首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Al-activated organic acid anion efflux from roots is an important Al resistance mechanism in plants. We have conducted homologous cloning and isolated Vigna umbellata multidrug and toxic compound extrusion (VuMATE), a gene encoding a de novo citrate transporter from rice bean. Al treatment up-regulated VuMATE expression in the root apex, but neither in the mature root region nor in the leaf. The degree of up-regulation of VuMATE was both partially Al concentration and time dependent, consistent with the delay in the onset of the Al-induced citrate efflux in rice bean roots. While La(3+) moderately induced VuMATE expression, Cd(2+) and Cu(2+) did not induce the expression. Electrophysiological analysis of Xenopus oocytes expressing VuMATE indicated this transporter can mediate significant anion efflux across the plasma membrane. [(14) C]citrate efflux experiments in oocytes demonstrated that VuMATE is a H(+) -dependent citrate transporter. In addition, expression of VuMATE in transgenic tomato resulted in increased Al resistance, which correlated with an enhanced citrate efflux. Taken together, these findings suggest that VuMATE is a functional homolog of the known citrate transporters in sorghum, barley, maize and Arabidopsis. The similarities and differences of all the known citrate transporters associated with Al stress in the MATE family are also discussed.  相似文献   

3.
Recently, we showed that secretion of citrate in an aluminium (Al) tolerant cultivar soybean (Glycine max) (cv. Suzunari) is a specific response to Al stress [Yang et al. (2000) Physiol Plant 110: 72–77]. Here we investigated the intrinsic mechanisms behind the secretion of citrate induced by Al. The amount of citrate secreted during the 24‐h Al treatment period increased with increasing concentration of Al (0–70 μM). We analysed citrate secretion basically under 3 conditions: (1) by varying light‐exposure, (2) with intact or excised shoots and (3) by using a divided chamber technique. Further, the content of organic acids in the tissue and the activity of enzymes involved in organic acid metabolism were analysed and evaluated. The results indicate that high rate of citrate secretion in soybean requires a 4‐h induction period. Al had a continuous effect on the citrate secretion when Al was removed from the treatment solution. Citrate secretion increased steadily under exposure to continuous light. However, when the shoots were excised the citrate secretion rate dropped to 3–6 times that of their control counterparts. Results of root manipulation experiments revealed that citrate secretion required the direct contact of Al. In other words, only the Al‐treated root portions secreted citrate. All these observations suggest that the shoots play a role in Al‐induced citrate secretion. Although shoots may not supply citrate for the secretion upon Al treatment, it seems that they may provide the carbon source and/or energy for citrate synthesis in the root. On the other hand, the root organic acid content (1‐cm apex) indicated that malate might contribute to citrate secretion by keeping the balance between citrate synthesis and release in the root apices. Quantification of enzymes involved in organic acid metabolism showed only a 16% increase in citrate synthase activity upon Al treatments (6 h) with no differences in other enzymes. Hence, we could not rule out completely the potential contribution of citrate from shoots and the results are discussed in the light of shoots contributing either energy or citrate itself for enhanced citrate secretion in the Al‐tolerant plant roots.  相似文献   

4.
铝毒胁迫诱导菜豆柠檬酸的分泌与累积   总被引:15,自引:4,他引:11  
水培试验结果表明 ,铝毒诱导菜豆柠檬酸的分泌与累积存在着显著的基因型差异 .Al3 + 浓度 <5 0 μmol·L-1时 ,柠檬酸分泌量随Al3 + 浓度的增大而增加 ;Al3 + 浓度在 5 0~ 80 μmol·L-1时 ,柠檬酸分泌量随Al3 + 浓度的增大而减小 .不同菜豆基因型以G1984 2的柠檬酸分泌量最大 ,单位干重Al吸收量最小 .铝毒胁迫时 ,不同菜豆基因型叶片柠檬酸累积量无明显差异 ,根系柠檬酸累积量为G1984 2 >AFR >ZPV >G5 2 73.菜豆柠檬酸分泌量缺P处理 <铝毒胁迫 ,5 0 μmol·L-1LaCl3 不能诱导菜豆分泌柠檬酸 ,表明柠檬酸的分泌与累积是菜豆抗铝毒胁迫的重要生理反应  相似文献   

5.

