首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The availability of the complete genome sequence of Mycobacterium tuberculosis allows its phylogenetic analysis based on the whole genome rather than single genes. As a genome-based tree is more representative of whole organisms and less inconsistent than single-gene trees, it could provide a better index for interpretation and inference about the origin and nature of species. The standard bacterial phylogeny based on 16S ribosomal RNA sequence comparison shows that M. tuberculosis is more related to Gram-positive than to Gram-negative bacteria. Our results based on genome comparison in terms of shared orthologous genes challenge this implication. We demonstrate that M. tuberculosis is more related to Gram-negative than to Gram-positive bacteria by a quantitative analysis on the genome tree. The numerical distance data derived from genome comparison and those from 16S rRNA comparison show high significant correlation, implying that conserved gene content carries a strong phylogenetic signature in evolution.  相似文献   

2.
Species evolutionary relationships have traditionally been defined by sequence similarities of phylogenetic marker molecules, recently followed by whole-genome phylogenies based on gene order, average ortholog similarity or gene content. Here, we introduce genome conservation--a novel metric of evolutionary distances between species that simultaneously takes into account, both gene content and sequence similarity at the whole-genome level. Genome conservation represents a robust distance measure, as demonstrated by accurate phylogenetic reconstructions. The genome conservation matrix for all presently sequenced organisms exhibits a remarkable ability to define evolutionary relationships across all taxonomic ranges. An assessment of taxonomic ranks with genome conservation shows that certain ranks are inadequately described and raises the possibility for a more precise and quantitative taxonomy in the future. All phylogenetic reconstructions are available at the genome phylogeny server: .  相似文献   

3.
Abstract

Molecular sequence data have become prominent tools for phylogenetic relationship inference, particularly useful in the analysis of highly diverse taxonomic orders. Ribosomal RNA sequences provide markers that can be used in the study of phylogeny, because their function and structure have been conserved to a large extent throughout the evolutionary history of organisms. These sequences are inferred from cloned or enzymatically amplified gene sequences, or determined by direct RNA sequencing. The first step of the phylogenetic interpretation of nucleic acid sequence variations implies proper alignment of corresponding sequences from various organisms. Best alignment based on similarity criteria is greatly reinforced, in the case of ribosomal RNAs, by secondary structure homologies. Distance matrix methods to infer evolutionary trees are based on the assumption that the phylogenetic distance between each pair of organisms is proportional to the number of nucleotide substitution events. Computed tree inference methods usually take into consideration the possibility of unequal mutation rates among lineages. Divergence times can be estimated on the tree, provided that at least one lineage has been dated by fossil records. We have utilized this approach based on ribosomal RNA sequence comparison to investigate the phylogenetic relationship between dinoflagellated and other eukaryote protists, and to refine controverse phylogenies of the class Dinophycae.  相似文献   

4.
A new sequence distance measure for phylogenetic tree construction   总被引:5,自引:0,他引:5  
MOTIVATION: Most existing approaches for phylogenetic inference use multiple alignment of sequences and assume some sort of an evolutionary model. The multiple alignment strategy does not work for all types of data, e.g. whole genome phylogeny, and the evolutionary models may not always be correct. We propose a new sequence distance measure based on the relative information between the sequences using Lempel-Ziv complexity. The distance matrix thus obtained can be used to construct phylogenetic trees. RESULTS: The proposed approach does not require sequence alignment and is totally automatic. The algorithm has successfully constructed consistent phylogenies for real and simulated data sets. AVAILABILITY: Available on request from the authors.  相似文献   

5.
6.
Coronavirus phylogeny based on a geometric approach   总被引:5,自引:0,他引:5  
  相似文献   

