首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of caldesmon to actin causes a decrease in the quantity of bound myosin and results in a reduction in the rate of actin-activated adenosine triphosphate hydrolysis. It is generally assumed that the binding of caldesmon and myosin to actin is a pure competitive interaction. However, recent binding studies of enzyme digested caldesmon subfragments directed at mapping the actin binding site of caldesmon have shown that a small 8-kD fragment around the COOH-terminal can compete directly with the myosin subfragment 1 (S-1) binding to actin; at least one other fragment that binds to actin does not inhibit the actin-activated adenosine triphosphate activity of myosin. That is, only a part of the caldesmon sequence may be responsible for directly blocking the binding of S-1 to actin. This prompts us to question the actual mode of binding of intact caldesmon and myosin S-1 to actin: whether the entire intact caldesmon molecule is competing with S-1 binding (pure competitive model) or just a small part of it (mosaic multiple-binding model). To answer this question, we measured the amount of myosin S-1 and caldesmon bound per actin monomer as a function of the total concentration of S-1 added to the system at constant concentrations of actin and caldesmon. A formalism for calculating the titration data based on the pure competitive model and a mosaic multiple-binding model was then developed. When compared with theoretical calculations, it is found that the binding of caldesmon and S-1 to actin cannot be pure competitive if no cooperativity exists between S-1 and caldesmon.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
G Walker  R Yabkowitz  D R Burgess 《Biochemistry》1991,30(42):10206-10210
The way in which actin and myosin II become localized to the contractile ring of dividing cells resulting in cleavage furrow formation and cytokinesis is unknown. While much is known about actin binding proteins and actin localization, little is known about myosin localization. A 53-kDa (53K) polypeptide present in the sea urchin egg binds to myosin II in a nucleotide-dependent manner and mediates its solubility in vitro [Yabkowitz, R., & Burgess, D.R. (1987) J. Cell Biol. 105, 927-936]. The binding site of 53K on the myosin molecule was examined in an effort to understand the mechanism of 53K-induced myosin solubility and its potential function in myosin regulation. Blot overlay and chemical cross-linking techniques utilizing myosin proteolytic fragments indicate that 53K binds to fragments proximal to the head-rod junction of myosin. Fragments distal to the head-rod junction do not bind 53K. In addition, the binding of 53K to myosin largely inhibits protease digestion that produces the head and rod fragments. The binding of 53K to the head-rod domain of myosin may be critical in regulation of myosin conformation, localization, assembly, and ATPase activity.  相似文献   

3.
Skeletal and cardiac muscle contraction are inhibited by the actin-associated complex of tropomyosin-troponin. Binding of Ca(2+) to troponin or binding of ATP-free myosin to actin reverses this inhibition. Ca(2+) and ATP-free myosin stabilize different tropomyosin-actin structural arrangements. The position of tropomyosin on actin affects the binding of ATP-free myosin to actin but does not greatly affect myosin-ATP binding. Ca(2+) and ATP-free myosin alter both the affinity of ATP-free myosin for actin and the kinetics of that binding. A parallel pathway model of regulation simulated the effects of Ca(2+) and ATP-free myosin binding on both equilibrium binding of myosin-nucleotide complexes to actin and the general features of ATPase activity. That model was recently shown to simulate the kinetics of myosin-S1 binding but the analysis was limited to a single condition because of the limited data available. We have now measured equilibrium binding and binding kinetics of myosin-S1-ADP to actin at a series of ionic strengths and free Ca(2+) concentrations. The parallel pathway model of regulation is consistent with those data. In that model the interaction between adjacent regulatory complexes fully saturated with Ca(2+) was destabilized and the inactive state of actin was stabilized at high ionic strength. These changes explain the previously observed change in binding kinetics with increasing ionic strength.  相似文献   

