首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A set of six Drosophila strains was developed, by inducing by chemical treatment with N-ethyl-N-nitrosourea (ENU) new white and, in some strains, yellow mutations in 3 wild-type (WT) and 3 insecticide-resistant (IR) populations. These strains were previously shown to vary with regard to contents and inducibility of microsomal oxidative enzymes (Zijlstra et al., 1984). In this pilot study results from a first evaluation of these strains in somatic mutation experiments are reported, using as genotoxins an aromatic amine (2-naphthylamine, 2-NA), one substituted (9,10-dimethylanthracene, DA) and one non-substituted (benzo[a]pyrene, BP) polycyclic aromatic hydrocarbon. Developing larvae heterozygous for white were chronically exposed to three different exposure doses of each carcinogen. Adult females were inspected for the occurrence of mosaic light clones in their eyes, using the somatic mutation and recombination test (SMART).

Evidence is presented indicating strong genotype-dependent variation in both spontaneous and chemically induced mutational and recombinational events in somatic cells of Drosophila. The spontaneous frequencies varied from 3.5% (Hikone-R), 4.3% (Berlin-K), 6.3% (Oregon-K), 9.1% (91-C), 20.5% (Haag-79) to 49.1% (91-R), corresponding to a 14-fold difference in spot frequencies between the two extremes. BP, DA and 2-NA were readily detectable in both Hikone-R (IR) and Oregon-K (WT), less so in 91-C (WT) and Haag-79 (IR), whereas the performance of strain Berlin-K (WT) was rather poor. The special problem with strain 91-R was the high frequency with which mosaic light spots occur not only in female genotypes heterozygous for white, but also in homozygous condition in the original stock.

The up to 20-fold variation in induced spot frequencies between different genotypes poses questions for further investigations with respect to the genetic constitution of the various strains and the role of enzyme induction on somatic cell mutagenicity, which in this system is predominantly the result of mitotic recombination.  相似文献   


2.
c-jun mRNA levels were increased in rat hepatoma cells (H4-II-E-C3) when exposed to hypotonie medium (205 mosmol/l) with a maximal induction observed after 1 h of hypotonie exposure. At this time point an approximate 5-fold increase in c-jun expression could be detected in relation to nonnotonic control incubations (305 mosmol/l). Hypertonic exposure (405 mosmol/1) had only a slight effect on c-jun expression. In contrast to the increased c-jun mRNA levels under hypotonic conditions, expression of the c-fos proto-oncogene was unaffected by changes in the osmolarity. The hypotonicity-induced increase in c-jun expression was also detectable in the presence of a protein kinase C (PKC) inhibitor. This indicates that PKC is not involved in the signal transduction pathway leading to c-jun expression upon hypotonic cell swelling in these cells.  相似文献   

3.
Chlorophyllin (CHL), a water-soluble, semi-synthetic derivative of chlorophyll and ellagic acid (EA), a naturally occurring polyphenolic compound in berries, grapes, and nuts have been reported to exert anticancer effects in various human cancer cell lines and in animal tumour models. The present study was undertaken to examine the mechanism underlying chemoprevention and changes in gene expression pattern induced by dietary supplementation of chlorophyllin and ellagic acid in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by whole genome profiling using pangenomic microarrays. In hamsters painted with DMBA, the expression of 1,700 genes was found to be altered significantly relative to control. Dietary supplementation of chlorophyllin and ellagic acid modulated the expression profiles of 104 and 37 genes respectively. Microarray analysis also revealed changes in the expression of TGFβ receptors, NF-κB, cyclin D1, and matrix metalloproteinases (MMPs) that may play a crucial role in the transformation of the normal buccal pouch to a malignant phenotype. This gene expression signature was altered on treatment with chlorophyllin and ellagic acid. Our study has also revealed patterns of gene expression signature specific for chlorophyllin and ellagic acid exposure. Thus dietary chlorophyllin and ellagic acid that can reverse gene expression signature associated with carcinogenesis are novel candidates for cancer prevention and therapy.  相似文献   

