首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Kinetic studies of dopamine transport into suspensions of nucleus accumbens (NAcc) and effects of Na+ and Cl? as cosubstrates were performed using rotating disk electrode voltammetry. To mimic chemical neurotransmission, dopamine was added as a rapid pulse, and transporter-mediated clearance of dopamine was evaluated kinetically. This paradigm was shown to approximate a zero trans entry transport experiment. Dopamine was taken up with apparent Km and Vmax values of 1.3 µM and 375 pmol/s/g wet weight, respectively. Transport exhibited apparent trans acceleration. Substitution of Na+ with choline or Cl? with isethionate reduced dopamine transport with reaction orders of two and unity, respectively, accompanied by reductions in Vmax with no changes in Km. Apparent KNa and KCl values were 70.0 and 92.1 mM, respectively. Dopamine transport in NAcc was found to follow a partially random, sequential mechanism in which dopamine and Na+ bind randomly to the transporter followed by binding of Cl? before transport. Cocaine inhibited dopamine transport and the influences of the other substrates allosterically with an overall Ki of 0.30 µM. Thus, the general kinetic mechanism of the transport of dopamine in the NAcc is identical to that previously reported by this laboratory for dopamine transport in the striatum. However, the dopamine transporter in the NAcc is more tightly regulated by Na+, possesses a higher kinetic turnover rate, is four times more sensitive to cocaine than the striatal transporter, and exhibits cocaine inhibition independent of [substrate]. These findings suggest that cocaine modulates chemical signaling in NAcc differently than in striatum, providing down-regulation of function irrespective of [substrate], thereby enhancing dopaminergic signaling more robustly in the NAcc than in the striatum.  相似文献   

2.
Cocaine binds with the dopamine transporter (DAT), an effect that has been extensively implicated in its reinforcing effects. However, persisting adaptations in DAT regulation after cocaine self-administration have not been extensively investigated. Here, we determined the changes in molecular mechanisms of DAT regulation in the caudate-putamen (CPu) and nucleus accumbens (NAcc) of rats with a history of cocaine self-administration, followed by 3 weeks of withdrawal under extinction conditions (i.e., no cocaine available). DA uptake was significantly higher in the CPu of cocaine-experienced animals as compared to saline-yoked controls. DAT Vmax was elevated in the CPu without changes in apparent affinity for DA. In spite of elevated CPu DAT activity, total and surface DAT density and DAT-PP2Ac (protein phosphatase 2A catalytic subunit) interaction remained unaltered, although p-Ser- DAT phosphorylation was elevated. In contrast to the CPu, there were no differences between cocaine and saline rats in the levels of DA uptake, DAT Vmax and Km values, total and surface DAT, p-Ser-DAT phosphorylation, or DAT-PP2Ac interactions in the NAcc. These results show that chronic cocaine self-administration leads to lasting, regionally specific alterations in striatal DA uptake and DAT-Ser phosphorylation. Such changes may be related to habitual patterns of cocaine-seeking observed during relapse.  相似文献   