4.
Myosin-binding protein C (MyBP-C) binds to myosin with two binding sites, one close to the N terminus and the other at the C terminus. Here we present the solution structure of one part of the N-terminal binding site, the third immunoglobulin domain of the cardiac isoform of human MyBP-C (cC2) together with a model of its interaction with myosin. Domain cC2 has the beta-sandwich structure expected from a member of the immunoglobulin fold. The C-terminal part of the structure of cC2 is very closely related to telokin, the myosin binding fragment of myosin light chain kinase. Domain cC2 also contains two cysteines on neighboring strands F and G, which would be able to form a disulfide bridge in a similar position as in telokin. Using NMR spectroscopy and isothermal titration calorimetry we demonstrate that cC2 alone binds to a fragment of myosin, S2Delta, with low affinity (kD = 1.1 mM) but exhibits a highly specific binding site. This consists of the C-terminal surface of the C'CFGA' beta-sheet, which includes Glu(301), a residue mutated to Gln in the disease familial hypertrophic cardiomyopathy. The binding site on S2 was identified by a combination of NMR binding experiments of cC2 with S2Delta containing the cardiomyopathy-linked mutation R870H and molecular modeling. This mutation lowers the binding affinity and changes the arrangement of side chains at the interface. Our model of the cC2-S2Delta complex gives a first glimpse of details of the MyBP-C-myosin interaction. Using this model we suggest that most key interactions are between polar amino acids, explaining why the mutations E301Q in cC2 and R870H in S2Delta could be involved in cardiomyopathy. We expect that this model will stimulate future research to further refine the details of this interaction and their importance for cardiomyopathy.  相似文献   

5.
In an activated muscle, binding sites on the thin filament and myosin heads switch frequently between different states. Because the status of the binding sites influences the status of the heads, and vice versa, the binding sites and myosin heads are dynamically coupled. The functional consequences of this coupling were investigated using MyoSim, a new computer model of muscle. MyoSim extends existing models based on Huxley-type distribution techniques by incorporating Ca2+ activation and cooperative effects. It can also simulate arbitrary cross-bridge schemes set by the researcher. Initial calculations investigated the effects of altering the relative speeds of binding-site and cross-bridge kinetics, and of manipulating cooperative processes. Subsequent tests fitted simulated force records to experimental data recorded using permeabilized myocardial preparations. These calculations suggest that the rate of force development at maximum activation is limited by myosin cycling kinetics, whereas the rate at lower levels of activation is limited by how quickly binding sites become available. Additional tests investigated the behavior of transiently activated cells by driving simulations with experimentally recorded Ca2+ signals. The unloaded shortening profile of a twitching myocyte could be reproduced using a model with two myosin states, cooperative activation, and strain-dependent kinetics. Collectively, these results demonstrate that dynamic coupling of binding sites and myosin heads is important for contractile function.  相似文献   

6.
Myosin XI are actin-based molecular motors that are thought to drive organelle movements in plants, analogous to myosin V in animals and fungi. Similar domain structure of these myosins suggests that binding to organelles may occur via the globular tail domain in both types of motors, even though sequence similarity is low. To address this hypothesis, we developed a structure homology model for the globular tail of MYA1, a myosin XI from Arabidopsis, based on the known structure of yeast myosin V (Myo2p) globular tail. This model suggested an interaction between two subdomains of the globular tail which was verified by yeast two-hybrid assay and by in vivo bimolecular fluorescence complementation (BiFC). Interface mapping demonstrated that this subdomain interaction depends critically on the C terminus of helix H6 as well as three specific residues in helices H3 and H15, consistent with the structural prediction. The reconstituted globular tails of several Arabidopsis myosin XIs in BiFC assays targeted to peroxisomes in plant cells, identifying this domain as sufficient for cargo binding. Unlike myosin V, either subdomain of myosin XI alone was targeting-competent and responsible for association with different organelles. In addition, our data suggest that organelle binding is regulated by an allosteric interaction between two tail subdomains. We conclude that the globular tail of myosin XI shares a similar structure with that of myosin V, but has evolved plant-specific cargo binding mechanisms.  相似文献   