4.
5.
6.
An antioxidant enzymatic system is pivotal for aerobic animals to minimize the damage induced by reactive oxygen species. Spontaneous mutant animals with altered antioxidant enzyme activity should be useful for the study of the function of these enzymes in vivo. We examined the nucleotide sequences of the genes for the major antioxidant enzymes, including catalase (Cat), superoxide dismutase (Sod1, Sod2, Sod3), glutathione peroxidase (Gpx1, Gpx2, Gpx3, Gpx4, Gpx5), and glutathione reductase (Gsr) in 10 inbred mouse strains. Nonsynonymous nucleotide polymorphisms were identified in all genes, except for Gpx1, Gpx3, and Gpx4. Notably, the SJL/J mouse strain possessed unique nucleotide substitutions in the Gsr and Sod2 genes, which led to Asp39Ala and Val138Met amino acid substitutions in GSR and SOD2, respectively. The specific activity of GSR of SJL/J mice was reduced to 65% of that of NZB/N mice. In vivo activity, however, was higher in SJL/J, due to upregulated expression of the enzyme. The SOD2 activity in SJL/J mice was reduced to half that of other mouse strains. Consistent with this reduction, oxidative damage in the mitochondria was increased as demonstrated by a decrease of total glutathione and an increase in the levels of protein oxidation. These spontaneous hypomorphic alleles would be valuable in the study of free radical biology.  相似文献   

7.
8.
The umuDC locus of Escherichia coli is required for most mutagenesis by UV and many chemicals. Mutations in E. coli umuDC genes cloned on pBR322-derived plasmids wer e isolated by two methods. First, spontaneously-arising mutant umuDC plasmids that failed to confe cold-sensitive growth on a lexA51(Def) strain were isolated by selection. Second, mutant umuDC plasmids that affected apparent mutant yield after UV-irradiation in a strain carrying umuD+C+ in the chromosome were isolated by screening hydroxylamine-mutagenized umuD+C+ plasmids. pBR322-derived umuD+C+ plasmids inhibited the induction of the SOS response of lexA+ strains as measured by expression of din::Mu dl(lac) Ap) fusionsbut most mutant plasmids did not. Mutant plasmids defective in complementation of chromosomal umuD44, umuC36, or both were found among those selected for failure to confer cold-sensitivity, whereas those identified by the screening procedure yielded mostly mutant plasmids with more complex phenotypes. We studied in greater detail a plasmid pLM109, carrying the umuC125 mutation. This plasmid increased the sensitivity of lexA+ strainsto killing by UV-irradiation but was able to complement the deficiencies of umuC mutants in UV mutagenesis. pLM109 failed to confer cold-sensitive growth on lexA(Def) strains but inhibited SOS induction in lexA+ strains. The effect of pLM109 on the UV sensitivity of lexA(Def)strains was similar to that of the parental umuD+C+ plasmid. The mutation responsible for the phenotypes of pLM109 was localized to a 615-bp fragment. DNA sequencing revealed that the umuC125 mutation was a G:C → A:T transition that changed codon 39 of umuC from GCC → GTC thus changing Ala39 to Val39. The implications of the umuC125 mutation for umuDC-dependent effects on UV-mutagenesis and cell survival after UV damage are discussed.  相似文献   

9.
To discover the genes responsible for the apoptosis evoked by glucocorticoids in leukemic lymphoid cells, we have begun gene array analysis on microchips. Three clones of CEM cells were compared: C7–14, C1–15 and C1–6. C7–14 and C1–15 are subclones from the original clones C7 (sensitive to apoptosis by glucocorticoids) and C1 (resistant). C1–6 is a spontaneous revertant to sensitivity from the C1 clone. Previously we presented data on the sets of genes whose expression is altered in these cell clones after 20 h exposure to dexamethasone (Dex). The two sensitive clones, which respond by undergoing apoptosis starting about 24 h after Dex is added, both showed >2.5-fold induction of 39 genes and 2-fold reduction of expressed levels from 21 genes. C1–15, the resistant clone, showed alterations in a separate set of genes.