7.
Phylogenetic trees have been constructed for a wide range of organisms using gene sequence information, especially through the identification of orthologous genes that have been vertically inherited. The number of available complete genome sequences is rapidly increasing, and many tools for construction of genome trees based on whole genome sequences have been proposed. However, development of a reasonable method of using complete genome sequences for construction of phylogenetic trees has not been established. We have developed a method for construction of phylogenetic trees based on the average sequence similarities of whole genome sequences. We used this method to examine the phylogeny of 115 photosynthetic prokaryotes, i.e., cyanobacteria, Chlorobi, proteobacteria, Chloroflexi, Firmicutes and nonphotosynthetic organisms including Archaea. Although the bootstrap values for the branching order of phyla were low, probably due to lateral gene transfer and saturated mutation, the obtained tree was largely consistent with the previously reported phylogenetic trees, indicating that this method is a robust alternative to traditional phylogenetic methods.  相似文献   

8.
The mitochondrial genome is one of the most frequently used loci in phylogenetic and phylogeographic analyses, and it is becoming increasingly possible to sequence and analyze this genome in its entirety from diverse taxa. However, sequencing the entire genome is not always desirable or feasible. Which genes should be selected to best infer the evolutionary history of the mitochondria within a group of organisms, and what properties of a gene determine its phylogenetic performance? The current study addresses these questions in a Bayesian phylogenetic framework with reference to a phylogeny of plethodontid and related salamanders derived from 27 complete mitochondrial genomes; this topology is corroborated by nuclear DNA and morphological data. Evolutionary rates for each mitochondrial gene and divergence dates for all nodes in the plethodontid mitochondrial genome phylogeny were estimated in both Bayesian and maximum likelihood frameworks using multiple fossil calibrations, multiple data partitions, and a clock-independent approach. Bayesian analyses of individual genes were performed, and the resulting trees compared against the reference topology. Ordinal logistic regression analysis of molecular evolution rate, gene length, and the G-shape parameter a demonstrated that slower rate of evolution and longer gene length both increased the probability that a gene would perform well phylogenetically. Estimated rates of molecular evolution vary 84-fold among different mitochondrial genes and different salamander lineages, and mean rates among genes vary 15-fold. Despite having conserved amino acid sequences, cox1, cox2, cox3, and cob have the fastest mean rates of nucleotide substitution, and the greatest variation in rates, whereas rrnS and rrnL have the slowest rates. Reasons underlying this rate variation are discussed, as is the extensive rate variation in cox1 in light of its proposed role in DNA barcoding.  相似文献   

9.
Target sequence capture is an efficient technique to enrich specific genomic regions for high‐throughput sequencing in ecological and evolutionary studies. In recent years, many sequence capture approaches have been proposed, but most of them rely on commercial synthetic baits which make the experiment expensive. Here, we present a novel sequence capture approach called AFLP‐based genome sequence capture (AFLP Capture). This method uses the AFLP (amplified fragment length polymorphism) technique to generate homemade capture baits without the need for prior genome information, thus is applicable to any organisms. In this approach, biotinylated AFLP fragments representing a random fraction of the genome are used as baits to capture the homologous fragments from genomic shotgun sequencing libraries. In a trial study, by using AFLP Capture, we successfully obtained 511 orthologous loci (>700,000 bp in total length) from 11 Odorrana species and more than 100,000 single nucleotide polymorphisms (SNPs) in four analyzed individuals of an Odorrana species. This result shows that our method can be used to address questions of various evolutionary depths (from interspecies level to intraspecies level). We also discuss the flexibility in bait preparation and how the sequencing data are analyzed. In summary, AFLP Capture is a rapid and flexible tool and can significantly reduce the experimental cost for phylogenetic studies that require analyzing genome‐scale data (hundreds or thousands of loci).  相似文献   

