首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the process of seed dispersal by ants (myrmecochory), foragers bring diaspores back to their nest, then eat the elaiosome and usually reject viable seeds outside the nest. Here, we investigate what happens inside the nest, a barely known stage of the myrmecochory process, for two seed species (Viola odorata, Chelidonium majus) dispersed either by the insectivorous ant Myrmica rubra or by the aphid-tending ant Lasius niger. Globally, elaiosome detachment decreased ants’ interest towards seeds and increased their probability of rejecting them. However, we found marked differences in seed management by ants inside the nest. The dynamics of elaiosome detachment were ant- and plant-specific whereas the dynamic of seed rejection were mainly ant-specific. Seeds remained for a shorter period of time inside the nest of the carnivorous ant Myrmica rubra than in Lasius niger nest. Thus, elaiosome detachment and seed rejection were two competing dynamics whose relative efficiency leads to variable outcomes in terms of types of dispersed items and of nutrient benefit to the ants. This is why some seeds remained inside the nest even without an elaiosome, and conversely, some seeds were rejected with an elaiosome still attached. Fresh seeds may be deposited directly in contact with the larvae. However, the dynamics of larvae-seeds contacts were also highly variable among species. This study illustrates the complexity and variability of the ecological network of ant–seed interactions.  相似文献   

2.
1. Myrmecochory sensu stricto is an ant–plant mutualism in which non‐granivorous ants disperse plant diaspores after feeding on their nutrient‐rich seed appendage, the elaiosome. Phenological traits associated with the diaspore can influence the behaviour of ants and thus their ultimate efficiency as seed dispersers. 2. This study investigated how a contrasting availability of seeds (20 vs. 200 seeds) from the diplochorous Chelidonium majus (Papaveraceae, Linnaeus) plant species influences the behaviour of Myrmica rubra (Formicidae, Linnaeus) ants, from the retrieval of seeds until their dispersal outside the ant nest. 3. Regardless of seed abundance, the ants collected the first diaspores at similar rates. Then, seed retrieval sped up over time for large seed sources until satiation took place with only one‐third of the tested colonies wholly depleting abundant seed sources. 4. No active recruitment by trail‐laying ants was triggered, even to an abundant seed source 5. In both conditions of seed abundance, the majority of the diaspores retrieved inside the nest were discarded with the elaiosome removed and were dispersed at similar distances from the nest. 6. The paper concludes with a discussion of how the quantity of seeds released by a plant with a dual mode of dispersal can potentially influence the behaviour of ant dispersers and hence the dispersal efficiency derived from myrmecochory.  相似文献   

3.
4.
Ant behaviour and seed morphology: a missing link of myrmecochory   总被引:2,自引:2,他引:0  
Gómez C  Espadaler X  Bas JM 《Oecologia》2005,146(2):244-246
Seed dispersal by ants (myrmecochory) is mediated by the presence of a lipid-rich appendage (elaiosome) on the seed that induces a variety of ants to collect the diaspores. When seeds mature or fall onto the ground, these ant species transport them to their nest. After eating the elaiosome, the seed is discarded in nest galleries or outside, in the midden or farther away, where seeds can potentially germinate. The final location of seeds with their elaiosomes removed was evaluated to assess the importance of possible handles (structures that ants can grasp to carry) in transporting ants during re-dispersal experiments of seeds from nests of six species of ants. The results indicate that seeds remained within the nest because the ants were not able to transport them out of the nest. As a consequence of the elaiosome being removed, small ant species could not take Euphorbia characias seeds out of their nests. Only large ant species could remove E. characias seeds from their nests. Attaching an artificial handle to E. characias seeds allowed small ant species to redistribute the seeds from their nests. On the other hand, Rhamnus alaternus seeds that have a natural handle after the elaiosome removal were removed from the nests by both groups of ant species. If a seed has an element that acts as a handle, it will eventually get taken out of the nest. The ants’ size and their mandible gap can determine the outcome of the interaction (i.e. the pattern of the final seed shadow) and as a consequence, could influence the events that take place after the dispersal process.  相似文献   

