首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The retinoblastoma tumor suppressor (RB) plays an important role in the regulation of cell cycle progression and terminal differentiation of many cell types. Rb(-/-) mouse embryos die at midgestation with defects in cell cycle regulation, control of apoptosis and terminal differentiation. However, chimeric mice composed of wild-type and Rb-deficient cells are viable and show minor abnormalities. To determine the role of Rb in development more precisely, we analyzed chimeric embryos and adults made with marked Rb(-/-) cells. Like their germline Rb(-/-) counterparts, brains of midgestation chimeric embryos exhibited extensive ectopic S-phase entry. In Rb-mutants, this is accompanied by widespread apoptosis. However, in chimeras, the majority of Rb-deficient cells survived and differentiated into neuronal fates. Rescue of Rb(-/-) neurons in the presence of wild-type cells occurred after induction of the p53 pathway and led to accumulation of cells with 4n DNA content. Therefore, the role of Rb during development can be divided into a cell-autonomous function in exit from the cell cycle and a non-cell-autonomous role in the suppression of apoptosis and induction of differentiation.  相似文献   

2.
3.
The retinoblastoma tumor suppressor protein (RB) has been shown to play a role in regulating the eukaryotic cell cycle, promoting cellular differentiation, and modulating programmed cell death. Although regulation of RB tumor suppressor activity is mediated by reversible phosphorylation, an additional posttranslational modification involves the cleavage of 42 residues from the carboxy terminus of RB during the onset of drug-induced or receptor-mediated apoptosis. We now demonstrate that a recombinant p100cl RB species localizes to the nucleus where it may retain wildtype “pocket” protein binding activity. In addition, using immunocytochemistry, we show that cleavage of the endogenous RB protein occurs in vivo in human cells and that p100cl is predominantly retained within the nuclear compartment of cells during early apoptosis. We also show that the carboxy-terminal cleavage of RB is detected immediately following caspase-3 and PARP cleavage during FAS-mediated apoptosis of MCF10 cells. These findings suggest that this cleavage event may be a component of a downstream cascade during programmed cell death.  相似文献   

4.
Regulators of the cell cycle machinery play a major role in modulating a variety of cellular phenomena including proliferation, quiescence, differentiation, senescence and apoptosis. Studies in the past decade have clearly established a role for the retinoblastoma tumor suppressor protein, Rb, and its primary downstream target E2F1, in the above processes. While the role of the Rb protein in the regulation of cell cycle progression has been analyzed in great detail, its potential roles in apoptosis as well as senescence are relatively less studied. It has become increasingly clear that the anti-apoptotic functions of Rb contribute significantly to the genesis and progression of tumors. This is especially relevant in neuronal systems, since terminally differentiated neurons do not proliferate; therefore the normal anti-proliferative functions of Rb in neurons are not very dominant. This chapter describes the current thoughts on the role of Rb function in the apoptosis and senescence of cells, both of neuronal and non-neuronal origin. Recent studies have also addressed how Rb function is differentially modulated by proliferative and apoptotic signals received at the cell surface, though both lead to Rb inactivation. The contribution of Rb to inducing cellular senescence has been long recognized, but the underlying molecular mechanisms are being elucidated only recently; the contribution of this function of Rb to tumor suppression remains to be understood in detail. It can be expected that an understanding of Rb function in cellular apoptosis and senescence will enhance our ability to develop novel agents and strategies to combat cancer.  相似文献   

5.
视网膜母细胞瘤基因1(RB1)研究进展   总被引:4,自引:0,他引:4  
Liu SH  Wang SZ  Zhang H  Li H 《遗传》2010,32(11):1097-1104
视网膜母细胞瘤基因1(Retinoblastoma1,RB1)是人类第一个分离克隆的抑癌基因。RB1基因是细胞周期的负调控因子,通过与转录因子结合调节细胞增殖和分化所需基因的表达,从而维持细胞生长发育的平衡。因此,该基因的功能与细胞周期、细胞衰老、细胞凋亡、细胞分化和生长抑制等有关。文章对RB1基因的结构、表达及其功能的研究进展进行了综述。  相似文献   

6.
The retinoblastoma tumor suppressor gene, Rb, was the first tumor suppressor identified and plays a fundamental role in regulation of progression through the cell cycle. This review details facets of RB protein function in cell cycle control and focuses on specific questions that remain intensive areas of investigation.  相似文献   

7.