Background and Aims

Polyamines and nitric oxide (NO) are two important molecules modulating numerous environment stresses in plants. This study was to investigate the roles of polyamines and NO in aluminum (Al) tolerance in red kidney bean.

Methods

The interaction between putrescine (Put) and NO under Al stress was examined. NO donor and scavenger were used to further examine the role of NO in Al-induced citrate secretion from roots by high performance liquid chromatography.

Results

Al stress caused increase of endogenous free Put, and exogenous Put alleviated Al-induced inhibition of root elongation and Al accumulation. In addition, Put induced NO production and nitrate reductase (NR) activity under Al stress. Al- and Put-induced NO production could be reversed by NR inhibitor. Furthermore, Al stress stimulated citrate secretion from roots, and this response was stimulated by NO donor, whereas NO scavenger inhibited Al-induced citrate secretion from roots. Concomitantly, NO donor reduced Al accumulation in root apexes, while NO scavenger further enhanced Al accumulation. Al-induced inhibition of root growth was significantly improved by exogenous citrate treatment.

Conclusions

Put and NO enhanced Al tolerance by modulating citrate secretion from roots, and NO may act downstream of Put in red kidney bean under Al stress.  相似文献   

6.
Superior effectiveness of Mg over Ca in alleviating Al rhizotoxicity cannot be accounted for by predicted changes in plasma membrane Al3+ activity. The influence of Ca and Mg on the production and secretion of citrate and malate, and on Al accumulation by roots was investigated with soybean genotypes Young and PI 416937 which differ in Al tolerance. In the presence of a solution Al3+ activity of 4.6 microM, citrate and malate concentrations of tap root tips of both genotypes increased with additions of either Ca up to 3 mM or Mg up to 50 microM. Citrate efflux rate from roots exposed to Al was only enhanced with Mg additions and exceeded malate efflux rates by as much as 50-fold. Maximum citrate release occurred within 12 h after adding Mg to solution treatments. Adding 50 microM Mg to 0.8 mM CaSO4 solutions containing Al3+ activities up to 4.6 microM increased citrate concentration of tap root tips by 3- to 5-fold and root exudation of citrate by 6- to 9-fold. Plants treated with either 50 microM Mg or 3 mM Ca had similar reductions in Al accumulation at tap root tips, which coincided with the respective ability of these ions to relieve Al rhizotoxicity. Amelioration of Al inhibition of soybean root elongation by low concentrations of Mg in solution involved Mg-stimulated production and efflux of citrate by roots.  相似文献   

7.
8.
Two common bean (Phaseolus vulgaris L.) genotypes differing in aluminum (Al) resistance, Quimbaya (Al‐resistant) and VAX‐1 (Al‐sensitive) were grown in hydroponics for up to 25 h with or without Al, and several parameters related to the exudation of organic acids anions from the root apex were investigated. Al treatment enhanced the exudation of citrate from the root tips of both genotypes. However, its dynamic offers the most consistent relationship between Al‐induced inhibition of root elongation and Al accumulation in and exclusion from the root apices. Initially, in both genotypes the short‐term (4 h) Al‐injury period was characterized by the absence of citrate efflux independent of the citrate content of the root apices, and reduction of cytosolic turnover of citrate conferred by a reduced Nicotinamide adenine dinucleotide phosphate–isocitrate dehydrogenase (EC 1.1.1.42) activity. Transient recovery from initial Al stress (4–12 h) was found to be dependent mainly on the capacity to utilize internal citrate pools (Al‐resistant genotype Quimbaya) or enhanced citrate synthesis [increased activities of NAD‐malate dehydrogenase (EC 1.1.1.37) and ATP‐phosphofructokinase (EC 2.7.1.11) in Al‐sensitive VAX‐1]. Sustained recovery from Al stress through citrate exudation in genotype Quimbaya after 24 h Al treatment relied on restoring the internal citrate pool and the constitutive high activity of citrate synthase (CS) (EC 4.1.3.7) fuelled by high phosphoenolpyruvate carboxylase (EC 4.1.1.31) activity. In the Al‐sensitive genotype VAX‐1 the citrate exudation and thus Al exclusion and root elongation could not be maintained coinciding with an exhaustion of the internal citrate pool and decreased CS activity.  相似文献   

