首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
应用PCR方法扩增talinl的cDNA,并将其重组入谷胱甘肽转硫酶融合基因表达载体pGEX-4T-1中,获取人源的GST—talinl融合蛋白,为下阶段深入的研究talinl的结构、功能、及其与之相互作用的蛋白打下基础。经酶切、序列鉴定.选择正确重组子,将其质粒转化大肠杆菌BL21(DE3),IPTG诱导表达,用Glutathione Sepharose 4B柱纯化,western blot鉴定。克隆得到了一个2400bp的talinl的cDNA片断,重组质粒目的DNA测序正确,纯化出分子量约为121、6kD的融合蛋白。用基因工程方法使GST—talinl重组质粒在原核细胞表达并成功纯化出GST—talinl融合蛋白。  相似文献   

2.
为进一步探讨抗菌肽CM4的原核表达及其生物学功能,本实验研究了抗菌肽CM4与人可溶性B淋巴细胞刺激因子hsBAFF的融合表达及抗菌肽CM4的生物学活性。运用PCR把B淋巴细胞因子hsBAFF和家蚕抗菌肽CM4进行基因融合,构建了融合表达载体pET28a (+)/CM4-hsBAFF,并在大肠杆菌中获得高可溶性表达的融合靶蛋白,且存在于超声破碎后的上清,经分子筛Sephadex G-75纯化后的重组融合蛋白用SDS-PAGE和Western blot分析鉴定.SDS-PAGE分析表明:可以通过分子筛一步纯化得到融合蛋白,该重组融合蛋白的分子量约22.0 KDa。Western blot结果显示该重组蛋白能与鼠抗人hsBAFF的抗体发生特异性反应.运用基因工程的方法获得CM4-hsBAFF重组融合蛋白,并具有很好的抑菌生物学活性。  相似文献   

3.
采用RT PCR方法从人外周血白细胞总RNA中钓取人可溶性B淋巴细胞刺激因子 (humansolubleBlym phocytestimulator,hsBLyS)的cDNA片段 ,再运用基因重组手段 ,利用通用型质粒pBV2 2 0构建表达载体pBV2 2 0 /hsBLyS。经测序鉴定后 ,以之为模板使用重叠PCR法扩增得到hsBLyS的两个点突变体hsBY A(Cys14 6→Ala14 6)和hsBY V (Cys14 6→Val14 6)的基因片段 ,构建表达载体 pBV2 2 0 /hsBY A及 pBV2 2 0 /hsBY V。经测序无误后 ,将上述 3种载体分别转化大肠杆菌DH5α并诱导重组蛋白质表达 ,薄层扫描结果显示 3种蛋白质在DH5α中表达量都在 2 0 %~ 30 %之间。再分别运用变性、凝胶过滤层析及复性等手段纯化目的蛋白质 ,最后通过B淋巴细胞增殖实验检测纯化产物促人B细胞增殖的活性。实验结果表明 ,3种重组蛋白质都能明显刺激人B细胞增殖 ;统计学检验显示 ,突变体rhsBY V较野生型rhsBLyS的促人B淋巴细胞增殖活性显著增强。  相似文献   

4.
应用PCR方法扩增talin1的cDNA,并将其重组入谷胱甘肽转硫酶融合基因表达载体pGEX-4T-1中,获取人源的GST-talin1融合蛋白,为下阶段深入的研究talin1的结构、功能、及其与之相互作用的蛋白打下基础.经酶切、序列鉴定,选择正确重组子,将其质粒转化大肠杆菌BL21(DE3),IPTG诱导表达,用Glutathione Sepharose 4B柱纯化,western blot鉴定.克隆得到了一个2400bp的talin1的cDNA片断,重组质粒目的DNA测序正确,纯化出分子量约为121.6kD的融合蛋白.用基因工程方法使GST-talin1重组质粒在原核细胞表达并成功纯化出GST-talin1融合蛋白.  相似文献   

5.
目的:克隆、表达人vasorin(VASN)蛋白。方法:利用PCR方法从HepG2细胞的cDNA中扩增获得目的基因,并插入带有6xHis标签的原核高效可溶性表达载体pET28a中,构建重组表达质粒pET28a-VASN,将重组表达质粒转化大肠杆菌BL21(DE3),经IPTG诱导后目的基因获得表达,对融合目的蛋白进行Ni^2+金属螯合柱纯化。结果:内切酶鉴定及基因序列测定证实重组表达质粒构建成功;对目的蛋白进行了原核表达,SDS-PAGE显示相对分子质量为61x10^3的特异表达条带;Western印迹证实目的蛋白为VASN,且主要以包涵体形式存在;对经尿素变性的表达产物进行了亲和层析纯化,有利于以后的变性、复性过程。结论:获得了人VASN融合蛋白,为其进一步的生物学功能研究奠定了基础。  相似文献   