10.
As the number of sequenced genomes from diverse walks of life rapidly increases, phylogenetic analysis is entering a new era: reconstruction of the evolutionary history of organisms on the basis of full-scale comparison of their genomes. In addition to brute force, genome-wide analysis of alignments, rare genomic changes (RGCs) that are thought to comprise derived shared characters of individual clades are increasingly used in genome-wide phylogenetic studies. We propose a new type of RGCs designated RGC_CAMs (after Conserved Amino acids-Multiple substitutions), which are inferred using a genome-scale analysis of protein and underlying nucleotide sequence alignments. The RGC_CAM approach utilizes amino acid residues conserved in major eukaryotic lineages, with the exception of a few species comprising a putative clade, and selects for phylogenetic inference only those amino acid replacements that require 2 or 3 nucleotide substitutions, in order to reduce homoplasy. The RGC_CAM analysis was combined with a procedure for rigorous statistical testing of competing phylogenetic hypotheses. The RGC_CAM method is shown to be robust to branch length differences and taxon sampling. When applied to animal phylogeny, the RGC_CAM approach strongly supports the coelomate clade that unites chordates with arthropods as opposed to the ecdysozoan (molting animals) clade. This conclusion runs against the view of animal evolution that is currently prevailing in the evo-devo community. The final solution to the coelomate-ecdysozoa controversy will require a much larger set of complete genome sequences representing diverse animal taxa. It is expected that RGC_CAM and other RGC-based methods will be crucial for these future, definitive phylogenetic studies.  相似文献   

11.
Mitochondrial (mt) genomic study may reveal significant insight into the molecular evolution and several other aspects of genome evolution such as gene rearrangements evolution, gene regulation, and replication mechanisms. Other questions such as patterns of gene expression mechanism evolution, genomic variation and its correlation with physiology, and other molecular and biochemical mechanisms can be addressed by the mt genomics. Rare genomic changes have attracted evolutionary biology community for providing homoplasy free evidence of phylogenetic relationships. Gene rearrangements are considered to be rare evolutionary events and are being used to reconstruct the phylogeny of diverse group of organisms. Mt gene rearrangements have been established as a hotspot for the phylogenetic and evolutionary analysis of closely as well as distantly related organisms.  相似文献   

12.
系统发育基因组学是利用全基因组数据构建系统发育树的新领域。全基因组数据能有效消除横向基因转移和类群间基因进化速率差异等因素对系统发育树的影响。根据所使用的全基因组数据的类型, 可以将系统发育基因组学方法分为以下5类:多基因联合建树方法, 基于基因含量的方法, 基于基因排列信息的方法, 基于序列短串含量特征信息的方法及基于代谢途径的方法。文章系统地总结了每一类方法的原理、速度、准确性、适用范围及在各个生物类群中的应用, 并对系统发育基因组学的前景及面临的挑战进行了概述。  相似文献   

13.
Repeated motifs of amino acids within proteins are an abundant feature of eukaryotic sequences and may catalyze the rapid production of genetic and even phenotypic variation among organisms. The completion of the genome sequencing projects of 12 distinct Drosophila species provides a unique dataset to study these intriguing sequence features on a phylogeny with a variety of timescales. We show that there is a higher percentage of proteins containing repeats within the Drosophila genus than most other eukaryotes, including non-Drosphila insects, which makes this collection of species particularly useful for the study of protein repeats. We also find that proteins containing repeats are overrepresented in functional categories involving developmental processes, signaling, and gene regulation. Using the set of 1-to-1 ortholog alignments for the 12 Drosophila species, we test the ability of repeats to act as reliable phylogenetic signals and find that they resolve the generally accepted phylogeny despite the noise caused by their accelerated rate of evolution. We also determine that in general the position of repeats within a protein sequence is non-random, with repeats more often being absent from the middle regions of sequences. Finally we find evidence to suggest that the presence of repeats is associated with an increase in evolutionary rate upon the entire sequence in which they are embedded. With additional evidence to suggest a corresponding elevation in positive selection we propose that some repeats may be inducing compensatory substitutions in their surrounding sequence.  相似文献   

14.
Deng M  Yu C  Liang Q  He RL  Yau SS 《PloS one》2011,6(3):e17293

Background

Most existing methods for phylogenetic analysis involve developing an evolutionary model and then using some type of computational algorithm to perform multiple sequence alignment. There are two problems with this approach: (1) different evolutionary models can lead to different results, and (2) the computation time required for multiple alignments makes it impossible to analyse the phylogeny of a whole genome. This motivates us to create a new approach to characterize genetic sequences.