In this paper, we present further analysis of the data on genes regulated in these cell clones after 20 h Dex and compare them with the genes regulated after 12 h Dex. Some, but not all the genes found altered at 20 h are altered at 12 h, consistent with our hypothesis that sequential gene regulation eventually provokes full apoptosis. We also compare the levels of basal gene expression in the three clones. At the basal level no single gene stands out, but small sets of genes differ >2-fold in basal expression between the two sensitive and the resistant clone. A number of the genes basally higher in the resistant clone are potentially anti-apoptotic. This is consistent with our hypothesis that the resistant cells have undergone a general shift in gene expression.  相似文献   


10.
The effect of exposure of Aedes aegypti larvae to sub-lethal doses of the pyrethroid insecticide permethrin, the organophosphate temephos, the herbicide atrazine, the polycyclic aromatic hydrocarbon fluoranthene and the heavy metal copper on their subsequent tolerance to insecticides, detoxification enzyme activities and expression of detoxification genes was investigated. Bioassays revealed a moderate increase in larval tolerance to permethrin following exposure to fluoranthene and copper while larval tolerance to temephos increased moderately after exposure to atrazine, copper and permethrin. Cytochrome P450 monooxygenases activities were induced in larvae exposed to permethrin, fluoranthene and copper while glutathione S-transferase activities were induced after exposure to fluoranthene and repressed after exposure to copper. Microarray screening of the expression patterns of all detoxification genes following exposure to each xenobiotic with the Aedes Detox Chip identified multiple genes induced by xenobiotics and insecticides. Further expression studies using real-time quantitative PCR confirmed the induction of multiple CYP genes and one carboxylesterase gene by insecticides and xenobiotics. Overall, this study reveals the potential of xenobiotics found in polluted mosquito breeding sites to affect their tolerance to insecticides, possibly through the cross-induction of particular detoxification genes. Molecular mechanisms involved and impact on mosquito control strategies are discussed.  相似文献   

11.
漆酶是香菇生长发育过程中一种重要的木质素降解酶,其活性高低对于香菇木质素降解能力和香菇品质形成具有重要作用。为探讨香菇不同漆酶活性的单核菌丝体基因表达变化,对漆酶活性存在差异的单核菌丝体进行转录组测序分析,共获得15 522个注释基因。GO(gene ontology)分析表明差异基因在氧化还原酶活性节点大量富集,包括参与木质素降解的酶类及55个细胞色素P450基因;KEGG(Kyoto encyclopedia of genes and genomes)分析发现淀粉和蔗糖代谢、戊糖和葡萄糖醛酸相互转化途径中糖苷水解酶、UDPG脱氢酶等基因上调表达。通过搜索转录因子数据筛选到172个差异表达的转录因子,预测了可能与漆酶结合的bZIP、C2H2、C4转录因子家族。由此推测,在漆酶高产单核菌株中木质素降解和碳水化合物代谢的相关基因的表达发生变化,及糖醛酸和磷酸戊糖途径相关基因上调表达,促进了木质素降解产物高效转化成糖、核酸等生物大分子,有助于香菇菌丝体的生长,转录因子在漆酶活性调控中起了重要作用。本研究为深入理解香菇漆酶高产菌株的生理代谢机制提供了重要的基因数据资源。  相似文献   