3.
Abstract: The apparent second-order association rate constant of dopamine binding to the striatal transporter (~1 ± 106M?1 s?1) as well as the transporter turnover number (~1.5 s?1) was estimated using rotating disk electrode voltammetry to monitor apparent zero trans entry of dopamine into striatal suspensions. The substrate specificity of the transporter was also assessed using catechol derivatives. Dopamine and norepinephrine were transported, whereas epinephrine and the acidic metabolites of dopamine were not transported. The metabolite, 3-meth-oxytyramine, was transported with a Km seven times greater than and a Vmax close to that for dopamine. 4-Methoxytyramine was transported more facilely than the 3-methoxy derivative. N-Alkylation of the amine side chain of dopamine reduced transport dramatically. 4-Ethylcatechol and 3,4-dihydroxybenzylamine were transported with velocities 79 and 91 % less than that for dopamine, respectively. The rigid analogue 6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene was transported with a greater velocity than the 5,7-dihydroxy derivative. Finally, the apparent Kmvalues for 4-ethylcatechol, 1-amino-2-phenylethane, tyramine, and m-tyramine as cosubstrates with dopamine were 1.1, 11, 17, and 2.6 μM, respectively. Pretreatments of striatal suspensions with chloroethylnorapomorphine, N-ethylmaleimide, Hg2+, 4,5-dihydroxy-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylic acid (a redox modulator of receptors in neuronal as well as other tissues), and neuraminidase reduced the velocity of transport of dopamine, whereas N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline had no effect. Thus, the dopamine transporter requires an intact catechol with a primary ethylamine side chain for optimal activity relative to shorter side chain derivatives (side chains longer than two carbons were not tested), the 3-hydroxyl group of dopamine is the more critical hydroxyl group, and the β rotamer of the extended conformation of dopamine is transported preferentially. The catechol appears to mediate the recognition of the substrate, whereas the amine side chain apparently facilitates the conformational change of the transporter that results in movement of dopamine into or across the membrane. The transporter distinguishes between agents known to block dopamine recognition sites on dopamine receptors? appears to possess a reduction/oxidation modulatory site, and requires sulfhydryl groups and external glycosylation for optimal function.  相似文献   

4.
The characteristics of dopamine uptake after acute and subacute cocaine administration were determined in striata from WKY and SHR. In acutely-treated (40 mg/kg, s.c.) rats, significant increases in the Vmax of dopamine uptake were observed 30 min after the cocaine injection in both strains, without changes in Km values. The in vitro IC50 for cocaine was significantly decreased at 30 min in WKY and at 2 h in SHR. However, the in vitro IC50 for GBR-12909 was significantly increased at 30 min and at 2 h in both strains following cocaine administration. In both strains, the density (Bmax) of the [3H]GBR-12935 binding site was significantly increased at 30 min and at 2 h with no charges in Kd. In subacutely-treated (20 mg/kg, twice daily for 3 or 7 days) rats, a significant increase in the Km for dopamine uptake was observed in 7 day treated SHR. The in vitro IC50 for GBR-12909 was significantly increased in 3 day treated WKY. The results suggest that cocaine administration alters dopamine uptake and characteristics of dopamine uptake sites in the rat brain.  相似文献   

5.
A number of processes are important in the development of substance dependence including initial sensitivity to the acute pharmacological effects of drugs/alcohol. The objectives of the present study were (1) to identify quantitative trait loci (QTLs) associated with the initial sensitivity to the effects of morphine in the A/J, C57BL/6J and AXB/BXA recombinant inbred strains of mice; (2) to identify potential commonalities in the chromosomal regions associated with morphine, cocaine and ethanol sensitivity using multiple‐trait genetic analysis and (3) to determine whether there were interstrain differences in dopamine uptake and transporter binding. Initial sensitivity to morphine was determined by measuring locomotor activity in a computerized open‐field apparatus following acute morphine administration (0, 10, 20 and 40 mg/kg). Significant differences in morphine‐induced activation were observed across the panel of AXB/BXA mice. Genetic analysis found significant QTLs on chromosomes 5, 7, 11, 12, 15 and 17 close to loci previously mapped for cocaine‐related behaviours and to parameters of dopaminergic functioning (uptake and receptor binding). Comparisons of the A/J vs. C57BL/6J progenitors found no strain differences for total dopamine uptake (Vmax or Km) in freshly prepared striatal synaptosomes from naive animals, and no differences in the IC50 for the inhibition of dopamine uptake by cocaine. In addition, there were no differences in dopamine transporter density (Bmax or Kd) measured using 3H‐GBR 12935 binding in synaptosomal membranes or via quantitative autoradiography. Multiple‐trait analysis was conducted to examine the genetic interrelationships among morphine‐, cocaine‐ and ethanol‐induced activation in the AXB/BXA. Analysis yielded suggestive QTLs for the joint trait on chromosomes 5, 8, 13 and 15, as well as significant regions on chromosomes 11 (Pmv46, 11 cM, LOD = 7.39) and 12 (D12Mit110, 19 cM, LOD = 4.43) that may be common to all three drugs of abuse.  相似文献   

