-1)-hydroxylation of lauric acid were inhibited in parallel when either 11-DDYA or 17-ODYA was used. These data suggest the presence of at least two P-450 isozymes in rabbit lung microsomes capable of lauric acid omega-hydroxylation. This is the first report indicating the multiplicity of lauric acid hydroxylases in lung microsomes. Lung microsomal prostaglandin omega-hydroxylation, mediated by the pregnancy-inducible P-450PG-omega (Williams, D. E., Hale, S. E., Okita, R. T., and Masters, B. S. S. (1984) J. Biol. Chem. 259, 14600-14608) was subject to inhibition by 17-ODYA only, whereas 11-DDYA acid was not an effective inhibitor of this hydroxylase. We have recently developed a new terminal acetylenic fatty acid, 12-hydroxy-16-heptadecynoic acid (12-HHDYA), that contains a hydroxyl group at the omega-6 position. We show that 12-HHDYA possesses a high degree of selectivity for the inactivation of rabbit lung microsomal prostaglandin omega-hydroxylase activity which cannot be obtained with the long chain acetylenic inhibitor, 17-ODYA. In addition, 12-HHDYA has no effect on lauric acid omega- or omega-1-hydroxylation or on benzphetamine N-demethylation. The development of this new terminal acetylenic fatty acid inhibitor provides us with a useful tool with which to study the physiological role of prostaglandin omega-hydroxylation in the rabbit lung during pregnancy.  相似文献   

14.
Incubation of prostaglandin E1 (PGE1) with liver microsomes from control rabbits and from rabbits treated with ethanol or imidazole yielded 18-, 19-, and 20-hydroxy metabolites, representing hydroxylation at omega-2, omega-1, and omega carbons, respectively. The current investigation demonstrates that rabbit liver P-450 isozyme 6 effectively catalyzes the omega-1 and omega-2 hydroxylation of PGE1 and PGE2. Additionally, a small amount of product with chromatographic characteristics of the corresponding 20-hydroxy metabolite has been detected. The incorporation of cytochrome b5 into the reconstituted system did not enhance the rate of PGE1 hydroxylation and had no effect on the ratio of products formed. The Km value for the omega-1 and omega-2 hydroxylation of PGE1 with P-450 isozyme 6 from imidazole-treated rabbits was approximately 140 microM; the Vmax's (nmol product min-1 nmol P-450-1) were 2.1 and 1.1 for the omega-1 and omega-2 hydroxylations, respectively. These rates represent the highest activities by hepatic P-450 isozymes for hydroxylation of PGs, and suggest that isozyme 6 is responsible for the omega-2 hydroxylation of PGEs observed in rabbit liver microsomes.  相似文献   

15.
16.
K Y Yu  J J Baldassare  C Ho 《Biochemistry》1974,13(21):4375-4381
  相似文献   

17.
We resolved four cytochrome P-450s, designated as P450 K-2, K-3, K-4, and K-5, from the renal microsomes of untreated male rats by high-performance liquid chromatography (HPLC) and investigated the lauric acid and arachidonic acid hydroxylation activities of these fractions. P450 K-4 and K-5 had high omega- and (omega-1)-hydroxylation activities toward lauric acid. The ratio of the omega-/(omega-1)-hydroxylation activity of P450 K-4 and K-5 was 3 and 6, respectively. Also, P450 K-4 and K-5 effectively catalyzed the omega- and (omega-1)-hydroxylation of arachidonic acid. P450 K-3 was not efficient in the hydroxylation of either lauric acid or arachidonic acid. P450 K-2 had low omega- and (omega-1)-hydroxylation activities toward arachidonic acid, and efficiently catalyzed the hydroxylation of lauric acid at the (omega-1)-position only, not at the omega-position.  相似文献   

18.
The microsomes from rabbit intestinal mucosa which had been washed quickly and thoroughly with phenylmethylsulfonyl fluoride were found to catalyze the hydroxylation of fatty acids in the presence of NADPH and molecular oxygen. Myristic and palmitic acids were converted to the corresponding omega-and (omega-1)-hydroxy fatty acids, whereas lauric acid was converted only to 12-hydroxylauric acid, and capric acid, to 9-and 10-hydroxycapric acids together with an unknown polar acid.Among these fatty acids, both myristic and lauric acids appeared to be the most efficient substrates. The inhibition of the hydroxylation by SKF 525-A and carbon monoxide suggested that the activity depended upon cytochrome P-450. The specific activity of the fatty acid hydroxylation was almost constant along the small intestine, while the aminopyrine N-demethylation activity and the cytochrome P-450 content were highest at the proximal end of the intestine and progressively declined toward the caudal end. The cytochrome P-450 was solubilized from the intestinal microsomes and purified by 6-amino-n-hexyl Sepharose 4B chromatography. The partially purified cytochrome P-450 was active in fatty acid hydroxylation in combination with intestinal NADPH-cytochrome c reductase and phosphatidylcholine.  相似文献   

19.
20.
The Laboratory mainly deals with the development of biologic technologies for producing physiologically active lipid-protein-nature compounds from marine organisms containing omega-3 fatty acids (that are membrane components) with further evaluation of their action both in the normal state and in some simulated pathologic states as well as with creation of new preparations for application in medicine and agriculture on their basis. As a result of the experiments performed, a technology for producing two biologic preparations, namely, surface active compounds (phospholipids) and a nucleopeptid-lipid complex, exhibiting a specific action, was developed. The phospholipid complex, being surface-active in composition, was characterized as a complex possessing some surfactant-type properties and displaying an antioxidant and a membrane-stabilizing effect. On the basis of the complex including marine phospholipids with omega-3 fatty acids, the preparation "Phylomek", which is the concentrate of essential marine phospholipids, and the preparation "Morephyl", which is a marine agent with surfactant-type effect, intended for animals and poultry, were created. The ingredients of the nucleopeptid-lipid complex were identified, and its effect on the increase of testosterone levels in the blood of old and sick animals was determined. A stimulating agent of genital hormones secretion was recommended for application in the geriatrics in the case of genital function disturbance and presenilation. A fraction similar in chemical content and specific activity, found in the velvet antlers, was used as the base of the biologic preparation "Pantheron". The natural complexes of marine phospholipids were shown to be able to change the composition of lipids of membranes, but the intensity of these changes differed in cells differing in function. In the study of the biochemical mechanism of correction of disturbances in the cell membranes under an oxidative stress, the interrelation between the composition of lipids of membranes, their oxidation, and the content of natural antioxidants was determined. The reparative effect of marine phospholipids on the cell membranes under progressing pathology, caused by the restoration of the composition of phospholipids, by increases in the activities of antioxidant enzymes (SOD, catalase), and by a decrease of the accumulation of LPO products, was established. Under interaction of marine phospholipids and alpha-tocopherol, synergism was noticed, the antioxidant potential of the investigated substances and their membrane-stabilizing effect increased. The phospholipids with various residues of PUFA in the molecule were found to affect the inhibition and oxidation processes, as well as the modelling of lipid membranes. This is especially true for arachidonic and docosahexaenoic acids, the ratio of which changes under the oxidative stress. At administration of phospholipids omega-3, their ratio decreases due a decrease in the level of unetherificated PUFA. The main changes of the PUFA were found to occur in phosphatidylethanolamine isolated from microsomes. The particular role of phosphatidylethanolamine and arachidonic acid in the reparation of membranes under the action of phospholipids PUFA omega-3 and alpha-tocopherol was noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号