Methodology

To each DNA sequence, we associate a natural vector based on the distributions of nucleotides. This produces a one-to-one correspondence between the DNA sequence and its natural vector. We define the distance between two DNA sequences to be the distance between their associated natural vectors. This creates a genome space with a biological distance which makes global comparison of genomes with same topology possible. We use our proposed method to analyze the genomes of the new influenza A (H1N1) virus, human rhinoviruses (HRV) and mammalian mitochondrial. The result shows that a triple-reassortant swine virus circulating in North America and the Eurasian swine virus belong to the lineage of the influenza A (H1N1) virus. For the HRV and mammalian mitochondrial genomes, the results coincide with biologists'' analyses.

Conclusions

Our approach provides a powerful new tool for analyzing and annotating genomes and their phylogenetic relationships. Whole or partial genomes can be handled more easily and more quickly than using multiple alignment methods. Once a genome space has been constructed, it can be stored in a database. There is no need to reconstruct the genome space for subsequent applications, whereas in multiple alignment methods, realignment is needed to add new sequences. Furthermore, one can make a global comparison of all genomes simultaneously, which no other existing method can achieve.  相似文献   

15.
Molecular phylogeny based on nucleotide or amino acid sequence comparison has become a widespread tool for general taxonomy and evolutionary analyses. It seems the only means to establish a natural classification of microorganisms, since their phenotypic traits are not always consistent with genealogy. After an optimistic period during which comprehensive microbial evolutionary pictures appeared, the discovery of several pitfalls affecting molecular phylogenetic reconstruction challenged the general validity of this approach. In addition to biological factors, such as horizontal gene transfer, some methodological problems may produce misleading phylogenies. They are essentially (i) loss of phylogenetic signal by the accumulation of overlapping mutations, (ii) incongruity between the real evolutionary process and the assumed models of sequence evolution, and (iii) differences of evolutionary rates among species or among positions within a sequence. Here, we discuss these problems and some strategies proposed to overcome their effects.  相似文献   

16.
In order to study the functional phylogeny of organisms, forty different protein synthesis inhibitors with diverse domain and funcional specificities have been used to analyze forty archaeal, bacterial and eukaryotic translational systems. The inhibition curves generated with the different ribosome-antibiotic pairs have shown very interesting similarities among organisms belonging to the same phylogenetic group, confirming the feasibility of using such information in the development of evolutionary studies. A new method to extract most of the information contained in the inhibition curves is presented. Using a statistical treatment based on the principal components analysis of the data, we have defined coordinates for the organisms which have allowed us to perform a functional clustering of them. The phenograms obtained are very similar to those generated by 16/18S rRNA sequence comparison. These results prove the phylogenetic value of our functional analysis and suggest an interesting intersection between genotypic and phenotypic (functional) information.  相似文献   

17.
MatK, the only maturase gene in the land plant plastid genome, is a very popular phylogenetic marker that has been extensively applied in reconstructing angiosperm phylogeny. However, the use of matK in fern phylogeny is largely unknown, due to difficulties with amplification: ferns have lost the flanking trnK exons, typically the region used for designing stable priming sites. We developed primers that are either universal or lineage-specific that successfully amplify matK across all fern families. To evaluate whether matK is as powerful a phylogenetic marker in ferns as in angiosperms, we compared its sequence characteristics and phylogenetic performance to those of rbcL and atpA. Among these three genes, matK has the highest variability and substitution evenness, yet shows the least homoplasy. Most importantly, applying matK in fern phylogenetics better resolved relationships among families, especially within eupolypods I and II. Here we demonstrate the power of matK for fern phylogenetic reconstruction, as well as provide primers and extensive sequence data that will greatly facilitate future evolutionary studies of ferns.  相似文献   