6.
Abstract: The inhibition by cocaine of the apparent initial rate of the transport of striatal dopamine was compared with inhibitions produced by cocaethylene, benztropine, GBR-12909, mazindol, and nomifensine. Rotating disk electrode voltammetry was used to measure the kinetically resolved, inwardly directed transport of dopamine in striatal suspensions. Evidence is presented that the primary site of action of cocaine may be at the external face of the transporter. Experiments to determine whether or not the other inhibitors bind to the same site as cocaine were conducted by comparing the inhibitions observed for each of the inhibitors alone with that observed when paired with cocaine. The resulting changes in the velocity of the transport of dopamine induced by the inhibitors were then fit to one of the previously developed models of inhibition by pairs of inhibitors affecting the kinetics of actively transporting systems: a single-site model, a two-site model in which the two binding sites for the inhibitors interact, and a two-site model in which the two binding sites for the two inhibitors act independently. Cocaine inhibited the transport of dopamine competitively with its structural analogues, cocaethylene and benztropine. The structurally dissimilar inhibitor, GBR-12909, was found also to be competitive with cocaine. In contrast, mazindol and nomifensine were found to bind to separate interactive sites when individually paired with cocaine. These results suggest that mazindol and nomifensine may interact with the kinetically active transporter for dopamine in a manner different from that of cocaine. Mazindol was tested and found to inhibit competitively the inward transport of dopamine into striatal suspensions. In contrast, our previous published findings show cocaine to be an uncompetitive inhibitor of the transport of striatal dopamine. These results suggest that cocaine inhibits inward transport of dopamine by reducing the intramembrane turnover of the transporter, whereas mazindol alters the kinetics of the recognition of dopamine by the transporter. Finally, the potential effects of these binding modes of inhibitors on synaptic chemical communication in dopaminergic systems were analyzed. The results of these analyses suggest that different effects on the extracellular concentrations of dopamine can result from the different patterns of inhibition, suggesting that different modulatory influences on pre- and postsynaptic receptor occupation can result from inhibition of the transport of dopamine.  相似文献   

7.
A recently described procedure of freezing and thawing, which allows retention of metabolic and functional integrity, has been applied in the study of serotonin and dopamine uptake into frozen rat and post mortem human frozen tissue. TheK m andV max for the serotonin uptake into human hypothalamus were estimated to be 0.12 M and 0.03 nmol/g/min respectively. TheK m andV max for the dopamine uptake into human putamen were estimated to be 0.28 M and 0.13 nmol/g/min respectively. The results indicate that the freezing procedure does not affect the uptake sites for these transmitters. The storage time before freezing is however of importance for theV max value. TheK m value for the uptake, on the other hand, seems to be rather resistant to storage time before freezing.  相似文献   

8.
Kinetic analysis of 3H-serotonin accumulation by crude synaptosomal suspensions of neocortex, hippocampus and caudate or by whole homogenates of cerebellum revealed the presence of a high affinity uptake component having an apparent Km for serotonin which ranged from 2.8 to 6.0 × 10?8 M. A second, low affinity, uptake component with an apparent Km of 7 × 10?6 M was present in caudate. A comparable low affinity uptake component for serotonin was not observed in neocortex, hippocampus or cerebellum. Lesions in the medial forebrain bundle produced significant decreases in serotonin comtent of neocortes, hippocampus and caudate (66 to 75%) and a significant increase in serotonin content of cerebellum (25%). The lesions did not affect the apparent Km of the high affinity uptake system but did produce change in Vmax which paralleled the changes in content of serotonin. The lesions also produced decreases in dopamine and norepinephrine content of caudate and a comparable decrease in the Vmax of the low affinity uptake system with no change in the apparent Km. There was a correlation of 0.97 between the endogenous content of serotonin and the Vmax of the high affinity uptake system. These results support the view that the high and low affinity components of serotonin uptake represent accumulation into serotonergic and catecholaminergic neurons, respectively.  相似文献   

