首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of human mitochondrial (mt) DNA genomes demonstrate that the root of the human phylogenetic tree occurs in Africa. Although 2 mtDNA lineages with an African origin (haplogroups M and N) were the progenitors of all non-African haplogroups, macrohaplogroup L (including haplogroups L0-L6) is limited to sub-Saharan Africa. Several L haplogroup lineages occur most frequently in eastern Africa (e.g., L0a, L0f, L5, and L3g), but some are specific to certain ethnic groups, such as haplogroup lineages L0d and L0k that previously have been found nearly exclusively among southern African "click" speakers. Few studies have included multiple mtDNA genome samples belonging to haplogroups that occur in eastern and southern Africa but are rare or absent elsewhere. This lack of sampling in eastern Africa makes it difficult to infer relationships among mtDNA haplogroups or to examine events that occurred early in human history. We sequenced 62 complete mtDNA genomes of ethnically diverse Tanzanians, southern African Khoisan speakers, and Bakola Pygmies and compared them with a global pool of 226 mtDNA genomes. From these, we infer phylogenetic relationships amongst mtDNA haplogroups and estimate the time to most recent common ancestor (TMRCA) for haplogroup lineages. These data suggest that Tanzanians have high genetic diversity and possess ancient mtDNA haplogroups, some of which are either rare (L0d and L5) or absent (L0f) in other regions of Africa. We propose that a large and diverse human population has persisted in eastern Africa and that eastern Africa may have been an ancient source of dispersion of modern humans both within and outside of Africa.  相似文献   

2.
Y chromosomes from representative sample of Eastern Ukrainians (94 individuals) were analyzed for composition and frequencies of haplogroups, defined by 11 biallelic loci located in non-recombining part of the chromosome (SRY1532, YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25, M89, and M56). In the Ukrainian gene, pool six haplogroups were revealed: E, F (including G and I), J, N3, P, and R1a1. These haplogroups were earlier detected in a study of Y-chromosome diversity on the territory of Europe as a whole. The major haplogroup in the Ukrainian gene pool, haplogroup R1a1 (earlier designated HG3), accounted for about 44% of all Y chromosomes in the sample examined. This haplogroup is thought to mark the migration patterns of the early Indo-Europeans and is associated with the distribution of the Kurgan archaeological culture. The second major haplogroup is haplogroup F (21.3%), which is a combination of the lineages differing by the time of appearance. Haplogroup P found with the frequency of 9.6%, represents the genetic contribution of the population originating from the ancient autochthonous population of Europe. Haplogroups J and E (11.7 and 4.2%, respectively) mark the migration patterns of the Middle-Eastern agriculturists during the Neolithic. The presence of the N3 lineage (9.6%) is likely explained by a contribution of the assimilated Finno-Ugric tribes. The data on the composition and frequencies of Y-chromosome haplogroups in the sample studied substantially supplement the existing picture of the male lineage distribution in the Eastern Slav population.  相似文献   

3.
Decreased mitochondrial function plays a pivotal role in the pathogenesis of type 2 diabetes mellitus (T2DM). Recently, it was reported that mitochondrial DNA (mtDNA) haplogroups confer genetic susceptibility to T2DM in Koreans and Japanese. Particularly, mtDNA haplogroup N9a is associated with a decreased risk of T2DM, whereas haplogroups D5 and F are associated with an increased risk. To examine functional consequences of these haplogroups without being confounded by the heterogeneous nuclear genomic backgrounds of different subjects, we constructed transmitochondrial cytoplasmic hybrid (cybrid) cells harboring each of the three haplogroups (N9a, D5, and F) in a background of a shared nuclear genome. We compared the functional consequences of the three haplogroups using cell-based assays and gene expression microarrays. Cell-based assays did not detect differences in mitochondrial functions among the haplogroups in terms of ATP generation, reactive oxygen species production, mitochondrial membrane potential, and cellular dehydrogenase activity. However, differential expression and clustering analyses of microarray data revealed that the three haplogroups exhibit a distinctive nuclear gene expression pattern that correlates with their susceptibility to T2DM. Pathway analysis of microarray data identified several differentially regulated metabolic pathways. Notably, compared to the T2DM-resistant haplogroup N9a, the T2DM-susceptible haplogroup F showed down-regulation of oxidative phosphorylation and up-regulation of glycolysis. These results suggest that variations in mtDNA can affect the expression of nuclear genes regulating mitochondrial functions or cellular energetics. Given that impaired mitochondrial function caused by T2DM-associated mtDNA haplogroups is compensated by the nuclear genome, we speculate that defective nuclear compensation, under certain circumstances, might lead to the development of T2DM.  相似文献   