6.
为了获得重组Sonic hedgehog N端蛋白(Shh-N)并研究其功能,应用PCR技术扩增Shh-N cDNA,然后克隆至原核表达质粒中,转化E.coli后获得表达菌株, 经1 mmol/L IPTG诱导高效表达出带有His-tag的融合蛋白,其中大部分为可溶性蛋白,少量为包涵体.用His-tag特异性结合树脂纯化可溶性融合蛋白,经SDS-聚丙烯酰胺凝胶电泳鉴定为单一区带,凝胶自动扫描分析表明,Shh-N的纯度达85%以上.纯化后的Shh-N在成纤维生长因子8(FGF8)的协同作用下,能诱导神经前体细胞(NPC)向酪氨酸羟化酶阳性神经元(TH+)发育.在此基础上可以诱导不同类型的人类干细胞定向分化为多巴胺(DA)神经元,从而为临床治疗帕金森病(PD)提供充足的供体细胞.  相似文献   

7.
人B淋巴细胞刺激因子C端肽的免疫增强作用   总被引:5,自引:1,他引:4  
用套式PCR从人胎脑cDNA文库中克隆了B淋巴细胞刺激因子C端肽 (C terminalpeptideofBlymphocytestimulator,C BLyS)的cDNA。在大肠杆菌BL2 1CodonPlus (DE3)RIL中以包含体形式表达了C BLyS。对包含体的复性条件进行了摸索 ,建立了C BLyS的透析复性与纯化方法。经复性和纯化的C BLyS可结合其受体B细胞成熟抗原 (Bcellmaturationantigen ,BCMA) 人IgG1Fc融合蛋白 ,刺激体外培养的小鼠脾脏细胞增殖 ,并且可明显增强小鼠对溶菌酶的免疫应答水平。  相似文献   

8.
目的利用大肠埃希菌表达系统表达宫颈癌相关BLCAP基因,并优化表达条件。方法利用PCR技术从逆转录病毒重组载体pL(BLCAP)SN中扩增宫颈癌相关BLCAP基因,将其插入到原核表达载体pET-32(a)中,从而构建原核表达重组质粒pET-32(a)-BLCAP,随后将阳性重组质粒转化到表达宿主菌中,通过IPTG诱导表达并优化表达条件,所表达的带有His标签目的融合蛋白经Ni^2+亲和层析纯化回收,并采用SDS—PAGE和Western印迹对目的蛋白进行分析和鉴定。结果构建的重组表达质粒经PCR、酶切和DNA测序鉴定与预期的结果一致,含有重组质粒的表达宿主菌经过IPTG诱导表达了分子量约为28ku的融合蛋白,并经优化确定了最佳的诱导表达条件。结论成功构建了pET-32(a)-BLCAP原核表达质粒,表达并经纯化得到了BLCAP目的蛋白,为研究该蛋白的性质及其制备针对该蛋白的抗体奠定了基础。  相似文献   

9.
人B7—1和B7—2cDNA的克隆及鉴定   总被引:1,自引:0,他引:1  
目的:为探索性构建全新型重组人B7-PE40绿脓杆菌外毒素融合蛋白以长期诱导免疫耐受,本研究从急性B淋巴细胞白血病细胞株Raji中隆N-末端分别缺失34和16个氨基酸的人B7-1和B7-2基因胞外区,并构建含此基因的重组质粒。方法:根据B7-1和B7-2基因序列设计合成可增B7-1和B7-2cDNA的特异性引物,用RT-PCR的方法从Raji细胞总RNA中扩增B7-1和B7-2cDNA,并克隆至pGEM-T载体中,经酶切鉴定后再进行序列分析。结果和结论:从Raji细胞中扩增出预期 的624和675bp的B7-1和B7-2cDNA,将其克隆至pGEM-T载体中,分别经EcoRI/HindⅢ和BamHI/SphI双酶切电泳和序列分析确证,为进一步构建人B7-PE40外毒素融合蛋白奠定了基础。  相似文献   