7.
The binding of actin to phosphorylated and dephosphorylated myosin   总被引:2,自引:0,他引:2  
The binding of actin to myosin containing phosphorylated and dephosphorylated light chains (LC2) was investigated by studying the influence of actin on Mg2+- and K+-stimulated ATPase of phosphorylated and dephosphorylated myosin and by comparing the influence of PPi on actomyosin formed from pure actin and phosphorylated or dephosphorylated myosin. The concentration of actin producing inhibition of one half of myosin K+-ATPase activity was 4.1 micro M and 7.7 micro M for phosphorylated and dephosphorylated myosin, respectively. Actomyosin formed from dephosphorylated myosin dissociated at lower PPi concentration than did that from the phosphorylated form. The extrapolated values of Km obtained from studies of the influence of actin on Mg2+-ATPase activity of dephosphorylated myosin were about twice as high as for the phosphorylated form. Thus, the affinity of phosphorylated myosin for actin was significantly higher under conditions studied.  相似文献   

8.
The metal ion requirement of myosin-ADP binding was investigated by use of Mn2+. Mn2+ binds to two sets of noninteracting sites on myosin which are characterized by affinity constants of 106 and 103, M−1 at 0.016 M KCl concentration. The maximum number of sites is 2 for the high affinity and 20–25 for the low affinity set. Binding of Mn2+ to the high affinity sites increases the affinity of ADP binding to myosin. F-actin inhibits ADP binding (Kiely, B., and Martonosi, A., Biochim. Biophys. Acta 172: 158–170 [1969]), but even at F-actin concentrations much higher than that required to saturate the actin binding sites of myosin or its proteolytic fragments, significant ADP binding remained. The actin insensitive portion of ADP binding was inhibited by 10−4 M inorganic pyrophosphate or ATP. The results are discussed on the basis of a model in which actin and ADP bind to myosin at distinct but interacting sites.  相似文献   

9.
S Highsmith 《Biochemistry》1990,29(47):10690-10694
The ionic strength dependence of skeletal myosin subfragment 1 (S1) binding to unregulated F-actin was measured in solutions containing from 0 to 0.50 M added lithium acetate (LiOAc) in the absence and presence of MgADP. The data were analyzed by using a theory based on an ion interaction model that is rigorous for high ionic strength solutions [Pitzer, K. S. (1973) J. Phys. Chem. 77, 268-277] in order to obtain values for K, the equilibrium association constant when the ionic strength is zero, and for [zMzA[, the absolute value of the product of the net electric charges of the actin binding site on myosin (zM) and the myosin binding site on actin (zA). The presence of MgADP reduced K by a factor of 10, as expected, and reduced [zMzA[ by about 1 esu2. Because the presence of MgADP is not likely to change the net charge of the myosin binding site on actin, these data are consistent with a model in which MgADP binding to S1 reduces its affinity for actin by a mechanism that reduces the net electric charge of the acting binding site on S1. The value of [zMzA[ in the absence of ADP was 8.1 +/- 0.9 esu2, which, if one uses integer values, suggests that zM and zA are in the 8+ to 1+ esu and 1- to 8- esu ranges, respectively. ADP binding then reduces zM to the 7+ to 0.88+ esu range.  相似文献   

10.
It was previously shown that a one-dimensional Ising model could successfully simulate the equilibrium binding of myosin S1 to regulated actin filaments (T. L. Hill, E. Eisenberg and L. Greene, Proc. Natl. Acad. Sci. U.S.A. 77:3186-3190, 1980). However, the time course of myosin S1 binding to regulated actin was thought to be incompatible with this model, and a three-state model was subsequently developed (D. F. McKillop and M. A. Geeves, Biophys. J. 65:693-701, 1993). A quantitative analysis of the predicted time course of myosin S1 binding to regulated actin, however, was never done for either model. Here we present the procedure for the theoretical evaluation of the time course of myosin S1 binding for both models and then show that 1) the Hill model can predict the "lag" in the binding of myosin S1 to regulated actin that is observed in the absence of Ca++ when S1 is in excess of actin, and 2) both models generate very similar families of binding curves when [S1]/[actin] is varied. This result shows that, just based on the equilibrium and pre-steady-state kinetic binding data alone, it is not possible to differentiate between the two models. Thus, the model of Hill et al. cannot be ruled out on the basis of existing pre-steady-state and equilibrium binding data. Physical mechanisms underlying the generation of the lag in the Hill model are discussed.  相似文献   