Background  

The retinoblastoma protein (Rb) plays a central role in the regulation of cell cycle, differentiation and apoptosis. In cancer cells, ablation of Rb function or its pathway is a consequence of genetic inactivation, viral oncoprotein binding or deregulated hyperphosphorylation. Some recent data suggest that Rb relocation could also account for the regulation of its tumor suppressor activity, as is the case for other tumor suppressor proteins, such as p53.  相似文献   

8.
9.
RB family members are negative regulators of the cell cycle, involved in numerous biological processes such as cellular senescence, development and differentiation. Disruption of RB family pathways are linked to loss of cell cycle control, cellular immortalization and cancer. RB family, and in particular the most studied member RB/p105, has been considered a tumor suppressor gene by more than three decades, and numerous efforts have been done to understand his molecular activity. However, the epigenetic mechanisms behind Rb‐mediated tumor suppression have been uncovered only in recent years. In this review, the role of RB family members in cancer epigenetics will be discussed. We start with an introduction to epigenomes, chromatin modifications and cancer epigenetics. In order to provide a clear picture of the involvement of RB family in the epigenetic field, we describe the RB family role in the epigenetic landscape dynamics based on the heterochromatin variety involved, facultative or constitutive. We want to stress that, despite dissimilar modulations, RB family is involved in both mammalian varieties of heterochromatin establishment and maintenance and that disruption of RB family pathways drives to alterations of both heterochromatin structures, thus to the global epigenetic landscape. J. Cell. Physiol. 228: 276–284, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
The retinoblastoma tumor suppressor (RB) is functionally inactivated at high frequency in human cancers. Based on the role of RB as a negative regulator of cell cycle this event would be expected to contribute to deregulated proliferation. However, evidence suggests that loss of RB not only mediates aberrant proliferation, but compromises the fidelity of cell cycle transitions leading to a breakdown in genome integrity. This review is focused on the mechanisms underlying this facet of RB function and the contribution of this process to tumorigenesis.  相似文献   

11.
The retinoblastoma tumor suppressor gene plays important roles in cell cycle control, differentiation and survival during development and is functionally inactivated in most human cancers. Early studies using gene targeting in mice suggested a critical role for pRb in erythropoiesis, while more recent experiments have suggested that many of the abnormal embryonic phenotypes in the Rb null mouse result from a defective placenta. To address this controversy and determine whether Rb has cell intrinsic functions in erythropoiesis, we examined the effects of Rb loss on red cell production following acute deletion of pRb in vitro and under different stress conditions in vivo. Under stress conditions, pRb was required to regulate erythroblast expansion and promote red cell enucleation. Acute deletion of Rb in vitro induced erythroid cell cycle and differentiation defects similar to those observed in vivo. These results demonstrate a cell intrinsic role for pRb in stress erythropoiesis and hematopoietic homeostasis that has relevance for human diseases.  相似文献   

12.
Cell cycle reactivation in adult neurons is an early hallmark of neurodegeneration. The lipopolysaccharide (LPS) is a well-known pro-inflammatory factor that provokes neuronal cell death via glial cells activation. The retinoblastoma (RB) family includes RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastoma-like 2 (Rb2/p130). Several studies have indicated that RB proteins exhibit tumor suppressor activities, and play a central role in cell cycle regulation. In this study, we assessed LPS-mediated inflammatory effect on cell cycle reactivation and apoptosis of neuronally differentiated cells. Also, we investigated whether the LPS-mediated inflammatory response can influence the function and expression of RB proteins. Our results showed that LPS challenges triggered cell cycle reactivation of differentiated neuronal cells, indicated by an accumulation of cells in S and G2/M phase. Furthermore, we found that LPS treatment also induced apoptotic death of neurons. Interestingly, we observed that LPS-mediated inflammatory effect on cell cycle re-entry and apoptosis was concomitant with the aberrant expression of RBL1/p107 and RB1/p105. To the best of our knowledge, our study is the first to indicate a role of LPS in inducing cell cycle re-entry and/or apoptosis of differentiated neuronal cells, perhaps through mechanisms altering the expression of specific members of RB family proteins. This study provides novel information on the biology of post-mitotic neurons and could help in identifying novel therapeutic targets to prevent de novo cell cycle reactivation and/or apoptosis of neurons undergoing neurodegenerative processes.  相似文献   