4.
The gene-pool structure of Tuvinians was examined in terms of the composition and frequency of Y-chromosome haplogroups in five geographically distanct populations. In the Tuvinian gene pool, a total of 22 haplogroups were identified with six of these, which were the most frequent (C3c, C3*, N1b, N1c1, Q1a3, and R1a1a). It was demonstrated that eastern regions of Tuva were most different from the other regions in haplotype frequencies. The evaluation of genetic diversity based on the frequencies of biallelic haplogroups and YSTR haplotypes revealed very high diversity values for all samples. In general, the genetic diversity values identified in Tuvinians were the highest for the indigenous ethnic groups of Siberia. The evaluation of the genetic differentiation of the samples examined using the analysis of molecular variance (AMOVA) showed that the gene pool of Tuvinians was relatively poorly differentiated with respect to haplogroup frequencies. Phylogenetic analysis within haplogroup N1b revealed strong founder effect, i.e., reduced diversity and star-like phylogeny of the median network of haplotypes, which formed a separate subcluster exclusive to Tuvinians. It was demonstrated that, in Tuvinians, haplogroup N1c1 was the most heterogeneous in haplotype profile and consisted of three different haplotype clusters, demonstrating considerable differences of western population from the rest of the Tuva populations. Phylogenetic analysis of haplogroups revealed common components for Tuvinians, Khakasses, Altaians, and Mongols.  相似文献   

5.
Modern humans have occupied New Guinea and the nearby Bismarck and Solomon archipelagos of Island Melanesia for at least 40,000 years. Previous mitochondrial DNA (mtDNA) studies indicated that two common lineages in this region, haplogroups P and Q, were particularly diverse, with the coalescence for P considered significantly older than that for Q. In this study, we expand the definition of haplogroup Q so that it includes three major branches, each separated by multiple mutational distinctions (Q1, equivalent to the earlier definition of Q, plus Q2 and Q3). We report three whole-mtDNA genomes that establish Q2 as a major Q branch. In addition, we describe 314 control region sequences that belong to the expanded haplogroups P and Q from our Southwest Pacific collection. The coalescence dates for the largest P and Q branches (P1 and Q1) are similar to each other (approximately 50,000 years old) and considerably older than prior estimates. Newly identified Q2, which was found in Island Melanesian samples just to the east, is somewhat younger by more than 10,000 years. Our coalescence estimates should be more reliable than prior ones because they were based on significantly larger samples as well as complete mtDNA-coding region sequencing. Our estimates are roughly in accord with the current suggested dates for the first settlement of New Guinea-Sahul. The phylogeography of P and Q indicates almost total (female) isolation of ancient New Guinea-Island Melanesia from Australia that may have existed from the time of the first settlement. While Q subsequently diversified extensively in New Guinea-Island Melanesia, it has not been found in Australia. The only shared mtDNA haplogroup between Australia and New Guinea identified to date remains one minor branch of P.  相似文献   

6.
The structure of the Buryat gene pool has been studied based on the composition and frequency of Y-chromosome haplogroups in eight geographically distant populations. Eleven haplogroups have been found in the Buryat gene pool, two of which are the most frequent (N1c1 and C3d). The greatest difference in haplogroup frequencies was fixed between western and eastern Buryat samples. The evaluation of genetic diversity based on haplogroup frequencies revealed that it has low values in most of the samples. The evaluation of the genetic differentiation of the examined samples using an analysis of molecular variance (AMOVA) shows that the Buryat gene pool is highly differentiated by haplotype frequencies. Phylogenetic analysis within haplogroups N1c1 and C3d revealed a strong founder effect, i.e., reduced diversity and starlike phylogeny of the median network of haplotypes that form specific subclusters. The results of a phylogenetic analysis of the haplogroups identified common genetic components for Buryats and Mongols.  相似文献   