11.
A new model of cooperative myosin-thin filament binding   总被引:7,自引:0,他引:7  
Cooperative myosin binding to the thin filament is critical to regulation of cardiac and skeletal muscle contraction. This report delineates and fits to experimental data a new model of this process, in which specific tropomyosin-actin interactions are important, the tropomyosin-tropomyosin polymer is continuous rather than disjointed, and tropomyosin affects myosin-actin binding by shifting among three positions as in recent structural studies. A myosin- and tropomyosin-induced conformational change in actin is proposed, rationalizing the approximately 10,000-fold strengthening effect of myosin on tropomyosin-actin binding. Also, myosin S1 binding to regulated filaments containing mutant tropomyosins with internal deletions exhibited exaggerated cooperativity, implying an allosteric effect of tropomyosin on actin and allowing the effect's measurement. Comparisons among the mutants suggest the change in actin is promoted much more strongly by the middle of tropomyosin than by its ends. Regardless of calcium binding to troponin, this change in actin facilitates the shift in tropomyosin position to the actin inner domain, which is required for tight myosin-actin association. It also increases myosin-actin affinity 7-fold compared with the absence of troponin-tropomyosin. Finally, initiation of a shift in tropomyosin position is 100-fold more difficult than is its extension from one actin to the next, producing the myosin binding cooperativity that underlies cooperative activation of muscle contraction.  相似文献   

12.
Myosin IXb, a member of the myosin superfamily, is a molecular motor that possesses a GTPase activating protein (GAP) for Rho. Through the yeast two-hybrid screening using the tail domain of myosin IXb as bait we found BIG1, a guanine nucleotide exchange factor for ADP-ribosylation factor (Arf1), as a potential binding partner for myosin IXb. The interaction between myosin IXb and BIG1 was demonstrated by co-immunoprecipitation of endogenous myosin IXb and BIG1 with anti-BIG1 antibodies in normal rat kidney cells. Using the isolated proteins, it was demonstrated that myosin IXb and BIG1 directly bind to each other. Various truncation mutants of the myosin IXb tail domain were produced, and it was revealed that the binding region of myosin IXb to BIG1 is the zinc finger/GAP domain. Interestingly, the GAP activity of myosin IXb was significantly inhibited by the addition of BIG1 with IC(50) of 0.06 microm. The RhoA binding to myosin IXb was inhibited by the addition of BIG1 with the concentration similar to the inhibition of the GAP activity. Likewise, RhoA inhibited the BIG1 binding of myosin IXb. These results suggest that BIG1 and RhoA compete with each other for the binding to myosin IXb, thus resulting in the inhibition of the GAP activity by BIG1. The present study identified BIG1, the Arf guanine nucleotide exchange factor, as a new binding partner for myosin IXb, which inhibited the GAP activity of myosin IXb. The findings raise a concept that the myosin transports the signaling molecule as a cargo that functions as a regulator for the myosin molecule.  相似文献   

13.
To determine the localization of F-protein binding sites on myosin, the interaction of F-protein with myosin and its proteolytic fragments in 0.1 M KCl, 10 mM K-phosphate pH 6.5 was studied, using sedimentation, electron microscopic and optical diffraction methods. Sedimentation experiments showed that F-protein binds to myosin and myosin rod rather than to light meromyosin or S-1. The F-protein binding to myosin and rod is of a similar character. The calculated values of the constants of F-protein binding to myosin and rod are 2.6 X 10(5) M-1 and 2.1 X 10(5) M-1, respectively. The binding sites are probably located on the subfragment-2 portion of the myosin molecule. The number of F-protein binding sites on myosin calculated per chain weight of 80 000 is 5 +/- 1. The sedimentation results were confirmed by electron microscopic data. F-protein does not bind to light meromyosin paracrystals, but decorates myosin and rod filaments with the interval of 14.3 nm regardless of whether F-protein is added before or after filamentogenesis. A comparison of optical diffraction patterns obtained from myosin and rod filaments with those from decorated ones revealed a marked enhancement of meridional reflection at (14.3 nm)-1 in the latter case.  相似文献   