9.
Organic anion exudation by roots as a mechanism of aluminium (Al) resistance has been intensively studied lately. In the present study, we evaluated qualitative and quantitative aspects of root exudation of organic anions in maize genotypes of distinct sensitivity to Al in response to Al exposure. Maize seedlings were grown axenically in nutrient solution and root exudates were collected along the whole seminal root axis for a short period (4 h) using a divided-root-chamber technique. In root exudates collected from 10-mm long root apices, citrate accounted for 67% of the total organic anions found, followed by malate (29%), trans-aconitate (3%), fumarate (<1%), and cis-aconitate (1%). Rates of citrate exudation from root apices of two genotypes with differential resistance to Al were consistently higher in the Al resistant one, differing by a factor of 1.7 – 3.0 across a range of external Al concentrations. Furthermore, relative Al resistance of eight maize genotypes correlated significantly well with their citrate exudation rate measured at 40 M Al. Higher exudation rates were accompanied by a less inhibited root elongation. The exudation of citrate along the longitudinal axis of fully developed seminal roots showed a particular pattern: citrate was exuded mainly in the regions of root apices, either belonging to the main root or to the lateral roots in the most basal part of the main root. The involvement of citrate in a mechanism of Al resistance is evaluated in terms of protection of the root from the effects of excess Al on root elongation and on nutrient uptake along a root axis showing distinct sites of citrate exudation.  相似文献   

10.
Al-induced release of Al-chelating ligands (primarily organic acids) into the rhizosphere from the root apex has been identified as a major Al tolerance mechanism in a number of plant species. In the present study, we conducted physiological investigations to study the spatial and temporal characteristics of Al-activated root organic acid exudation, as well as changes in root organic acid content and Al accumulation, in an Al-tolerant maize (Zea mays) single cross (SLP 181/71 x Cateto Colombia 96/71). These investigations were integrated with biophysical studies using the patch-clamp technique to examine Al-activated anion channel activity in protoplasts isolated from different regions of the maize root. Exposure to Al nearly instantaneously activated a concentration-dependent citrate release, which saturated at rates close to 0.5 nmol citrate h(-1) root(-1), with the half-maximal rates of citrate release occurring at about 20 microM Al(3+) activity. Comparison of citrate exudation rates between decapped and capped roots indicated the root cap does not play a major role in perceiving the Al signal or in the exudation process. Spatial analysis indicated that the predominant citrate exudation is not confined to the root apex, but could be found as far as 5 cm beyond the root cap, involving cortex and stelar cells. Patch clamp recordings obtained in whole-cell and outside-out patches confirmed the presence of an Al-inducible plasma membrane anion channel in protoplasts isolated from stelar or cortical tissues. The unitary conductance of this channel was 23 to 55 pS. Our results suggest that this transporter mediates the Al-induced citrate release observed in the intact tissue. In addition to the rapid Al activation of citrate release, a slower, Al-inducible increase in root citrate content was also observed. These findings led us to speculate that in addition to the Al exclusion mechanism based on root citrate exudation, a second internal Al tolerance mechanism may be operating based on Al-inducible changes in organic acid synthesis and compartmentation. We discuss our findings in terms of recent genetic studies of Al tolerance in maize, which suggest that Al tolerance in maize is a complex trait.  相似文献   

11.
12.
Hydrogen sulphide (H2S) is emerging as an important signalling molecule involved in plant resistance to various stresses. However, the underlying mechanism of H2S in aluminium (Al) resistance and the crosstalk between H2S and nitric oxide (NO) in Al stress signalling remain elusive. Citrate secretion is a wide‐spread strategy for plants against Al toxicity. Here, two citrate transporter genes, GmMATE13 and GmMATE47, were identified and characterized in soybean. Functional analysis in Xenopus oocytes and transgenic Arabidopsis showed that GmMATE13 and GmMATE47 mediated citrate exudation and enhanced Al resistance. Al treatment triggered H2S generation and citrate exudation in soybean roots. Pretreatment with an H2S donor significantly elevated Al‐induced citrate exudation, reduced Al accumulation in root tips, and alleviated Al‐induced inhibition of root elongation, whereas application of an H2S scavenger elicited the opposite effect. Furthermore, H2S and NO mediated Al‐induced GmMATE expression and plasma membrane (PM) H+‐ATPase activity and expression. Further investigation showed that NO induced H2S production by regulating the key enzymes involved in biosynthesis and degradation of H2S. These findings indicate that H2S acts downstream of NO in mediating Al‐induced citrate secretion through the upregulation of PM H+‐ATPase‐coupled citrate transporter cotransport systems, thereby conferring plant resistance to Al toxicity.  相似文献   