7.
Because mitochondria play pivotal roles in both insulin secretion from the pancreatic beta cells and insulin resistance of skeletal muscles, we performed a large-scale association study to identify mitochondrial haplogroups that may confer resistance against or susceptibility to type 2 diabetes mellitus (T2DM). The study population comprised 2,906 unrelated Japanese individuals, including 1,289 patients with T2DM and 1,617 controls, and 1,365 unrelated Korean individuals, including 732 patients with T2DM and 633 controls. The genotypes for 25 polymorphisms in the coding region of the mitochondrial genome were determined, and the haplotypes were classified into 10 major haplogroups (i.e., F, B, A, N9a, M7a, M7b, G, D4a, D4b, and D5). Multivariate logistic-regression analysis with adjustment for age and sex revealed that the mitochondrial haplogroup N9a was significantly associated with resistance against T2DM (P=.0002) with an odds ratio of 0.55 (95% confidence interval 0.40-0.75). Even in the modern environment, which is often characterized by satiety and physical inactivity, this haplogroup might confer resistance against T2DM.  相似文献   

8.
Indian subcontinent harbours both the human mtDNA macrohaplogroups M and N, of which M is the most prevalent. In this study, we discuss the overall distribution of the various haplogroups and sub-haplogroups of M among the different castes and tribes to understand their diverse pattern with respect to geographical location and linguistic affiliation of the populations. An overview of about 170 studied populations, belonging to four distinct linguistic families and inhabiting different geographic zones, revealed wide diversity of about 22 major haplogroups of M. The tribal populations belonging to the same linguistic family but inhabiting different geographical regions (Dravidian and Austro-Asiatic speakers) exhibited differences in their haplogroup diversity. The northern and southern region castes showed greater diversity than the castes of other regions.  相似文献   

9.
We propose the first molecular systematic hypothesis for the origin and evolution of Cebus capucinus based on an analysis of 710 base pairs (bp) of the cytochrome c oxidase subunit II (COII) mitochondrial gene in 121 C. capucinus specimens sampled in the wild. The animals came from the borders of Guatemala and Belize, Costa Rica, and eight different departments of Colombia (Antioquia, Chocó, Sucre, Bolivar, Córdoba, Magdalena, Cauca, and Valle del Cauca). Three different and significant haplotype lineages were found in Colombia living sympatrically in the same departments. They all presented high levels of gene diversity but the third Colombian gene pool was determined likely to be the most ancestral lineage. The second Colombian mitochondrial (mt) haplogroup is likely the source of origin of the unique Central America mt haplogroup that was detected. Our molecular population genetics data do not agree with the existence of two well-defined subspecies in Central America (limitaneus and imitator). This Central America mt haplogroup showed significantly less genetic diversity than the Colombian mt haplogroups. All the C. capucinus analyzed showed evidence of historical population expansions. The temporal splits among these four C. capucinus lineages were related to the completion of the Panamanian land bridge as well as to climatic changes during the Quaternary Period.  相似文献   

10.
Phylogenetic trees based on mtDNA polymorphisms are often used to infer the history of recent human migrations. However, there is no consensus on which method to use. Most methods make strong assumptions which may bias the choice of polymorphisms and result in computational complexity which limits the analysis to a few samples/polymorphisms. For example, parsimony minimizes the number of mutations, which biases the results to minimizing homoplasy events. Such biases may miss the global structure of the polymorphisms altogether, with the risk of identifying a "common" polymorphism as ancient without an internal check on whether it either is homoplasic or is identified as ancient because of sampling bias (from oversampling the population with the polymorphism). A signature of this problem is that different methods applied to the same data or the same method applied to different datasets results in different tree topologies. When the results of such analyses are combined, the consensus trees have a low internal branch consensus. We determine human mtDNA phylogeny from 1737 complete sequences using a new, direct method based on principal component analysis (PCA) and unsupervised consensus ensemble clustering. PCA identifies polymorphisms representing robust variations in the data and consensus ensemble clustering creates stable haplogroup clusters. The tree is obtained from the bifurcating network obtained when the data are split into k = 2,3,4,...,kmax clusters, with equal sampling from each haplogroup. Our method assumes only that the data can be clustered into groups based on mutations, is fast, is stable to sample perturbation, uses all significant polymorphisms in the data, works for arbitrary sample sizes, and avoids sample choice and haplogroup size bias. The internal branches of our tree have a 90% consensus accuracy. In conclusion, our tree recreates the standard phylogeny of the N, M, L0/L1, L2, and L3 clades, confirming the African origin of modern humans and showing that the M and N clades arose in almost coincident migrations. However, the N clade haplogroups split along an East-West geographic divide, with a "European R clade" containing the haplogroups H, V, H/V, J, T, and U and a "Eurasian N subclade" including haplogroups B, R5, F, A, N9, I, W, and X. The haplogroup pairs (N9a, N9b) and (M7a, M7b) within N and M are placed in nonnearest locations in agreement with their expected large TMRCA from studies of their migrations into Japan. For comparison, we also construct consensus maximum likelihood, parsimony, neighbor joining, and UPGMA-based trees using the same polymorphisms and show that these methods give consistent results only for the clade tree. For recent branches, the consensus accuracy for these methods is in the range of 1-20%. From a comparison of our haplogroups to two chimp and one bonobo sequences, and assuming a chimp-human coalescent time of 5 million years before present, we find a human mtDNA TMRCA of 206,000 +/- 14,000 years before present.  相似文献   