5.
Myrmecochorous plant seeds have nutrient rich appendages, elaiosomes, which induce some ant species to carry the seeds back to their nest where the elaiosome is consumed and the seed is discarded unharmed. The benefits to plants of dispersal of their seeds in this way have been well documented, but the benefits to the ants from consuming the elaiosomes have rarely been measured and are less clear. Ant benefits from myrmecochory were investigated in a laboratory experiment using the ant Myrmica ruginodis and seeds of Ulex species. To separate the effects of elaiosome consumption on the development of newly produced larvae versus existing larvae, ten ‘Queenright’ colonies containing a queen were compared to ten ‘Queenless’ colonies. Six measures of colony fitness over a complete annual cycle were taken: sexual production, larval weight and number, pupal weight and number, and worker survival. Queenless colonies fed with elaiosomes produced 100.0±29.3 (mean ± SE) of larvae compared to non-elaiosome fed colonies which produced 49.6±19.0; an increase of 102%. Larval weight increased in both Queenright and Queenless colonies. In colonies fed with elaiosomes, larvae weighed 1.02±0.1 mg, but in non-elaiosome fed colonies larvae weighed 0.69±0.1 mg; an increase of 48%. The food supplement provided by Ulex elaiosomes was trivial in energetic terms, under the conditions of an ample diet, suggesting that these effects might be due to the presence of essential nutrients. Chemical analysis of Ulex elaiosomes showed the presence of four essential fatty acids and four essential sterols for ants.  相似文献   

6.
Myrmecochorous diaspores bear a nutrient-rich appendage, the elaiosome, attractive to ant workers that retrieve them into the nest, detach the elaiosome and reject the seed intact. While this interaction is beneficial for the plant partner by ensuring its seed dispersal, elaiosome consumption has various effects −positive, negative or none − on ants’ demography and survival, depending on both the ant/plant species involved. In this context, the contribution of ants to seed dispersal strongly varies according to the ant/plant pairs considered. In this paper, we investigate whether the dynamics of myrmecochory also vary on a temporal scale, for a given pair of partners: Myrmica rubra ants and Viola odorata seeds. During their first encounter with seeds, ants collect all the diaspores and eat the majority of elaiosomes. Both the harvesting effort and the elaiosome consumption decline when seeds are offered on the next week and completely cease for the following weeks. This is related to a decrease in the number of foragers reaching the food source, as well as to a reduced probability for an ant contacting a seed to retrieve it. Seed retrieval is not reactivated after seven weeks without any encounter with V. odorata seeds. By contrast, naive ant colonies only fed with fruit flies do not show a decline of prey harvesting of which the speed of retrieval even increases over the successive weeks. Myrmecochory may thus be labile at the scale of a fruiting season due to the ability of ants to steeply tune and cease for several months the harvesting of these seemingly poorly rewarding items and to maintain cessation of seed exploitation. The present study emphasizes the importance of a long-lasting follow up of the myrmecochory process, to assess the stability of this ant-plant partnership and to identify mechanisms of adaptive harvesting in ants.  相似文献   

7.
Seed re-dispersal following initial harvesting by ants may have important implications for the distribution and fate of myrmecochorous seeds. However, the probability of seed re-dispersed by ants and the effect it may have on subsequent survival appear variable, the functional role of diaspore, disperser and seed predator to the fate of discarded seeds remain unclear. To clarify the ecology, we compared the consequences of seed re-dispersal by a keystone seed-dispersing ant (Myrmica ruginodis Nylander) for four sympatric myrmecochorous plants common to the temperate deciduous forests in Qinling Mountains, central China. Plants varied in the probability of re-dispersal and in elaiosome condition. Ants preferred seeds with residual elaiosomes, while rodents only consumed the two larger-seeded species, regardless of the elaiosome presence. The scattered distribution of discarded seeds increased the probability of ant re-harvesting and, to some extent, reduced rodent predation. Thus, difference in the probability of seed re-dispersal and its subsequent effect on seed fate in relation to ants and rodents was attributed primarily to the elaiosome condition, seed size and seed spatial pattern. The results imply that seed re-dispersal could affect the fitness of plants and ultimately influence the plant abundance and distribution pattern. This highlights the necessity to incorporate re-dispersal into myrmecochory to advance our understanding of the benefits of myrmecochory to plants.  相似文献   