13.
Excess aluminum (Al) ions and phosphorus (P) deficiency are the key factors that limit plant growth in acid soils. Secretion of organic acids (OA) from roots has been proposed as an Al-resistance mechanism. Nonetheless, the correlation between Al resistance and this mechanism has not been tested beyond a very small number of Al-resistant and Al-sensitive genotypes. To elucidate the mechanisms responsible for plant adaptability to acid soils, we studied the secretion of OA from roots of Stylosanthes in response to high-Al and low-P stresses using six different genotypes. Relative root inhibition by 50?µM Al ranged from 25–71% and differed significantly among six Stylosanthes genotypes. Al treatment induced the secretion of citrate from the roots of Stylosanthes seedling in a dose- and time-dependent manner. Moreover, the secretion rate was significantly higher in the Al-resistant genotype. On the other hand, inhibition of Al-induced citrate secretion by phenylisothiocyanate or 9-anthracenecarboxylic acid resulted in an increase in Al content in Stylosanthes root apices. P deficiency also induced citrate secretion from Stylosanthes seedling roots. Furthermore, citrate secretion was much more robust with exposure to both excess-Al and P-deficiency stresses than under either stress alone. Unlike Al-induced citrate secretion, which was rapid, low-P-induced secretion was a slow process, with significant increases in secretion only becoming evident after 6 d of treatment with free phosphate. The lag between treatment with Al and citrate secretion was approximately 4 h. These results suggest that the secretion of citrate is a mechanism for resistance to both excess-Al and low-P stresses in Stylosanthes.  相似文献   

14.
Root morphology in plants may be related to phosphorus (P) efficiency by affecting the absorption characteristics of the root system. However, genotypic variation in root morphological characteristics of common bean (Phaseolus vulgaris L.) as affected by P availability has not been well clarified. In the present study, systematic studies were conducted in a P-buffered sand culture system using three pairs of common bean parental materials with contrasting root traits in response to P deficiency. The results indicate that P availability significantly affects bean root morphology. Common bean tends to have smaller root system, shorter and coarser roots at low P availability. Genotypic variation in root morphology was observed among different genotypes in response to P availability. The P efficient genotypes appear to have larger, finer and longer root systems than the P inefficient genotypes, and such a variation was particularly obvious in the basal roots. From allomeric analysis, we found that morphological characteristics of the basal roots contribute more to P efficiency than those of the tap roots. Further studies with the F9 recombinant inbred lines derived from one of the most contrasting parental pairs, DOR364 and G19833, confirmed the above findings, indicating that those morphological characteristics are inheritable hence provide potential for genetic improvement. Root morphology in plants may be related to phosphorus (P) efficiency by affecting the absorption characteristics of the root system. However, genotypic variation in root morphological characteristics of common bean (Phaseolus vulgaris L.) as affected by P availability has not been well clarified. In the present study, systematic studies were conducted in a P-buffered sand culture system using three pairs of common bean parental materials with contrasting root traits in response to P deficiency. The results indicate that P availability significantly affects bean root morphology. Common bean tends to have smaller root system, shorter and coarser roots at low P availability. Genotypic variation in root morphology was observed among different genotypes in response to P availability. The P efficient genotypes appear to have larger, finer and longer root systems than the P inefficient genotypes, and such a variation was particularly obvious in the basal roots. From allomeric analysis, we found that morphological characteristics of the basal roots contribute more to P efficiency than those of the tap roots. Further studies with the F9 recombinant inbred lines derived from one of the most contrasting parental pairs, DOR364 and G19833, confirmed the above findings, indicating that those morphological characteristics are inheritable hence provide potential for genetic improvement.  相似文献   