11.
Y chromosomes from representative sample of Eastern Ukrainians (94 individuals) were analyzed for composition and frequencies of haplogroups, defined by 11 biallelic loci located in non-recombining part of the chromosome (SRY1532, YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25,M89, andM56). In the Ukrainian gene, pool six haplogroups were revealed: E, F (including G and I), J, N3, P, and R1a1. These haplogroups were earlier detected in a study of Y-chromosome diversity on the territory of Europe as a whole. The major haplogroup in the Ukrainian gene pool, haplogroup R1a1 (earlier designated HG3), accounted for about 44% of all Y chromosomes in the sample examined. This haplogroup is thought to mark the migration patterns of the early Indo-Europeans and is associated with the distribution of the Kurgan archaeological culture. The second major haplogroup is haplogroup F (21.3%), which is a combination of the lineages differing by the time of appearance. Haplogroup P found with the frequency of 9.6%, represents the genetic contribution of the population originating from the ancient autochthonous population of Europe. Haplogroups J and E (11.7 and 4.2%, respectively) mark the migration patterns of the Middle-Eastern agriculturists during the Neolithic. The presence of the N3 lineage (9.6%) is likely explained by a contribution of the assimilated Finno–Ugric tribes. The data on the composition and frequencies of Y-chromosome haplogroups in the sample studied substantially supplement the existing picture of the male lineage distribution in the Eastern Slav population.  相似文献   

12.
This study provides the frequencies of four mitochondrial DNA (mtDNA) haplogroups of 233 native South Amerindians in eight populations living in the Beni Department of Bolivia, including six populations not previously studied. Linguistically, these populations belong to the three principal South Amerindian language stocks, Andean, Equatorial-Tucanoan, and Ge-Pano-Carib. Frequency analyses under geographic, historic, linguistic, and genetic configurations using the theta statistic of Weir (Weir 1990) and analysis of molecular variance (AMOVA) show similar results. Results are also similar when phenetic cluster is used. Aymara belongs almost exclusively to haplogroup B, Quechua- and Moseten-speaking tribes belong to haplogroups A and B, but the first tribe presents high frequencies of haplogroup B. Yuracare, Trinitario, and Ignaciano exhibit high frequencies of A, B, and C haplogroups, and the Movima present a large proportion of haplogroup C. There is some correspondence between mtDNA haplogroup frequencies and language affiliation and historical connections, but less so with geographic aspects. The present study provides a context for understanding the relationship between different Amerindian populations living in a multiethnic area of Bolivia.  相似文献   

13.
Mitochondrial dysfunction has repeatedly been reported associated with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), as have mitochondrial DNA (mtDNA) tRNA and duplication mutations and mtDNA haplogroup lineages. We identified 19 Taiwanese T2DM and MS pedigrees from Taiwan, with putative matrilineal transmission, one of which harbored the pathogenic mtDNA tRNALeu(UUR) nucleotide (nt) 3243A>G mutation on the N9a3 haplogroup background. We then recruited three independent Taiwanese cohorts, two from Taipei (N?=?498, mean age 52 and N?=?1002, mean age 44) and one from a non-urban environment (N?=?501, mean age 57). All three cohorts were assessed for an array of metabolic parameters, their mtDNA haplogroups determined, and the haplogroups correlated with T2DM/MS phenotypes. Logistic regression analysis revealed that mtDNA haplogroups D5, F4, and N9a conferred T2DM protection, while haplogroups F4 and N9a were risk factors for hypertension (HTN), and F4 was a risk factor for obesity (OB). Additionally, the 5263C>T (ND2 A165V) variant commonly associated with F4 was associated with hypertension (HTN). Cybrids were prepared with macro-haplogroup N (defined by variants m.ND3 10398A (114T) and m.ATP6 8701A (59T)) haplogroups B4 and F1 mtDNAs and from macro-haplogroup M (variants m.ND3 10398G (114A) and m.ATP6 8701G (59A)) haplogroup M9 mtDNAs. Additionally, haplogroup B4 and F1 cybrids were prepared with and without the mtDNA variant in ND1 3394T>C (Y30H) reported to be associated with T2DM. Assay of mitochondria complex I in these cybrids revealed that macro-haplogroup N cybrids had lower activity than M cybrids, that haplogroup F cybrids had lower activity than B4 cybrids, and that the ND1 3394T>C (Y30H) variant reduced complex I on both the B4 and F1 background but with very different cumulative effects. These data support the hypothesis that functional mtDNA variants may contribute to the risk of developing T2DM and MS.  相似文献   