8.
Several studies relate removal of diaspores from different ant-dispersed plant species to the size of their claiosomes. This study is the first one to relate intraspecific variation in claiosome size to removal of diaspores by ants. This approach circumvents the problem posed by interspecific variation in chemistry and morphology of elaiosomes. We used the systemHepatica nobilis Mill. (Ranunculaceae) andMyrmica ruginodis Nyl. The elaiosome was the attractive part of the diaspore and its attractiveness decreased quickly after release from the fruit. In experimental runs where ants collected diaspores, the elaiosome size of accepted diaspores was larger than of those rejected and the largest diaspores were collected first. Since size of diaspore, elaiosome and achene were correlated, the diaspores that were removed first had both the largest elaiosome and achene. However, our experiments suggested that elaiosome size was more important to removal than achene size or the elaiosome:achene size ratio. If ant dispersal improves plant fitness, elaiosome size and hence diaspore size would be expected to increase over time. However, such directional selection mediated by the ants is probably counterbalanced by the plant. Seed predators and a negative trade-off between number and size of seeds would, among other factors, select for smaller diaspore size,i.e. counteract the effect of the ants' preference for larger elaiosomes.  相似文献   

9.
Benefits conferred on plants in ant-mediated seed dispersal mutualisms (myrmecochory) depend on the fate of transported seeds. We studied the effects of elaiosome presence, seed size and seed treatment (with and without passage through a bird's digestive tract) on short-term seed fate in Rhamnus alaternus. In our study, we define short-term seed, or initial, seed fate, as the location where ants release the seeds after ant contact with it. The elaiosomes had the most influence on short-term fate, i.e. whether or not seeds were transported to the nest. The workers usually transported big seeds more often than small ones, but small ants did not transport large seeds. Effect of seed size on transport depended on the ant species and on the treatment of the seed (manual extraction simulating a direct fall from the parent plant vs. bird deposition corresponding to preliminary primary dispersal). Probability of removal of elaiosome-bearing seeds to the nest by Aphaenogaster senilis increased with increasing seed weight.  相似文献   

10.
The modes of seed dispersal in the prostrate annual, Chamaesyce maculata, with multiple overlapping generations were investigated. We found that C. maculata has two modes of seed dispersal; autochory in the summer and myrmecochory in the autumn. Seasonally different modes of seed dispersal have not been known in other plant species. The large proportion of seeds produced in the summer was positioned further than the expanse of the parent plants by automatic mechanical seed dispersal. Therefore, autochory would be effective for avoiding competition between parent and offspring plants. No autochory occurred in the seeds produced in the autumn. The seeds of C. maculata without an elaiosome were dispersed by seed-collecting ants in the autumn. Although 18 ant species in total visited the plants of C. maculata at the 50 sites investigated, only two ant species, Tetramorium tsushimae and Pheidole noda frequently carried the seeds of C. maculata. The low frequency of seeds carried out of the nest by P. noda suggests that the workers of P. noda carry the seeds as food into their nest. So, P. noda might be a less effective seed disperser for C. maculata, corresponding to the effectiveness of seed dispersal by harvester ants. However, T. tsushimae ants frequently carried the seeds into and out of their nest, suggesting that T. tsushimae do not regard the seeds of C. maculata as a food resource. Thus, T. tsushimae may be an effective seed disperser for C. maculata.  相似文献   

