首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of the U1 small nuclear ribonucleoprotein (snRNP)-specific proteins C, A, and 70K to U1 small nuclear RNA (snRNA) was analyzed. Assembly of U1 snRNAs from bean and soybean and a set of mutant Xenopus U1 snRNAs into U1 snRNPs in Xenopus egg extracts was studied. The ability to bind proteins was analyzed by immunoprecipitation with monospecific antibodies and by a protein-sequestering assay. The only sequence essential for binding of the U1-specific proteins was the conserved loop sequence in the 5' hairpin of U1. Further analysis suggested that protein C binds directly to the loop and that the assembly of proteins A and 70K into the RNP requires mainly protein-protein interactions. Protein C apparently recognizes a specific RNA sequence rather than a secondary structural element in the RNA.  相似文献   

2.
Monospecific antibodies directed against several U small nuclear ribonucleoprotein (U snRNP) particle proteins were affinity purified from a patient's anti-(U1,U2)RNP serum. These were used to demonstrate that: (i) proteins equivalent to the mammalian U2 snRNP-specific A' and B" proteins are present in Xenopus laevis oocytes; (ii) both proteins A' and B" have the same structural requirements for binding to U2 snRNA; (iii) proteins B, B' and D have the same structural requirement for binding to U2 snRNA; (iv) using very high specific activity RNA probes it is possible to detect a fraction of either U1 or U2 snRNA precipitable by antibodies directed against proteins specific for the other U snRNP, indicating an interaction between U1 and U2 snRNPs. The structural requirements of this interaction were studied for the U2 snRNP. All changes made to U2 snRNA or snRNP structure resulted in loss of the interaction with U1 snRNP.  相似文献   

3.
The ability of series of U1 snRNAs and U6 snRNAs to migrate into the nucleus of Xenopus oocytes after injection into the cytoplasm was analyzed. The U snRNAs were made either by injecting U snRNA genes into the nucleus of oocytes or, synthetically, by T7 RNA polymerase, incorporating a variety of cap structures. The results indicate that nuclear targeting of U1 snRNA requires both a trimethylguanosine cap structure and binding of at least one common U snRNP protein. Using synthetic U6 snRNAs, it is further demonstrated that the trimethylguanosine cap structure can act in nuclear targeting in the absence of the common U snRNP proteins. These results imply that U snRNP nuclear targeting signals are of a modular nature.  相似文献   

4.
The function of conserved regions of the metazoan U5 snRNA was investigated by reconstituting U5 small nuclear ribonucleoprotein particles (snRNPs) from purified snRNP proteins and HeLa or Xenopus U5 snRNA mutants and testing their ability to restore splicing to U5-depleted nuclear extracts. Substitution of conserved nucleotides comprising internal loop 2 or deletion of internal loop 1 had no significant effect on the ability of reconstituted U5 snRNPs to complement splicing. However, deletion of internal loop 2 abolished U5 activity in splicing and spliceosome formation. Surprisingly, substitution of the invariant loop 1 nucleotides with a GAGA tetraloop had no effect on U5 activity. Furthermore, U5 snRNPs reconstituted from an RNA formed by annealing the 5' and 3' halves of the U5 snRNA, which lacked all loop 1 nucleotides, complemented both steps of splicing. Thus, in contrast to yeast, loop 1 of the human U5 snRNA is dispensable for both steps of splicing in HeLa nuclear extracts. This suggests that its function can be compensated for in vitro by other spliceosomal components: for example, by proteins associated with the U5 snRNP. Consistent with this idea, immunoprecipitation studies indicated that several functionally important U5 proteins associate stably with U5 snRNPs containing a GAGA loop 1 substitution.  相似文献   

5.
6.
7.
U3 small nuclear ribonucleic acids (snRNA) and U3 small nuclear ribonucleoprotein (snRNP), which are thought to be responsible for ribosomal RNA processing, are quantitated and localized during oocyte maturation, fertilization, and early embryogenesis in the mouse. On the basis of Northern blot and nuclease protection experiments, it is estimated that there are about 5 x 10(4) U3 snRNA molecules in an ovulated oocyte and in a two-cell embryo. This number then increases roughly 50-fold to 2.7 x 10(6) molecules per embryo by the blastocyst stage. At all stages of development U3 snRNP antigens colocalize with nucleoli, as defined by differential interference contrast microscopy and an antibody to a nucleolar epitope. The synthesis and distribution of U3 snRNA and U3 snRNP follow a pattern independent from other major U snRNPs and snRNAs.  相似文献   