18.
Large-scale surveys of genome size evolution in angiosperms show that the ancestral genome was most likely small, with a tendency towards an increase in DNA content during evolution. Due to polyploidisation and self-replicating DNA elements, angiosperm genomes were considered to have a 'one-way ticket to obesity' (Bennetzen & Kellogg 1997). New findings on how organisms can lose DNA challenged the hypotheses of unidirectional evolution of genome size. The present study is based on the classical work of Babcock (1947a) on karyotype evolution within Crepis and analyses karyotypic diversification within the genus in a phylogenetic context. Genome size of 21 Crepis species was estimated using flow cytometry. Additional data of 17 further species were taken from the literature. Within 30 diploid Crepis species there is a striking trend towards genome contraction. The direction of genome size evolution was analysed by reconstructing ancestral character states on a molecular phylogeny based on ITS sequence data. DNA content is correlated to distributional aspects as well as life form. Genome size is significantly higher in perennials than in annuals. Within sampled species, very small genomes are only present in Mediterranean or European species, whereas their Central and East Asian relatives have larger 1C values.  相似文献   

19.
Martins H  Villesen P 《PloS one》2011,6(3):e14745

Background

Endogenous retroviruses (ERVs) are genetic fossils of ancient retroviral integrations that remain in the genome of many organisms. Most loci are rendered non-functional by mutations, but several intact retroviral genes are known in mammalian genomes. Some have been adopted by the host species, while the beneficial roles of others remain unclear. Besides the obvious possible immunogenic impact from transcribing intact viral genes, endogenous retroviruses have also become an interesting and useful tool to study phylogenetic relationships. The determination of the integration time of these viruses has been based upon the assumption that both 5′ and 3′ Long Terminal Repeats (LTRs) sequences are identical at the time of integration, but evolve separately afterwards. Similar approaches have been using either a constant evolutionary rate or a range of rates for these viral loci, and only single species data. Here we show the advantages of using different approaches.

Results

We show that there are strong advantages in using multiple species data and state-of-the-art phylogenetic analysis. We incorporate both simple phylogenetic information and Monte Carlo Markov Chain (MCMC) methods to date the integrations of these viruses based on a relaxed molecular clock approach over a Bayesian phylogeny model and applied them to several selected ERV sequences in primates. These methods treat each ERV locus as having a distinct evolutionary rate for each LTR, and make use of consensual speciation time intervals between primates to calibrate the relaxed molecular clocks.

Conclusions

The use of a fixed rate produces results that vary considerably with ERV family and the actual evolutionary rate of the sequence, and should be avoided whenever multi-species phylogenetic data are available. For genome-wide studies, the simple phylogenetic approach constitutes a better alternative, while still being computationally feasible.  相似文献   

20.
Phenotypic behavior of a group of organisms can be studied using a range of molecular evolutionary tools that help to determine evolutionary relationships. Traditionally a gene or a set of gene sequences was used for generating phylogenetic trees. Incomplete evolutionary information in few selected genes causes problems in phylogenetic tree construction. Whole genomes are used as remedy. Now, the task is to identify the suitable parameters to extract the hidden information from whole genome sequences that truly represent evolutionary information. In this study we explored a random anchor (a stretch of 100 nucleotides) based approach (ABWGP) for finding distance between any two genomes, and used the distance estimates to compute evolutionary trees. A number of strains and species of Mycobacteria were used for this study. Anchor-derived parameters, such as cumulative normalized score, anchor order and indels were computed in a pair-wise manner, and the scores were used to compute distance/phylogenetic trees. The strength of branching was determined by bootstrap analysis. The terminal branches are clearly discernable using the distance estimates described here. In general, different measures gave similar trees except the trees based on indels. Overall the tree topology reflected the known biology of the organisms. This was also true for different strains of Escherichia coli. A new whole genome-based approach has been described here for studying evolutionary relationships among bacterial strains and species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号