14.
Previous studies have shown that there were extensive genetic admixtures in the Silk Road region. In the present study, we analyzed 252 mtDNAs of five ethnic groups (Uygur, Uzbek, Kazak, Mongolian, and Hui) from Xinjiang Province, China (through which the Silk Road once ran) together with some reported data from the adjacent regions in Central Asia. In a simple way, we classified the mtDNAs into different haplogroups (monophyletic clades in the rooted mtDNA tree) according to the available phylogenetic information and compared their frequencies to show the differences among the matrilineal genetic structures of these populations with different demographic histories. With the exception of eight unassigned M*, N*, and R* mtDNAs, all the mtDNA types identified here belonged to defined subhaplogroups of haplogroups M and N (including R) and consisted of subsets of both the eastern and western Eurasian pools, thus providing direct evidence supporting the suggestion that Central Asia is the location of genetic admixture of the East and the West. Although our samples were from the same geographic location, a decreasing tendency of the western Eurasian-specific haplogroup frequency was observed, with the highest frequency present in Uygur (42.6%) and Uzbek (41.4%) samples, followed by Kazak (30.2%), Mongolian (14.3%), and Hui (6.7%). No western Eurasian type was found in Han Chinese samples from the same place. The frequencies of the eastern Eurasian-specific haplogroups also varied in these samples. Combined with the historical records, ethno-origin, migratory history, and marriage customs might play different roles in shaping the matrilineal genetic structure of different ethnic populations residing in this region.  相似文献   

15.
A set of 96 complete mtDNA sequences that belong to the three major African haplogroups (L1, L2, and L3) was analyzed to determine if mtDNA has evolved as a molecular clock. Likelihood ratio tests (LRTs) were carried out with each of the haplogroups and with combined haplogroup sequence sets. Evolution has not been clock-like, neither for the coding region nor for the control region, in combined sets of African haplogroup L mtDNA sequences. In tests of individual haplogroups, L2 mtDNAs showed violations of a molecular clock under all conditions and in both the control and coding regions. In contrast, haplogroup L1 and L3 sequences, both for the coding and control regions, show clock-like evolution. In clock tests of individual L2 subclades, the L2a sequences showed a marked violation of clock-like evolution within the coding region. In addition, the L2a and L2c branch lengths of both the coding and control regions were shorter relative to those of the L2b and L2d sequences, a result that indicates lower levels of sequence divergence. Reduced median network analyses of the L2a sequences indicated the occurrence of marked homoplasy at multiple sites in the control region. After exclusion of the L2a and L2c sequences, African mtDNA coding region evolution has not significantly departed from a molecular clock, despite the results of neutrality tests that indicate the mitochondrial coding region has evolved under nonneutral conditions. In contrast, control region evolution is clock-like only at the haplogroup level, and it thus appears to have evolved essentially independently from the coding region. The results of the clock tests, the network analyses, and the branch length comparisons all caution against the use of simple mtDNA clocks.  相似文献   

16.
MtDNA and Y-chromosome lineages in the Yakut population   总被引:1,自引:0,他引:1  
The structure of female (mtDNA) and male (Y-chromosome haplotypes) lineages in the Yakut population was examined. To determine mtDNA haplotypes, sequencing of hypervariable segment I and typing of haplotype-specific point substitutions in the other parts of the mtDNA molecule were performed. Y haplogroups were identified through typing of biallelic polymorphisms in the nonrecombining part of the chromosome. Haplotypes within haplogroups were analyzed with seven microsatellite loci. Mitochondrial gene pool of Yakuts is mainly represented by the lineages of eastern Eurasian origin (haplogroups A, B, C, D, G, and F). In Yakuts haplogroups C and D showing the total frequency of almost 80% and consisting of 12 and 10 different haplopypes, respectively, were the most frequent and diverse. The total part of the lineages of western Eurasian origin ("Caucasoid") was about 6% (4 haplotypes, haplogroups H, J, and U). Most of Y chromosomes in the Yakut population (87%) belonged to haplogroup N3 (HG16), delineated by the T-C substitution at the Tat locus. Chromosomes of haplogroup N3 displayed the presence of 19 microsatellite haplotypes, the most frequent of which encompassed 54% chromosomes of this haplogroup. Median network of haplogroup N3 in Yakuts demonstrated distinct "starlike phylogeny". Male lineages of Yakuts were shown to be closest to those of Eastern Evenks.  相似文献   