11.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

12.
This paper describes the myrmecochory system of Turnera ulmifolia in a coastal sand dune matorral in Mexico. Turnera ulmifolia has elaiosome‐bearing seeds and extrafloral nectaries (EFNs). In ten quadrants (4 × 15 m) ant–seed interaction was monitored, and an interaction intensity index calculated and correlated with the number of seedlings. Seed removal rates by ants were surveyed every 2 h for 24 h, the ants being observed both on and beneath the plants. The role of the elaiosome in seed removal was evaluated by offering seeds with and without elaiosomes, and elaiosomes only. Finally, the effect of ant manipulation in seed germination was evaluated. There were 25 ant species associated with seeds and/or EFNs, the most frequently recorded being Monomorium cyaneum and Forelius analis. There was a positive correlation between the intensity index and seedling number per quadrant. There was significantly higher mean seed removal during the day than during the night (19.3% and 12.3%, respectively), and from beneath than on the plant (21.9% and 9.5%, respectively). The preference for elaiosomes only was also greater during the diurnal period, and when gathered on, rather than beneath, the plant. Seed manipulation by F. analis enhanced germination by T. ulmifolia. Seed removal, dispersal distances, seed predation and germination were largely determined by ant behaviour. The presence of EFNs may be influencing seed removal on the plant by attracting a specific assemblage of omnivorous ants. Among such assemblages associated with T. ulmifolia we encountered a variety of behaviours, with ant species either good at defending plants but bad at dispersing seeds, or vice versa. We discuss the way in which these two rewards, and the processes involved (defence and dispersion), could have interacted with each other and evolved. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 67–77.  相似文献   

13.
Seed dispersal by ants is an important means of migration for plants. Many myrmecochorous plants have specialized appendages in their seeds called elaiosome, which provides nutritional rewards for ants, and enable effective seed dispersal. However, some nonmyrmecochorous seeds without elaiosomes are also dispersed by ant species, suggesting the additional mechanisms other than elaiosomes for seed dispersal by ants. The seeds of the achlorophyllous and myco‐heterotrophic herbaceous plant Monotropastrum humile are very small without elaiosomes; we investigated whether odor of the seeds could mediate seed dispersal by ants. We performed a bioassay using seeds of M. humile and the ant Nylanderia flavipes to demonstrate ant‐mediated seed dispersal. We also analyzed the volatile odors emitted from M. humile seeds and conducted bioassays using dummy seeds coated with seed volatiles. Although elaiosomes were absent from the M. humile seeds, the ants carried the seeds to their nests. They also carried the dummy seeds coated with the seed volatile mixture to the nest and left some dummy seeds inside the nest and discarded the rest of the dummy seeds outside the nest with a bias toward specific locations, which might be conducive to germination. We concluded that, in M. humile seeds, volatile odor mixtures were sufficient to induce seed‐carrying behavior by the ants even without elaiosomes.  相似文献   

14.
Both rewards and signals are important in mutualisms. In myrmecochory, or seed dispersal by ants, the benefits to plants are relatively well studied, but less is known about why ants pick up and move seeds. We examined seed dispersal by the ant Aphaenogaster rudis of four co-occurring species of plants, and tested whether morphology, chemical signaling, or the nutritional quality of fatty seed appendages called elaiosomes influenced dispersal rates. In removal trials, ants quickly collected diaspores (seeds plus elaiosomes) of Asarum canadense, Trillium grandiflorum, and Sanguinaria canadensis, but largely neglected those of T. erectum. This discrepancy was not explained by differences in the bulk cost-benefit ratio, as assessed by the ratio of seed to elaiosome mass. We also provisioned colonies with diaspores from one of these four plant species or no diaspores as a control. Colonies performed best when fed S. canadensis diaspores, worst when fed T. grandiflorum, and intermediately when fed A. canadense, T. erectum, or no diaspores. Thus, the nutritional rewards in elaiosomes affected colony performance, but did not completely predict seed removal. Instead, high levels of oleic acid in T. grandiflorum elaiosomes may explain why ants disperse these diaspores even though they reduce ant colony performance. We show for the first time that different elaiosome-bearing plants provide rewards of different quality to ant colonies, but also that ants appear unable to accurately assess reward quality when encountering seeds. Instead, we suggest that signals can trump rewards as attractants of ants to seeds.  相似文献   