8.
Sequence and expression of a mouse U7 snRNA type II pseudogene.   总被引:3,自引:0,他引:3  
  相似文献   

9.
Assembly and intracellular transport of snRNP particles.   总被引:7,自引:0,他引:7  
The assembly of the major small nuclear ribonucleoprotein (snRNP) particles begins in the cytoplasm where large pools of common core proteins are preassembled in several RNA-free intermediate particles. Newly synthesized snRNAs transiently enter the cytoplasm and complex with core particles to form pre-snRNP particles. Subsequently, the cap structure at the 5' end of the snRNA is hypermethylated. The resulting trimethylguanosine (TMG) cap is an integral part of the nuclear localization signal for snRNP particles and the pre-snRNP particles are rapidly transported into the nucleus. SnRNP particles mature when snRNA-specific proteins complex with the particles, in some cases, just before or during nuclear transport, but in most instances after the particles are in the nucleus. In addition, U6 snRNA hybridizes with U4 snRNA to form a U4/U6 snRNP in the nucleus. The transport signals are retained on the snRNP particles and proteins since existing particles and proteins enter the reformed nucleus after mitosis.  相似文献   

10.
The U5 small nuclear ribonucleoprotein particle (snRNP) forms the heart of the spliceosome which is required for intron removal from pre‐mRNA. The proteins Prp8, Snu114 and Brr2 all assemble with the U5 small nuclear RNA (snRNA) to produce the U5 snRNP. Successful assembly of the U5 snRNP, then incorporation of this snRNP into the U4/U6.U5 tri‐snRNP and the spliceosome, is essential for producing an active spliceosome. We have investigated the requirements for Prp8, Snu114 and Brr2 association with the U5 snRNA to form the U5 snRNP in yeast. Mutations were constructed in the highly conserved loop 1 and internal loop 1 (IL1) of the U5 snRNA and their function assessed in vivo. The influence of these U5 mutations on association of Prp8, Snu114 and Brr2 with the U5 snRNA were then determined. U5 snRNA loop 1 and both sides of IL1 in U5 were important for association of Prp8, Snu114 and Brr2 with the U5 snRNA. Mutations in the 3′ side of U5 IL1 resulted in the greatest reduction of Prp8, Snu114 and Brr2 association with the U5 snRNA. Genetic screening of brr2 and U5 snRNA mutants revealed synthetic lethal interactions between alleles in Brr2 and the 3′ side of U5 snRNA IL1 which reflects reduced association between Brr2 and U5 IL1. We propose that the U5 snRNA IL1 is a platform for protein binding and is required for Prp8, Brr2 and Snu114 association with the U5 snRNA to form the U5 snRNP. J. Cell. Biochem. 114: 2770–2784, 2013. © 2013 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   

11.
The survival of motor neurons (SMN) protein complex functions in the biogenesis of spliceosomal small nuclear ribonucleoprotein particles (snRNPs) and prob ably other RNPs. All spliceosomal snRNPs have a common core of seven Sm proteins. To mediate the assembly of snRNPs, the SMN complex must be able to bring together Sm proteins with U snRNAs. We showed previously that SMN and other components of the SMN complex interact directly with several Sm proteins. Here, we show that the SMN complex also interacts specifically with U1 snRNA. The stem--loop 1 domain of U1 (SL1) is necessary and sufficient for SMN complex binding in vivo and in vitro. Substitution of three nucleotides in the SL1 loop (SL1A3) abolishes SMN interaction, and the corresponding U1 snRNA (U1A3) is impaired in U1 snRNP biogenesis. Microinjection of excess SL1 but not SL1A3 into Xenopus oocytes inhibits SMN complex binding to U1 snRNA and U1 snRNP assembly. These findings indicate that SMN complex interaction with SL1 is sequence-specific and critical for U1 snRNP biogenesis, further supporting the direct role of the SMN complex in RNP biogenesis.  相似文献   

12.
13.
A transcriptional analysis of the gene encoding mouse U7 small nuclear RNA.   总被引:3,自引:0,他引:3  
S C Phillips  P C Turner 《Gene》1992,116(2):181-186
  相似文献   