14.
Optical trapping is one of the most evolving technologies that measures biophysical quantities and provides insights into some of the fundamental questions in the study of molecular motor proteins such as myosin. Several laboratories have successfully used this technique to observe and score nanometre-size displacements produced by myosin on interacting with actin. We have studied the distribution of attachment events for two myosin molecules with different orientations interacting with an actin filament within the framework of a Langevin-type bidirectional mathematical model. When myosin is detached from actin, our model predicts Brownian displacements centred at 0 ± 8 nm (mean ± SD, n = 251058). When attached, the time-averaged displacements of the actin filament system produced step sizes with peaks of 8 ± 6 nm (mean ± SD, n = 22174) (forward displacements) and −8 ± 6 nm (mean ± SD, n = 26769) (reverse displacements). We infer from our results that the population distribution of attachment events is strongly dependent on (i) the magnitude of the Brownian displacements, (ii) the location of the actin binding sites relative to the myosin molecules, (iii) the orientation of the myosin molcules, and (iv) the relative kinetics (rate constants) for the forward and reverse displacement events.  相似文献   

15.
The current study was undertaken to investigate the relative contribution of calcium and myosin binding to thin filament activation. Using the in vitro motility assay, myosin strong binding to the thin filament was controlled by three mechanisms: 1), varying the myosin concentration of the motility surface, and adding either 2), inorganic phosphate (Pi) or 3), adenosine diphosphate (ADP) to the motility solutions. At saturating myosin conditions, Pi had no effect on thin filament motility. However, at subsaturating myosin concentrations, velocity was reduced at maximal and submaximal calcium in the presence of Pi. Adding ADP to the motility buffers reduced thin filament sliding velocity but increased the pCa(50) of the thin filament. Thus by limiting or increasing myosin strong binding (with the addition of Pi and ADP, respectively), the calcium concentration at which half maximal activation of the thin filament is achieved can be modulated. In experiments without ADP or Pi, the myosin concentration on the motility surface required to reach maximal velocity inversely correlated with the level of calcium activation. Through this approach, we demonstrate that myosin strong binding is essential for thin filament activation at both maximal and submaximal calcium levels, with the relative contribution of myosin strong binding being greatest at submaximal calcium. Furthermore, under conditions in which myosin strong binding is not rate limiting (i.e., saturating myosin conditions), our data suggest that a modulation of myosin cross-bridge kinetics is likely responsible for the graded response to calcium observed in the in vitro motility assay.  相似文献   

16.
R A Cross  A Sobieszek 《FEBS letters》1985,188(2):367-374
Conventional smooth muscle myosin preparations contain a tightly bound myosin light chain kinase activity, which is incompletely removed by gel filtration at high ionic strength. We show here that by contrast, this kinase activity is released, together with calmodulin, under conditions in which myosin is in the folded configuration. The conformation-related release of kinase occurred for dephosphorylated myosin in both the presence and absence of ATP and Ca2+. Binding of kinase to extended phosphorylated myosin was relatively weaker than to dephosphorylated myosin, but was nonetheless detected. The kinetic consequences of this binding behaviour were determined by measuring initial myosin phosphorylation rates as a function of KCl concentration. Rate optima occurred at 60 mM KCl and 300 mM KCl, conditions favouring respectively stable filaments and stable extended monomers. Phosphorylation of the folded monomer was uniformly slow at low KCl concentrations. The folded myosin monomer is thus a relatively poor substrate for the kinase, and is therefore unlikely to represent an analog of the relaxed crossbridge configuration in myosin filaments.  相似文献   