15.
Myrmecochory commonly complements the advantages of ballistic dispersal in diplochorous species. We studied the role of the elaiosome in two populations of the two diplochorous Mediterranean spurges Euphorbia boetica and E. nicaeensis, which share an efficient ballistic dispersal mechanism followed by secondary removal by ants. They differ in elaiosome persistence, as most E. boetica seeds lose the elaiosome during explosive dispersal. Self-assessed dietary preferences with seeds with and without elaiosomes of each species showed differences in behaviour among and within ant species. In general, the absence of elaiosome entailed a decrease in the number of disperser ant species interacting with the seeds, whereas the number of predatory ants remains invariable. However, in one population of E. nicaeensis, experimental elimination of the elaiosome did not affect seed removal by mutualistic ants. On the other hand, analysis of refuse piles of the granivorous Messor marocanus and M. bouvieri suggests that they act as seed predators in E. boetica, whereas unintentional dispersal can be important in E. nicaeensis. We suggest, therefore, that the presence of the elaiosome in the seeds of the studied spurges increases the interaction with disperser ant species, but the possible dispersal advantage is not apparent and is spatially variable.  相似文献   

16.
Seed dispersal by ants (myrmecochory) can be influenced by changes to ant assemblages resulting from habitat disturbance as well as by differences in disperser behaviour. We investigated the effect of habitat disturbance by fire on the dispersal of seeds of a myrmecochorous shrub, Pultenaea daphnoides. We also investigated the consequence of the seed relocation behaviours of two common dispersers (Pheidole sp. A and Rhytidoponera metallica) for the redispersal of seeds. Pheidole sp. A colonies did not relocate seeds outside their nests. In contrast, R. metallica colonies relocated 43.6 % of seeds fed to them, of which 96.9 % had residual elaiosome that remained attached. On average, R. metallica relocated seeds 78.9 and 60.7 cm from the nest entrances in burned and unburned habitat, respectively. Seeds were removed faster in burned than in unburned habitat, and seeds previously relocated by R. metallica were removed at similar rates to seeds with intact elaiosomes, but faster than seeds with detached elaiosomes. Dispersal distances were not significantly different between burned (51.3 cm) and unburned (70.9 cm) habitat or between seeds with different elaiosome conditions. Differences between habitat types in the frequency of seed removal, the shape of the seed dispersal curve, and the relative contribution of R. metallica and Pheidole sp. A to seed dispersal were largely due to the effect of recent fire on the abundance of Pheidole sp. A. Across habitat types, the number of seeds removed from depots and during dispersal trials most strongly related to the combined abundances of R. metallica and Pheidole. Our findings show that myrmecochory can involve more than one dispersal phase and that fire indirectly influences myrmecochory by altering the abundances of seed-dispersing ants.  相似文献   

17.
Seed dispersal by ants, known as myrmecochory, is commonly observed among various plant taxa. The seeds of these plants have an elaiosome to attract ants. In Japan, myrmecochory has been well studied in several lowland plant species, but not in highland plant species that grow above the tree line. We investigated whether the seeds of Dicentra peregrina, known as the “queen of the alpine plants” in Japan, are carried by Formica gagatoides ants at 2510 m a.s.l. on Mt Norikura, Kita‐Alps, Japan. We observed F. gagatoides workers picking up D. peregrina seeds by grasping the elaiosome and carrying the seeds into their nests. We inferred from the observed ant behavior and the seed morphology that D. peregrina is a myrmecochorous species.  相似文献   