14.
We describe a novel approach to identify RNA-protein cross-linking sites within native small nuclear ribonucleoprotein (snRNP) particles from HeLa cells. It combines immunoprecipitation of the UV-irradiated particles under semi-denaturing conditions with primer extension analysis of the cross-linked RNA moiety. In a feasibility study, we initially identified the exact cross-linking sites of the U1 70-kDa (70K) protein in stem-loop I of U1 small nuclear RNA (snRNA) within purified U1 snRNPs and then confirmed the results by a large-scale preparation that allowed N-terminal sequencing and matrix-assisted laser desorption ionization mass spectrometry of purified cross-linked peptide-oligonucleotide complexes. We identified Tyr(112) and Leu(175) within the RNA-binding domain of the U1 70K protein to be cross-linked to G(28) and U(30) in stem-loop I, respectively. We further applied our immunoprecipitation approach to HeLa U5 snRNP, as part of purified 25 S U4/U6.U5 tri-snRNPs. Cross-linking sites between the U5-specific 220-kDa protein (human homologue of Prp8p) and the U5 snRNA were located at multiple nucleotides within the highly conserved loop 1 and at one site in internal loop 1 of U5 snRNA. The cross-linking of four adjacent nucleotides indicates an extended interaction surface between loop 1 and the 220-kDa protein. In summary, our approach provides a rapid method for identification of RNA-protein contact sites within native snRNP particles as well as other ribonucleoprotein particles.  相似文献   

15.
We have studied the interaction of two of the U1 small nuclear ribonucleoprotein (snRNP)-specific proteins, U1-70K and U1-A, with U1 small nuclear RNA (snRNA). The U1-70K protein is a U1-specific RNA-binding protein. Deletion and mutation analyses of a beta-galactosidase/U1-70K partial fusion protein indicated that the central portion of the protein, including the RNP sequence domain, is both necessary and sufficient for specific U1 snRNA binding in vitro. The highly conserved eight-amino-acid RNP consensus sequence was found to be essential for binding. Deletion and mutation analyses of U1 snRNA showed that both the U1-70K fusion protein and the native HeLa U1-70K protein bound directly to loop I of U1 snRNA. Binding was sequence specific, requiring 8 of the 10 bases in the loop. The U1-A snRNP protein also interacted specifically with U1 snRNA, principally with stem-loop II.  相似文献   

16.
Who's on first? The U1 snRNP-5' splice site interaction and splicing   总被引:25,自引:0,他引:25  
U1 small nuclear ribonucleoprotein (snRNP) is important for pre-mRNA splicing both in yeast (Saccharomyces cerevisiae) and mammalian systems. The RNA component of U1 snRNP, U1 snRNA, interacts by base pairing with pre-mRNA 5' splice sites. This article examines recent evidence suggesting that U1 snRNP is important for an early step in spliceosome assembly rather than a late step that contributes to the specificity of 5' splice-site cleavage.  相似文献   

17.
The assembly pathway of small nuclear ribonucleoprotein (snRNP) particles in the cytoplasm of L929 mouse fibroblasts was analyzed by observing the nuclear accumulation of snRNP proteins. Immunoprecipitations of nuclear and cytoplasmic fractions after a pulse label and chase indicate that the snRNP D, E, F, and G proteins assemble first, followed by the small nuclear RNA (snRNA), then the snRNP B protein and, in the case of the U1 snRNP, the A and C proteins. The snRNP B' protein is not detected in the L929 cells. The U1-specific A and C proteins can enter the nucleus in the absence of snRNP assembly, suggesting that these proteins exchange on the mature nuclear snRNP particles. Two-dimensional electrophoresis using nonequilibrium pH gradient electrophoresis identifies the A, B, B", C, D, E, F, and G proteins in a distribution similar to that reported previously by immunoprecipitation (Sauterer, R. A., and Zieve, G. W. (1989) J. Biol. Chem., submitted for publication). The D protein appears in multiple isoelectric variants in the cytoplasm and shifts toward more basic variants during maturation. Kinetic experiments analyzed by two-dimensional electrophoresis indicate a quantitative maturation of the cytoplasmic B protein into nuclear particles. Quantitative densitometry of immunoprecipitated stable nuclear snRNPs labeled with [35S] methionine corrected for the published methionine content of the A, B, C, D, and E proteins indicates that the mature nuclear U1 snRNP probably contains four copies of D, two copies each of B, C, and A, and one copy of E.  相似文献   