17.
18.
Yang S  Zhang H  Mao H  Yan D  Lu S  Lian L  Zhao G  Yan Y  Deng W  Shi X  Han S  Li S  Wang X  Gou X 《PloS one》2011,6(12):e28215

Background

The domestic pig currently indigenous to the Tibetan highlands is supposed to have been introduced during a continuous period of colonization by the ancestors of modern Tibetans. However, there is no direct genetic evidence of either the local origin or exotic migration of the Tibetan pig.

Methods and Findings

We analyzed mtDNA hypervariable segment I (HVI) variation of 218 individuals from seven Tibetan pig populations and 1,737 reported mtDNA sequences from domestic pigs and wild boars across Asia. The Bayesian consensus tree revealed a main haplogroup M and twelve minor haplogroups, which suggested a large number of small scale in situ domestication episodes. In particular, haplogroups D1 and D6 represented two highly divergent lineages in the Tibetan highlands and Island Southeastern Asia, respectively. Network analysis of haplogroup M further revealed one main subhaplogroup M1 and two minor subhaplogroups M2 and M3. Intriguingly, M2 was mainly distributed in Southeastern Asia, suggesting for a local origin. Similar with haplogroup D6, M3 was mainly restricted in Island Southeastern Asia. This pattern suggested that Island Southeastern Asia, but not Southeastern Asia, might be the center of domestication of the so-called Pacific clade (M3 and D6 here) described in previous studies. Diversity gradient analysis of major subhaplogroup M1 suggested three local origins in Southeastern Asia, the middle and downstream regions of the Yangtze River, and the Tibetan highlands, respectively.

Conclusions

We identified two new origin centers for domestic pigs in the Tibetan highlands and in the Island Southeastern Asian region.  相似文献   

19.
Derenko  M. V.  Lunkina  A. V.  Malyarchuk  B. A.  Zakharov  I. A.  Tsedev  Ts.  Park  K. S.  Cho  Y. M.  Lee  H. K.  Chu  Ch. H. 《Russian Journal of Genetics》2004,40(11):1292-1299
Using the data on mitochondrial DNA (mtDNA) restriction polymorphism, the gene pools of Koreans (N = 164) and Mongolians (N = 48) were characterized. It was demonstrated that the gene pools were represented by the common set of mtDNA haplogroups of East Asian origin (M*, M7, M8a, M10, C, D4, G*, G2, A, B*, B5, F1, and N*). In addition to this set, mtDNA haplogroups D5 and Y were identified in Koreans while Mongolians possessed haplogroup Z. Only in Mongolians, a European component with the frequency of 10.4% and represented by the mtDNA types belonging to haplogroups K, U4, and N1, was identified. Phylogenetic and statistical analyses of the data on mtDNA variation in the populations of South Siberia, Central, and East Asia suggested the existence of interpopulation differentiation within these regions, the main role in which was played by the geographical and linguistic factors. Analysis of the pairwise F ST distances demonstrated close genetic similarity of Koreans to Northern Chinese, which in turn, were clearly different from Southern Chinese populations. Mongolians occupied an intermediate position between the ethnic groups of South Siberia and Central/East Asia.  相似文献   

20.
1. Alzheimer’s disease (AD) is the most common form of dementia in the elderly in which interplay between genes and the environment is supposed to be involved. Mitochondrial DNA (mtDNA) has the only noncoding regions at the displacement loop (D-loop) region that contains two hypervariable segments (HVS-I and HVS-II) with high polymorphism. mtDNA has already been fully sequenced and many subsequent publications have shown polymorphic sites, haplogroups, and haplotypes. Haplogroups could have important implications to understand the association between mutability of the mitochondrial genome and the disease. 2. To assess the relationship between mtDNA haplogroup and AD, we sequenced the mtDNA HVS-I in 30 AD patients and 100 control subjects. We could find that haplogroups H and U are significantly more abundant in AD patients (P = 0.016 for haplogroup H and P = 0.0003 for haplogroup U), Thus, these two haplogroups might act synergistically to increase the penetrance of AD disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号