10.
目的:克隆人白细胞介素21(IL-21)编码区的cDNA,在大肠杆菌中得以表达,并检测其促进人外周血单核细胞(PBMC)增殖的生物学活性。方法:利用基因工程技术,以植物血凝素(PHA)刺激的人扁桃体细胞cDNA文库为模板,经PCR扩增获得IL-21的编码基因,并将其重组于表达载体pGEX4T-2中,转化大肠杆菌DH5α进行诱导表达,纯化得到GST-IL-21重组融合蛋白;MTT法检测其对促进PBMC增殖的功能。结果:获得了IL-21编码区的cDNA克隆;SDS-PAGE显示经IPTG诱导表达的该融合蛋白相对分子质量为41000;纯化后的GST-IL-21融合蛋白在体外具有显著的促进PBMC增殖的作用。结论:GST-IL-21融合蛋白在原核表达系统中可以有效表达,并具有较好的生物学活性。  相似文献   

11.
12.
The cyclic AMP-dependent protein kinase (PKA) type II is directed to different subcellular loci through interaction of the RII subunits with A-kinase anchoring proteins (AKAPs). A full-length human clone encoding AKAP95 was identified and sequenced, and revealed a 692-amino acid open reading frame that was 89% homologous to the rat AKAP95 (V. M. Coghlan, L. K. Langeberg, A. Fernandez, N. J. Lamb, and J. D. Scott (1994)J. Biol. Chem.269, 7658–7665). The gene encoding AKAP95 was mapped to human chromosome 19p13.1-q12 using somatic cell hybrids and PCR. A fragment covering amino acids 414–692 of human AKAP95 was expressed inEscherichia coliand shown to bind RIIα. Competition with a peptide covering the RII-binding domain of AKAP Ht31 abolished RIIα binding to AKAP95. Immunofluorescence studies in quiescent human Hs-68 fibroblasts showed a nuclear localization of AKAP95, whereas RIIα was excluded from the nucleus. In contrast, during mitosis AKAP95 staining was markedly changed and appeared to be excluded from the condensed chromatin and localized outside the metaphase plate. Furthermore, the subcellular localizations of AKAP95 and RIIα overlapped in metaphase but started to segregate in anaphase and were again separated as AKAP95 reentered the nucleus in telophase. Finally, RIIα was coimmunoprecipitated with AKAP95 from HeLa cells arrested in mitosis, but not from interphase HeLa cells, demonstrating a physical association between these two molecules during mitosis. The results show a distinct redistribution of AKAP95 during mitosis, suggesting that the interaction between AKAP95 and RIIα may be cell cycle-dependent.  相似文献   

13.
SH2 domains, interaction modules and cellular wiring   总被引:4,自引:0,他引:4  
SH2 domains serve as the prototype for a growing family of protein-interaction modules, characteristic of polypeptides involved in transmitting signals from external and internal cues. The specific interactions of proteins with one another, and with other cellular components such as phospholipids and nucleic acids, provide a very general device to organize cellular behavior. We discuss the idea that rewiring of the cell's interaction network by pathogenic microorganisms and mutant cellular proteins contributes to dysregulation of cell signaling and thus to disease.  相似文献   

14.
Bioconjugating protein to nonbiological surfaces is an essential component of many promising biotechnologies impacting diverse applications such as medical diagnostics, biocatalysis, biohazard detection, and proteomics. However, to enable the widespread economical use of immobilized‐protein technologies, long‐term stability, and reusability is essential. To enhance protein stability in harsh conditions, herein we report a minimally invasive and covalent bioconjugation that enables precise control of the immobilization location at potentially any surface‐accessible location where the incorporated unnatural amino acid does not impact protein structure and function. Specifically, the PRECISE system is introduced where a uniquely reactive unnatural amino acid was incorporated site‐specifically at a prespecified location in GFP using cell‐free protein synthesis. The GFP was then directly and covalently attached to superparamagnetic beads by the unnatural amino acid in a single click reaction. The immobilized GFP was probed for retained activity and stability under harsh conditions including freeze‐thaw cycling and incubation in urea at elevated temperatures. The immobilized GFP was more stable compared to unattached protein in all cases and for all durations observed. The enhanced stability of the immobilized protein is a promising step towards long‐term protein stability for biocatalysis and other immobilized‐protein applications. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

15.
BmECM25 (previously reported as BmVMP25) was previously predicted as a gene encoding the vitelline membrane protein in silkworm, Bombyx mori. In this study, we investigated the detail temporal and spatial patterns of BmECM25 protein. Western blot results showed that BmECM25 was expressed in the follicular epithelium cells from stages −6 to +1, and was then secreted into the oocytes. However, the abundance of BmECM25 decreased during the subsequent oogenesis and finally disappeared in the mature follicles. Immunofluorescence detection showed that BmECM25 locates inside the VM layer and forms a discontinuous layer. These features of BmECM25 suggest that it is an oocyte membrane matrix protein, not a vitelline membrane protein.  相似文献   