15.
Plant root hairs are believed to be very important for phosphorus (P) uptake from the soil by expanding the absorptive surface area of the root and increasing the soil volume explored by the roots, but genetic information about root hair traits in soybean is relatively scarce. In the present study, two contrasting genotypes of soybean (Glycine max and Glycine soja), CN4 and XM6, and their 88 F9-derived recombinant inbred lines (RILs) were grown in a field with moderately low P availability. Some important root hair traits, including root hair density (RHD), average root hair length (ARHL), and root hair length per unit root (RHLUR) were investigated and quantified with an automatic image analysis system and the genetic variability for these root hair traits was estimated with the RIL population. The results indicated that the two parental genotypes differed significantly in the three root hair traits measured, with XM6 generally having larger RHD and RHLUR (but smaller ARHL) than CN4, which may in part explain the difference in biomass and P status between the two parents. All the three root hair traits were continually segregated in the progenial RIL population with a normal distribution of the phenotypic values, indicating that these traits are possibly controlled by quantitative trait loci (QTLs). Analysis of variance for the RIL population showed that RHD had a low heritability (h2 b = 27.32, 31.04, 33.97% for basal roots, tap roots, total roots, respectively), while ARHL had a relatively higher genetic variance and hence a higher heritability (h2 b = 53.85, 59.18, 60.98% for basal roots, tap roots, total roots, respectively), suggesting that RHD is influenced more by environmental factors than ARHL. Both RHD and ARHL were positively correlated with RHLUR, indicating that the former two traits may be the attributes to the latter. On the other hand, RHD and ARHL were negatively correlated with each other, implying a possible complementary relationship between the two traits. Both RHD and RHLUR (but not ARHL) were positively correlated with P concentration in the plant, suggesting an important role of root hairs in P status. The basal roots had denser and higher total root hair length than the tap roots, and this is in accordance with previous observations with other plants that basal roots are more effective for P uptake than tap roots in cultivated soils.  相似文献   

16.
菜豆根形态特性的基因型差异与磷效率   总被引:5,自引:0,他引:5  
廖红  严小龙 《Acta Botanica Sinica》2001,43(11):1161-1166
应用磷控释砂培以及计算机图象分析技术,研究了磷效率差异显的菜豆(Phaseolus vulgaris L.)亲本及其重组自交系后代的根形态特性及其与磷效率的关系。试验结果表明,供磷状况显影响菜豆根系形态学特性。在低磷胁迫下,菜豆根系总根长变短、根部生物量减少,根直径增大。菜豆根形态特性对低磷有效性的适应性反应具有显的基因型差异。在低磷条件下磷高效率基因型的根系比磷低效率基因型相对根部生物量较大、总根长较长,根表面积较大。异计分析表明,菜豆基根根形态特性在低磷条件下的适应性变化对磷效率的贡献远远大于主根,并且这些适应性变化是可以遗传的,表明通过对菜豆根形态特性进行遗传改良来提高磷效率有一定的可行性。  相似文献   

17.
The role of assimilates in lateral root development was studied in Pinus pinea seedlings grown in a nutrient solution. Seedlings were treated with 14CO2 for 2 h following removal of the tap root tip at various times prior to the application of 14CO2 or removal of a different number of cotyledons at one time. In seedlings with intact root systems most of the radioactivity accumulated in the lower section of the root containing the tap root apex. When the tap root tip was removed, the pattern of radioactivity accumulation along the root was affected by the presence and the stage of lateral root development. Removing the tap root tip of young seedlings (with no lateral roots) resulted in an almost equal distribution of radioactivity along the root. About 50% of the total radioactivity was found in the section showing the highest lateral root growth. Removing the tap root tip of mature seedlings (with lateral roots in the upper section) resulted in an immediate increase in the radioactivity accumulation in the upper section. When lateral roots appeared in the middle section, the pattern of radioactivity distribution was similar to that found in root decapitated young seedlings. Removal of cotyledons of mature seedlings somewhat increased the transport of radioactivity to the lower root section at the expense of the radioactivity in the lateral roots of the upper section. The present study suggests that competition within the root system between the tap root apex and the lateral roots may play an important role in determining the morphology of the root system.  相似文献   