18.
The U1 small nuclear (sn)RNA participates in splicing of pre-mRNAs by recognizing and binding to 5′ splice sites at exon/intron boundaries. U1 snRNAs associate with 5′ splice sites in the form of ribonucleoprotein particles (snRNPs) that are comprised of the U1 snRNA and 10 core components, including U1A, U1-70K, U1C and the ‘Smith antigen’, or Sm, heptamer. The U1 snRNA is highly conserved across a wide range of taxa; however, a number of reports have identified the presence of expressed U1-like snRNAs in multiple species, including humans. While numerous U1-like molecules have been shown to be expressed, it is unclear whether these variant snRNAs have the capacity to form snRNPs and participate in splicing. The purpose of the present study was to further characterize biochemically the ability of previously identified human U1-like variants to form snRNPs and bind to U1 snRNP proteins. A bioinformatics analysis provided support for the existence of multiple expressed variants. In vitro gel shift assays, competition assays, and immunoprecipitations (IPs) revealed that the variants formed high molecular weight assemblies to varying degrees and associated with core U1 snRNP proteins to a lesser extent than the canonical U1 snRNA. Together, these data suggest that the human U1 snRNA variants analyzed here are unable to efficiently bind U1 snRNP proteins. The current work provides additional biochemical insights into the ability of the variants to assemble into snRNPs.  相似文献   

19.
The biogenesis of the spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4, and U5 involves: (a) migration of the snRNA molecules from the nucleus to the cytoplasm; (b) assembly of a group of common proteins (Sm proteins) and their binding to a region on the snRNAs called the Sm-binding site; and (c) translocation of the RNP back to the nucleus. A first prerequisite for understanding the assembly pathway and nuclear transport of the snRNPs in more detail is the knowledge of all the snRNP proteins that play essential roles in these processes. We have recently observed a previously undetected 69- kD protein in 12S U1 snRNPs isolated from HeLa nuclear extracts under non-denaturing conditions that is clearly distinct from the U1-70K protein. The following evidence indicates that the 69-kD protein is a common, rather than a U1-specific, protein, possibly associating with the snRNP core particles by protein-protein interaction. (a) Antibodies raised against the 69-kD protein, which did not cross-react with any of the Sm proteins B'-G, precipitated not only U1 snRNPs, but also the other spliceosomal snRNPs U2, U4/U6 and U5, albeit to a lower extent. (b) U1, U2, and U5 core RNP particles reconstituted in vitro contain the 69-kD protein. (c) Xenopus laevis oocytes contain an immunologically related homologue of the human 69-kD protein. When U1 snRNA as well as a mutant U1 snRNA, that can bind the Sm core proteins but lacks the capacity to bind the U1-specific proteins 70K, A, and C, were injected into Xenopus oocytes to allow assembly in vivo, they were recognized by antibodies specific against the 69-kD protein in the ooplasm and in the nucleus. The 69-kD protein is under-represented, if present at all, in purified 17S U2 and in 25S [U4/U6.U5] tri-snRNPs, isolated from HeLa nuclear extracts. Our results are consistent with the working hypothesis that this protein may either play a role in the cytoplasmic assembly of the core domain of the snRNPs and/or in the nuclear transport of the snRNPs. After transport of the snRNPs into the nucleus, it may dissociate from the particles as for example in the case of the 17S U2 or the 25S [U4/U6.U5] tri-snRNP, which bind more than 10 different snRNP specific proteins each in the nucleus.  相似文献   

20.
The U6 small nuclear RNA (snRNA) undergoes major conformational changes during the assembly of the spliceosome and catalysis of splicing. It associates with the specific protein Prp24p, and a set of seven LSm2p-8p proteins, to form the U6 small nuclear ribonucleoprotein (snRNP). These proteins have been proposed to act as RNA chaperones that stimulate pairing of U6 with U4 snRNA to form the intermolecular stem I and stem II of the U4/U6 duplex, whose formation is essential for spliceosomal function. However, the mechanism whereby Prp24p and the LSm complex facilitate U4/U6 base-pairing, as well as the exact binding site(s) of Prp24p in the native U6 snRNP, are not well understood. Here, we have investigated the secondary structure of the U6 snRNA in purified U6 snRNPs and compared it with its naked form. Using RNA structure-probing techniques, we demonstrate that within the U6 snRNP a large internal region of the U6 snRNA is unpaired and protected from chemical modification by bound Prp24p. Several of these U6 nucleotides are available for base-pairing interaction, as only their sugar backbone is contacted by Prp24p. Thus, Prp24p can present them to the U4 snRNA and facilitate formation of U4/U6 stem I. We show that the 3' stem-loop is not bound strongly by U6 proteins in native particles. However, when compared to the 3' stem-loop in the naked U6 snRNA, it has a more open conformation, which would facilitate formation of stem II with the U4 snRNA. Our data suggest that the combined association of Prp24p and the LSm complex confers upon U6 nucleotides a conformation favourable for U4/U6 base-pairing. Interestingly, we find that the open structure of the yeast U6 snRNA in native snRNPs can also be adopted by human U6 and U6atac snRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号