17.
The role of the interaction between actin and the secondary actin binding site of myosin (segment 565-579 of rabbit skeletal muscle myosin, referred to as loop 3 in this work) has been studied with proteolytically generated smooth and skeletal muscle myosin subfragment 1 and recombinant Dictyostelium discoideum myosin II motor domain constructs. Carbodiimide-induced cross-linking between filamentous actin and myosin loop 3 took place only with the motor domain of skeletal muscle myosin and not with those of smooth muscle or D. discoideum myosin II. Chimeric constructs of the D. discoideum myosin motor domain containing loop 3 of either human skeletal muscle or nonmuscle myosin were generated. Significant actin cross-linking to the loop 3 region was obtained only with the skeletal muscle chimera both in the rigor and in the weak binding states, i.e., in the absence and in the presence of ATP analogues. Thrombin degradation of the cross-linked products was used to confirm the cross-linking site of myosin loop 3 within the actin segment 1-28. The skeletal muscle and nonmuscle myosin chimera showed a 4-6-fold increase in their actin dissociation constant, due to a significant increase in the rate for actin dissociation (k(-)(A)) with no significant change in the rate for actin binding (k(+A)). The actin-activated ATPase activity was not affected by the substitutions in the chimeric constructs. These results suggest that actin interaction with the secondary actin binding site of myosin is specific for the loop 3 sequence of striated muscle myosin isoforms but is apparently not essential either for the formation of a high affinity actin-myosin interface or for the modulation of actomyosin ATPase activity.  相似文献   

18.
We used bacterially expressed beta-galactosidase fusion proteins to localize the phospholipid binding domain of Acanthamoeba myosin IC to the region between amino acids 701 and 888 in the NH2-terminal half of the tail. Using a novel immobilized ligand lipid binding assay, we determined that myosin I can bind to several different acidic phospholipids, and that binding requires a minimum of 5 mol% acidic phospholipid in a neutral lipid background. The presence of di- and triglycerides and sterols in the lipid bilayer do not contribute to the affinity of myosin I for membranes. We confirm that the ATP-insensitive actin binding site is contained in the COOH-terminal 30 kD of the tail as previously shown for Acanthamoeba myosin IA. We conclude that the association of the myosin IC tail with acidic phospholipid head groups supplies much of the energy for binding myosin I to biological membranes, but probably not specificity for targeting myosin I isoforms to different cellular locations.  相似文献   

19.
《Biophysical journal》2023,122(1):54-62
The development of small molecule myosin modulators has seen an increased effort in recent years due to their possible use in the treatment of cardiac and skeletal myopathies. Omecamtiv mecarbil (OM) is the first-in-class cardiac myotrope and the first to enter clinical trials. Its selectivity toward slow/beta-cardiac myosin lies at the heart of its function; however, little is known about the underlying reasons for selectivity to this isoform as opposed to other closely related ones such as fast-type skeletal myosins. In this work, we compared the structure and dynamics of the OM binding site in cardiac and in fasttype IIa skeletal myosin to identify possible reasons for OM selectivity. We found that the different shape, size, and composition of the binding pocket in skeletal myosin directly affects the binding mode and related affinity of OM, which is potentially a result of weaker interactions and less optimal molecular recognition. Moreover, we identified a side pocket adjacent to the OM binding site that shows increased accessibility in skeletal myosin compared with the cardiac isoform. These findings could pave the way to the development of skeletal-selective compounds that can target this region of the protein and potentially be used to treat congenital myopathies where muscle weakness is related to myosin loss of function.  相似文献   

20.
Rates of proteolytic cleavage of myosin subfragment 1 were measured in the absence and presence of different amounts of actin. The rates of tryptic digestion at the 50K/20K junction and papain digestion at the 25K/50K junction of the myosin head were progressively inhibited with increasing substoichiometric molar ratios of actin to myosin subfragment 1. The percentage inhibitions of digestion reactions corresponded precisely to the molar compositions of actin-subfragment 1 solutions and demonstrated that equimolar complexes of these proteins were responsible for the observed changes in the proteolysis of myosin heads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号