18.
The secretion of organic acid anions from roots has been identified as a mechanism of resistance to Al. However, the process leading to the secretion of organic acid anions is poorly understood. The effect of Al on organic acid metabolism was investigated in two lines of triticale (xTriticosecale Wittmark) differing in Al-induced secretion of malate and citrate and in Al resistance. The site of Al-induced secretion of citrate and malate from a resistant line was localized to the root apices (terminal 5 mm). The levels of citrate (root apices and mature root segments) and malate (mature segments only) in roots increased during exposure to Al, but similar changes were observed in both triticale genotypes. The in vitro activities of four enzymes involved in malate and citrate metabolism (citrate synthase, phosphoenolpyruvate carboxylase, malate dehydrogenase, and NADP-isocitrate dehydrogenase) were similar for sensitive and resistant lines in both root apices and mature root segments. The response of these enzymes to pH did not differ between tolerant and sensitive lines or in the presence and absence of Al. Moreover, cytoplasmic and vacuolar pH were not affected by exposure to Al in either line. Together, these results indicate that the Al-dependent efflux of organic acid anions from the roots of triticale is not regulated by their internal levels in the roots or by the capacity of the root cells to synthesize malate and citrate.  相似文献   

19.
In search for the cellular and molecular basis for differences in aluminum (Al) resistance between maize (Zea mays) cultivars we applied the patch-clamp technique to protoplasts isolated from the apical root cortex of two maize cultivars differing in Al resistance. Measurements were performed on protoplasts from two apical root zones: The 1- to 2-mm zone (DTZ), described as most Al-sensitive, and the main elongation zone (3-5 mm), the site of Al-induced inhibition of cell elongation. Al stimulated citrate and malate efflux from intact root apices, revealing cultivar differences. In the elongation zone, anion channels were not observed in the absence and presence of Al. Preincubation of intact roots with 90 microM Al for 1 h induced a citrate- and malate-permeable, large conductance anion channel in 80% of the DTZ protoplasts from the resistant cultivar, but only 30% from the sensitive cultivar. When Al was applied to the protoplasts in the whole-cell configuration, anion currents were elicited within 10 min in the resistant cultivar only. La3+ was not able to replace or counteract with Al3+ in the activation of this channel. In the presence of the anion-channel blockers, niflumic acid and 4, 4'-dinitrostilbene-2, 2'disulfonic acid, anion currents as well as exudation rates were strongly inhibited. Application of cycloheximide did not affect the Al response, suggesting that the channel is activated through post-translational modifications. We propose that the Al-activated large anion channel described here contributes to enhanced genotypical Al resistance by facilitating the exudation of organic acid anions from the DTZ of the maize root apex.  相似文献   

20.
Zhao Z  Ma JF  Sato K  Takeda K 《Planta》2003,217(5):794-800
While barley ( Hordeum vulgare L.) is the most sensitive species to Al toxicity among small-grain crops, variation in Al resistance between cultivars does exist. We examined the mechanism responsible for differential Al resistance in 21 barley varieties. Citrate was secreted from the roots in response to Al stress. A positive correlation between citrate secretion and Al resistance [(root elongation with Al)/(root elongation without Al)] and a negative correlation between citrate secretion and Al content of root apices, were obtained, suggesting that citrate secretion from the root apices plays an important role in excluding Al and thereby detoxifying Al. The Al-induced secretion of citrate was characterized using an Al-resistant variety (Sigurdkorn) and an Al-sensitive variety (Kearney). In Sigurdkorn, Al-induced secretion of citrate occurred within 20 min, and the secretion did not increase with increasing external Al concentration. The Al-induced citrate secretion ceased at low temperature (6 degrees C) and was inhibited by anion-channel inhibitors. Internal citrate content of root apices was increased by Al exposure in Sigurdkorn, but was not affected in Kearney. The activity of citrate synthase was unaffected by Al in both Al-resistant and Al-sensitive varieties. The secretion rate of organic acid anions from barley was the lowest among wheat, rye and triticale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号