18.
True myrmecochory involves the dispersal of elaiosome-bearing seeds by ants. Between the guild of ants that are attracted to these seeds, only a few of them will act as effective dispersers, that is, transporting the seeds to suitable sites (the nests) for germination and plant establishment. Ant communities are known to be highly hierarchical, and subordinate ants quickly deliver resources to their nest rather than consuming it on-site, thereby avoiding encounters with more dominant species. As a result of a series of studies that were carried out during summer in semi-arid Northwest Argentina, we have found that the most important seed disperser of the myrmecochorous plant Jatropha excisa Griseb. (Euphorbiaceae), the ant Pogonomyrmex cunicularius pencosensis Forel, was the most subordinate species during interspecific interactions. The daily timing of release of the J. excisa seeds through ballistic dispersal increased their probability of being removed by the highly thermophilic P. cunicularius pencosensis. Foraging during the warmest hours of the day allowed P. cunicularius pencosensis ants to avoid the risk of interference competition with dominant species, which also behaved as elaiosome predators. As a conclusion, subordinance behaviour appears to be integral to successful myrmecochory, and also the timing of seed release plays a key role in shaping the dynamics of myrmecochorous interactions. Therefore, ant-dispersed plants should not only favour their discovery by subordinate ants, but also should present their seeds at those times of the day when the behaviourally dominant ants are less active.  相似文献   

19.
Interspecific interactions are often assumed to be mutualistic if one species appears to benefit. However, most studies do not test whether both participants benefit. Myrmecochory, or seed dispersal by ants, is characterized by a lipid-rich appendage, or elaiosome, on a seed. Typically, ants gather the diaspores (i.e., seeds with elaiosomes), carry them to the nest, consume the elaiosome, and discard the seed unharmed either inside the nest or on a refuse pile. The benefit to the ants is presumably the nutritional content of the elaiosome, whereas benefits to the plant include dispersal from the parent plant, protection from predators, reduced seedling competition, protection from fire, or transportation to nutrient-rich microsites. Most studies of myrmecochory focus on potential benefits to the plants and simply assume that ants receive a benefit from consuming elaiosomes. I tested whether Pogonomyrmex californicus benefits from consuming Datura wrightii and D. discolor elaiosomes by raising newly-mated queens (i.e., foundresses) on different diets and measuring their survival and brood production. Foundresses reared solely on D. wrightii or D. discolor had similar probabilities of surviving and producing brood as foundresses fed a standard diet, but the number and developmental stage of the brood produced was severely reduced. Because the initial number of brood produced is critical for successful colony establishment, the future fitness of foundresses consuming only Datura is likely reduced. In addition, adding Datura to a standard diet did not increase queen survival or brood production. Although it is possible that Datura may help sustain a colony through periods of scarcity, P. californicus do not appear to receive nutritional benefits from myrmecochorous interactions with Datura in the northern Sonoran Desert. Received 4 July 2005; revised 17 April 2006; accepted 9 May 2006.  相似文献   

20.
Dispersal morphology based on the myrmecochorous adaptations for predator avoidance of sevenCorydalis species including two varieties are investigated in southern Japan. Three types of myrmecochory were distinguished: myrmecochory with autochory (diplochory), the explosive ejection of seeds followed by ant transportation; myrmecochory with vegetative reproduction, seed-transportation by ants and reproduction by tuber; and pure myrmecochory, seed-transporting by ants only. Diplochory occurs in one winter annual plant, which has explosive capsules, a smooth seed surface, a small elaiosome, long pedicels and large bracts. Myrmecochory with vegetative reproduction occurs in two perennials that reproduce by tuber, although they also produce a small number of seeds with a medium-sized elaiosome. the pedicels and bracts are medium in size. Pure myrmecochory occurs in five annuals or biennials that are characterized by a rough seed surface with a large elaiosome, comparatively high seed production, short pedicels and only small bracts. Diplochory is exhibited by only one species distributed widely throughout Japan. Myrmecochory with vegetative reproduction is exhibited by species mainly distributed in cool-temperate northern Japan, while true myrmecochory is exhibited by the majority ofCorydalis species in warm-temperate Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号