16.
Embryonic stem cell maintenance, differentiation, and somatic cell reprogramming require the interplay of multiple pluripotency factors, epigenetic remodelers, and extracellular signaling pathways. RNA-binding proteins (RBPs) are involved in a wide range of regulatory pathways, from RNA metabolism to epigenetic modifications. In recent years we have witnessed more and more studies on the discovery of new RBPs and the assessment of their functions in a variety of biological systems, including stem cells. We review the current studies on RBPs and focus on those that have functional implications in pluripotency, differentiation, and/or reprogramming in both the human and mouse systems.  相似文献   

17.
Dendritic cells (DCs) are potent antigen-presenting cells (APCs). Among so-called professional APCs, only DCs can activate naive T cells to initiate immune response. To better understand molecular mechanisms underlying unique functions of DCs, we searched for genes specifically expressed in human DCs, using PCR-based cDNA subtraction in conjunction with differential screening. cDNAs generated from CD34(+) stem cell-derived CD1a(+) DC were subtracted with cDNA from monocytes and used for generation of a cDNA library. The cDNA library was differentially screened to select genes expressed in DCs more abundantly than in monocytes. We identified a gene encoding a protein composed of 244 amino acids, which we designated as DCNP1 (dendritic cell nuclear protein 1). In Northern blot analysis, DCNP1 mRNA was highly expressed in mature DCs and at a lower level in immature DCs. In contrast, monocytes and B cells do not express the gene. In multiple human tissue Northern blot analysis, expression of DCNP1 was detected in brain and skeletal muscle. To examine subcellular localization of DCNP1, we performed immunofluorescence analysis using an anti-DCNP1 polyclonal antibody and found the molecule to be localized mainly in the perinucleus. In an immunohistochemical analysis, we compared the expression of DCNP1 with CD68, a marker for DCs and macrophages, in spleen, lymph node, liver, and brain. While DCNP1-positive cells showed a similar tissue distribution to CD68-positive cells, the number of DCNP1-positive cells was much smaller than that of CD68-positive cells. Our findings are consistent with the proposal that DCNP1 is specifically expressed in DCs.  相似文献   

18.
19.
The full-length cDNA of a previously identified Solanum brevidens gene was isolated and characterised. DNA sequence analysis revealed an open reading frame that encodes a hybrid proline-rich cell wall protein of 407 amino acids. The putative protein was designated SbrPRP. The SbrPRP harbours three parts, an N-terminal signal peptide followed by a repetitive proline-rich domain and a cysteine-rich C-terminus resembling non-specific lipid-transfer proteins. The repetitive proline-rich domain contains two repeated motifs, PPHVKPPSTPK and PTPPIVSPP extended with TPKYP and TPKPPS motifs, respectively, at their N- or C-terminal. The SbrPRP gene of the non-tuberising Solanum species, Solanum brevidens, possesses highly homologous counterparts in the tuberising species, Solanum tuberosum (StPRP) and in the related species, Lycopersicum esculentum (TFM7). All three genes are present in single- or low copy number in the corresponding genome. Organ-specific expression of the genes, however, is different in the three solanaceous species.  相似文献   

20.
Chicken embryo fibroblasts (CEFs) localize beta-actin mRNA to their lamellae, a process important for the maintenance of cell polarity and motility. The localization of beta-actin mRNA requires a cis localization element (zipcode) and involves zipcode binding protein 1 (ZBP1), a protein that specifically binds to the zipcode. Both localize to the lamellipodia of polarized CEFs. ZBP1 and its homologues contain two NH2-terminal RNA recognition motifs (RRMs) and four COOH-terminal hnRNP K homology (KH) domains. By using ZBP1 truncations fused to GFP in conjunction with in situ hybridization analysis, we have determined that KH domains three and four were responsible for granule formation and cytoskeletal association. When the NH2 terminus was deleted, granules formed by the KH domains alone did not accumulate at the leading edge, suggesting a role for the NH2 terminus in targeting transport granules to their destination. RNA binding studies were used to show that the third and fourth KH domains, not the RRM domains, bind the zipcode of beta-actin mRNA. Overexpression of the four KH domains or certain subsets of these domains delocalized beta-actin mRNA in CEFs and inhibited fibroblast motility, demonstrating the importance of ZBP1 function in both beta-actin mRNA localization and cell motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号