13.
Saddic LA  Wirt S  Vogel H  Felsher DW  Sage J 《PloS one》2011,6(5):e19758
Inactivation of the RB tumor suppressor and activation of the MYC family of oncogenes are frequent events in a large spectrum of human cancers. Loss of RB function and MYC activation are thought to control both overlapping and distinct cellular processes during cell cycle progression. However, how these two major cancer genes functionally interact during tumorigenesis is still unclear. Here, we sought to test whether loss of RB function would affect cancer development in a mouse model of c-MYC-induced hepatocellular carcinoma (HCC), a deadly cancer type in which RB is frequently inactivated and c-MYC often activated. We found that RB inactivation has minimal effects on the cell cycle, cell death, and differentiation features of liver tumors driven by increased levels of c-MYC. However, combined loss of RB and activation of c-MYC led to an increase in polyploidy in mature hepatocytes before the development of tumors. There was a trend for decreased survival in double mutant animals compared to mice developing c-MYC-induced tumors. Thus, loss of RB function does not provide a proliferative advantage to c-MYC-expressing HCC cells but the RB and c-MYC pathways may cooperate to control the polyploidy of mature hepatocytes.  相似文献   

14.
In response to ionizing radiation (IR), cell cycle checkpoints are activated to provide time for DNA repair. Several different checkpoint mechanisms have been elucidated. However, mechanisms that regulate the duration of cell cycle arrest are not understood. Previous studies have shown that the retinoblastoma tumor suppressor protein (RB) is required for radiation-induced G1 arrest. Working with primary fibroblasts derived from Rb+/+ and Rb-/- mouse embryos, we show that RB also regulates the duration of G2 arrest. The initial G2 checkpoint response is enhanced in Rb-/- cells due to a defect in G1 arrest. However, the permanent arrest in G2 induced by higher doses of IR does not occur in Rb-/- cells. Rb-/- cells either resumed proliferation or underwent apoptosis at IR doses that caused the majority of Rb+/+ cells to arrest permanently in G2. The prolongation of G2 arrest in Rb+/+ cells correlated with a gradual accumulation of hypophosphorylated RB. Thus, regulation of the RB function may be an important aspect in the maintenance of cell cycle checkpoints in DNA damage response.  相似文献   

15.
The retinoblastoma protein (pRb105) is a true tumor suppressor as deregulation of the Rb pathway by either mutation of pRb105 itself or other proteins in the pathway, such as p16INK4a, occur in most cancers. This prototypical family member, along with the related p107 and p130, are involved in the control of cell cycle regulation, but pRb105 has also been shown to be involved in tissue development and differentiation. This prospective will discuss the increasing evidence for a role of pRb105 in cellular differentiation and the fact that various cancers, which contain mutant pRb105, or mutations in proteins in the pRb105 pathway, are perhaps a result of deregulation of differentiation.  相似文献   

16.
The retinoblastoma protein, Rb, suppresses tumorigenesis by inhibiting cell proliferation and promoting senescence and differentiation. Paradoxically, Rb also inhibits apoptosis, which would seem to oppose its tumor suppressor function. Further, most human cancer cells inactivate Rb by hyperphosphorylation and demonstrate increased proliferative capacity but not high levels of apoptosis. As a potential explanation for these findings, we show here that the tumor suppressor and antiapoptotic functions of Rb are regulated by distinct phosphorylation events. Phosphorylation of sites in the C terminus occurs efficiently every cell cycle and regulates proliferation. Phosphorylation of Ser567 is inefficient and does not occur during the normal cell cycle. However, high cyclin-dependent kinase activity promotes phosphorylation of Ser567 by inducing an intramolecular interaction that leads to release of E2F, degradation of Rb, and susceptibility to apoptosis. Thus, phosphorylation of Ser567 may limit excessive proliferation by triggering cell death under hyperproliferative conditions. These findings suggest that the antiproliferative and antiapoptotic activities of Rb may represent complementary functions that work in concert to maintain the proliferation rate of cells within certain limits. As a survival strategy, some cancer cells may exploit this dual role of Rb by phosphorylating sites that regulate tumor suppression but avoiding phosphorylation of Ser567 and consequent apoptotic stimulus.  相似文献   

17.
Mutation of the retinoblastoma (RB) tumor suppressor gene is strongly linked to osteosarcoma formation. This observation and the documented interaction between the retinoblastoma protein (pRb) and Runx2 suggests that pRb is important in bone development. To assess this hypothesis, we used a conditional knockout strategy to generate pRb-deficient embryos that survive to birth. Analysis of these embryos shows that Rb inactivation causes the abnormal development and impaired ossification of several bones, correlating with an impairment in osteoblast differentiation. We further show that Rb inactivation acts to promote osteoblast differentiation in vitro and, through conditional analysis, establish that this occurs in a cell-intrinsic manner. Although these in vivo and in vitro differentiation phenotypes seem paradoxical, we find that Rb-deficient osteoblasts have an impaired ability to exit the cell cycle both in vivo and in vitro that can explain the observed differentiation defects. Consistent with this observation, we show that the cell cycle and the bone defects in Rb-deficient embryos can be suppressed by deletion of E2f1, a known proliferation inducer that acts downstream of Rb. Thus, we conclude that pRb plays a key role in regulating osteoblast differentiation by mediating the inhibition of E2F and consequently promoting cell cycle exit.  相似文献   