12.
13.
14.
Clonal cell lines representing different developmental stages of the metanephric mesenchyme were made from transgenic mice with the Simian Virus 40 T-antigen (SV40 Tag) gene driven by the Hoxa 11 promoter. The resulting mK3 cell line represented early metanephric mesenchyme, prior to induction by the ureteric bud. These cells showed a spindle-shaped, fibroblast morphology. They expressed genes characteristic of early mesenchyme, including Hoxa 11, Hoxd 11, collagen I, and vimentin. Moreover, the mK3 cells displayed early metanephric mesenchyme biological function. In organ co-culture experiments they were able to induce growth and branching of the ureteric bud. Another cell line, mK4, represented later, induced metanephric mesenchyme undergoing epithelial conversion. These cells were more polygonal, or epithelial in shape, and expressed genes diagnostic of late mesenchyme, including Pax-2, Pax-8, Wnt-4, Cadherin-6, Collagen IV, and LFB3. To better define the gene expression patterns of kidney metanephric mesenchyme cells at these two stages of development, RNAs from the mK3 and mK4 cells were hybridized to Affymetrix GeneChip probe arrays. Over 4000 expressed genes were identified and thereby implicated in kidney formation. Comparison of the mK3 and mK4 gene expression profiles revealed 121 genes showing greater than a ten-fold difference in expression level. Several are known to be expressed during metanephric mesenchyme differentiation, but most had not been previously associated with this process. In situ hybridizations were used to confirm that selected novel genes were expressed in the developing kidney.  相似文献   

15.
16.
Vegetative wild-type and DNA repair-deficient (homologous recombination, recA and nucleotide excision repair, uvrB) Bacillus subtilis cells were exposed to UV-C radiation. Colony formation, DNA bipyrimidine photoproducts and gene expression were measured during cell recovery. Gene expression was measured after 60 min cell recovery where 50% (wild-type), 30% (recA) and 8% (uvrB), respectively, of the UV-C induced DNA photoproducts were repaired. We examined changes in the gene expression following UV exposure in wild-type and both repair-deficient strains. A set of known and unknown genes were found to be significantly up-regulated in wild-type B. subtilis cells, whereas no or lower gene induction was determined for both mutant strains. In addition, the possible roles of newly identified UV-responsive genes are discussed with respect to cellular recovery following exposure to UV irradiation.  相似文献   

17.
18.
Microarray analysis is a powerful tool to identify the biological effects of drugs or chemicals on cellular gene expression. In this study, we compare the relationships between traditional measures of genetic toxicology and mutagen-induced alterations in gene expression profiles. TK6 cells were incubated with 0.01, 0.1, or 1.0 microM +/-anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide (BPDE) for 4 h and then cultured for an additional 20 h. Aliquots of the exposed cells were removed at 4 and 24 h in order to quantify DNA adduct levels by 32P post-labeling and measure cell viability by cloning efficiency and flow cytometry. Gene expression profiles were developed by extracting total RNA from the control and exposed cells at 4 and 24 h, labeling with Cy3 or Cy5 and hybridizing to a human 350 gene array. Mutant frequencies in the Thymidine Kinase and Hypoxanthine Phosphoribosyl Transferase genes were also determined. The 10alpha-(deoxyguanosin-N(2)-yl)-7alpha,8beta,9beta-trihydroxy-7,8,9,10-tetrahydrobenzo(a)pyrene (dG-N(2)-BPDE) adduct increased as a function of dose and was the only adduct identified. A dose-related decrease in cell viability was evident at 24 h, but not at 4 h. Cell death occurred by apoptosis. At 4 h, analysis of the gene expression profiles revealed that Glutathione Peroxidase and Gadd45 were consistently upregulated (greater than 1.5-fold and significantly (P < 0.001) greater than the control in two experiments) in response to 1.0 microM BPDE exposure. Fifteen genes were consistently down-regulated (less than 0.67-fold and significantly (P < 0.001) lower than the control in two experiments) at 4 h in cultures exposed to 1.0 microM BPDE. Genes with altered expression at 4 h included genes important in the progression of the cell-cycle and those that inhibit apoptosis. At 24 h post-exposure, 16 genes, involved in cell-cycle control, detoxification, and apoptosis were consistently upregulated; 10 genes were repressed in cultures exposed to the high dose of BPDE. Real-time quantitative PCR confirmed the differential expression of selected genes. These data suggest that changes in gene expression will help to identify effects of drugs and chemicals on molecular pathways in cells, and will provide useful information about the molecular responses associated with DNA damage. Of the endpoints evaluated, DNA adduct formation was the most sensitive indicator of DNA damage. DNA adduct formation was clearly evident at low doses, but the number of genes with significantly altered expression (P < 0.001) was minimal. Alterations in gene expression were more robust at doses associated with cellular toxicity and induction of mutations.  相似文献   