18.
Abnormal cell cycle regulation in primary human uveal melanoma cultures   总被引:2,自引:0,他引:2  
Uveal malignant melanoma is the most frequent primary intraocular tumor in adult humans. The cellular events leading to neoplasic transformation of normal uveal melanocytes are not well known when compared to other cancers. In this study, we investigated the role of G1 and G1/S regulatory proteins of the cell cycle in human uveal melanoma (UM) primary cell cultures, since these proteins are common targets in tumor development. Further, freshly established and characterized tumor cells are a better model for in vitro studies when compared to cell lines established long ago. Human primary cell cultures from eight different UM were established, as well as one primary culture from rhesus uveal normal melanocytes (UNM). Primary human UM cultures were characterized by a low establishment and growing rate. From four successful cultures, three showed a high expression of cyclin D1, cyclin E, p16NK4A, and p27KIP1 with no variations in cyclin A, cyclin-dependent kinase 2 (CDK2), and CDK4. Interestingly, in one of the cultured tumors, tumor suppressor protein retinoblastoma (Rb) did not bind E2F despite the fact that Rb was found in its hypophosphorylated form. No mutations in either RB1 or the Rb-binding pocket of E2F-1 were detected. Furthermore, we identified seven proteins co-immunoprecipitating with Rb in this tumor, including Lamin A/C and six proteins not previously reported to bind Rb: Hsc70, high mobility group protein 1 (HMG-1), hnRPN, glyceraldehyde 3 phosphate dehydrogenase (G3PDH), EF-1, and EF-2. Our results indicate that the overexpression of cyclins D1/E and CDKIs p16 and p27, together with a deregulation of the Rb/E2F pathway, may be implicated in the development of human UM.  相似文献   

19.
The retinoblastoma (Rb) tumor suppressor controls cellular proliferation, survival, and differentiation and is functionally inactivated by mutations or hyperphosphorylation in most human cancers. Although activation of endogenous Rb is thought to provide an effective approach to suppress cell proliferation, long-term inhibition of apoptosis by active Rb may have detrimental consequences in vivo. To directly test these paradigms, we targeted phosphorylation-resistant constitutively active Rb alleles, Rb Delta Ks, to the mouse mammary gland. Pubescent transgenic females displayed reduced ductal elongation and cell proliferation at the endbuds. Post-puberty transgenic mice exhibited precocious cellular differentiation and beta-casein expression and extended survival of the mammary epithelium with a moderate but specific effect on the expression of E2F1, IGF1R alpha, and phospho-protein kinase B/AKT. Remarkably, approximately 30% Rb Delta K transgenic females developed focal hyperplastic nodules, and approximately 7% exhibited full-blown mammary adenocarcinomas within 15 mo. Expression of the Rb Delta K transgene in these mammary tumors was reduced greatly. Our results suggest that transient activation of Rb induces cancer by extending cell survival and that the dual effects of Rb on cell proliferation and apoptosis impose an inherent caveat to the use of the Rb pathway for long-term cancer therapy.  相似文献   

20.
In response to ionizing radiation (IR), cell cycle checkpoints are activated to provide time for DNA repair. Several different checkpoint mechanisms have been elucidated. However, mechanisms that regulate the duration of cell cycle arrest are not understood. Previous studies have shown that the retinoblastoma tumor suppressor protein (RB) is required for radiation-induced G1 arrest. Working with primary fibroblasts derived from Rb+/+ and Rb-/- mouse embryos, we show that RB also regulates the duration of G2 arrest. The initial G2 checkpoint response is enhanced in Rb-/- cells due to a defect in G1 arrest. However, the permanent arrest in G2 induced by higher doses of IR does not occur in Rb-/- cells. Rb-/- cells either resumed proliferation or underwent apoptosis at IR doses that caused the majority of Rb+/+ cells to arrest permanently in G2. The prolongation of G2 arrest in Rb+/+ cells correlated with a gradual accumulation of hypophosphorylated RB. Thus, regulation of the RB function may be an important aspect in the maintenance of cell cycle checkpoints in DNA damage response.

Key Words:

RB phosphorylation, Ionizing radiation, DNA damage, G2 checkpoint, Mouse embryo fibroblasts  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号