19.
Bovine adrenocortical cells undergo a process in which expression of steroid hydroxylases is lost progressively as a function of population doubling level (PDL) in culture. Each cytochrome P450 shows a characteristic rate of loss of expression as a function of PDL (in order of rates of loss: CYP11B > CYP21 > CYP17 > CYP11A). CYP11B and CYP21 require insulin-like growth factor I as well as cyclic AMP; these are the only factors required for induction in the primary culture. Middle- and later passage cells do not express CYP11B and CYP21 under the same conditions, but will do so when cells are grown in extracellular matrix Matrigel. In late-passage cells neither CYP17, CYP21, nor CYP11B are expressed, even in the presence of Matrigel; only CYP11A is expressed in late-passage cultures. When the different environmental factors required for induction of CYP11B and CYP21 are taken into account, induction of these genes disappears with the same kinetics as previously shown for CYP17 as a function of PDL. The primary cause of the loss of expression of these genes is likely to be a phenotypic switching event similar to that previously demonstrated for CYP17 by in situ hybridization. The mechanism of phenotypic switching is unknown. However, one HpaII site at −2.3 kb of CYP17 was methylated in the bovine adrenal cortex in vivo but showed rapid and complete demethylation when adrenocortical cells were placed in culture. This indicates a unique, reproducible, environmentally determined change in methylation, with as yet undetermined consequences. However, data from reporter constructs suggest that phenotypic switching does not result from a simple loss of regulatory factors that act within 2.5 kb of the promoter. Previous data suggested that SV40 T antigen may affect phenotypic switching, and thus that SV40 may be useful for the derivation of functional adrenocortical cell lines. Adaptation of methods previously used for bovine cells to human adrenocortical cells to produce SV40 T antigen-transfected clones yielded data indicating preservation of essential aspects of the human adrenocortical cell differentiated phenotype.  相似文献   

20.
The effects of altering the cell growth rate (physiological state) and DNA repair capacity (genetic state) on susceptibility to inactivation and mutagenesis by ethyl methanesulfonate (EMS) were studied in 4 strains of E. coli. Logarithmic and stationary phase cells of the polymerase I deficient mutant, P3478 polA, a recombination deficient mutant, DZ417 recA, and the respective parental strains, W3110pol+ and AB253 rec+, were exposed to EMS and the surviving fraction and mutant frequency determined. At the same EMS concentration both mutants were more susceptible to inactivation than the parental strains. In all 4 strains, log phase cells were more sensitive to inactivation than stationary cells. The surviving fraction of stationary cells exceeded log cells by a factor of 18 for polA, 6 for recA, and about 2 for the parental strains. In all strains, except recA, log phase cells exhibited higher spontaneous mutant frequencies than stationary phase cells. At the same concentration of EMS, survivors of both polA and recA showed more than 10-fold higher induced frequencies than the wild types. However, at the same survival levels the repair deficient mutants exhibited induced mutant frequencies comparable to the repair proficient strains. There was no significant effect of growth phase on EMS induced mutability in recA or the parental strains. In marked contrast, the polymerase I deficient mutant shows both a higher spontaneous frequency and a greater than 10-fold higher EMS induced mutant frequency in log phase cultures compared to stationary phase cultures. Our results support the hypothesis that cellular susceptibility to alkylating agents is influenced by both the genetic capability for repair and the particular physiological state of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号