9.
The kinetics of tyrosine hydroxylase from the desalted high-speed supernatants of rat striatal homogenates were examined at pH 7.0 using different concentrations of the natural cofactor, (6R)-l-erythrotetrahydrobiopterin, ranging from 4 μM to 1.5 mM. All analyses were performed using two different buffering solutions and their appropriate reducing systems for maintaining cofactor in the reduced state. In the presence of phosphate buffer the results show that tyrosine hydroxylase exists in two kinetically different forms with apparent Km values for the cofactor of 16 μM (low Km) and 2.3 mM (high Km). Similar results were obtained using MOPS buffer. A comparative analysis of the appropriate Vmax values indicates that tyrosine hydroxylase as obtained by our standard preparation procedures is predominately (95%) in the high Km form. When the striatal supernatant was exposed to phosphorylating conditions and subsequently analyzed it appeared that the enzyme now existed totally in the low Km form with very little change in the overall Vmax. A comparison of the results using the two different buffering systems, phosphate and MOPS, revealed that following phosphorylation a large percentage of enzyme was maintained in the phosphorylated state only when using phosphate buffer. In light of the present results, we can for the first time suggest a functional significance not only for the two apparently different kinetic forms of the enzyme but also for a supporting role for phosphorylation. In vivo dopamine synthesis may be accomplished to a significant extent by the phosphorylated form of the enzyme while the non-phosphorylated form may constitute a relatively inactive reservoir which can be recruited for increased dopamine synthesis by phosphorylation.  相似文献   

10.
Soil microbes produce extracellular enzymes that degrade carbon (C)‐containing polymers in soil organic matter. Because extracellular enzyme activities may be sensitive to both increased nitrogen (N) and temperature change, we measured the effect of long‐term N addition and short‐term temperature variation on enzyme kinetics in soils from hardwood forests at Bear Brook, Maine, and Fernow Forest, West Virginia. We determined the Vmax and Km parameters for five hydrolytic enzymes: α‐glucosidase, β‐glucosidase, β‐xylosidase, cellobiohydrolase, and N‐acetyl‐glucosaminidase. Temperature sensitivities of Vmax and Km were assessed within soil samples subjected to a range of temperatures. We hypothesized that (1) N additions would cause microbial C limitation, leading to higher enzyme Vmax values and lower Km values; and (2) both Vmax and Km would increase at higher temperatures. Finally, we tested whether or not temperature sensitivity of enzyme kinetics is mediated by N addition. Nitrogen addition significantly or marginally significantly increased Vmax values for all enzymes, particularly at Fernow. Nitrogen fertilization led to significantly lower Km values for all enzymes at Bear Brook, but variable Km responses at Fernow Forest. Both Vmax and Km were temperature sensitive, with Q10 values ranging from 1.64–2.27 for enzyme Vmax and 1.04–1.93 for enzyme Km. No enzyme showed a significant interaction between N and temperature sensitivity for Vmax, and only β‐xylosidase showed a significant interaction between N and temperature sensitivity for Km. Our study is the first to experimentally demonstrate a positive relationship between Km and temperature for soil enzymes. Higher temperature sensitivities for Vmax relative to Km imply that substrate degradation will increase with temperature. In addition, the Vmax and Km responses to N indicate greater substrate degradation under N addition. Our results suggest that increasing temperatures and N availability in forests of the northeastern US will lead to increased hydrolytic enzyme activity, despite the positive temperature sensitivity of Km.  相似文献   

11.
The magnitude and direction of carbon cycle feedbacks under climate warming remain uncertain due to insufficient knowledge about the temperature sensitivities of soil microbial processes. Enzymatic rates could increase at higher temperatures, but this response could change over time if soil microbes adapt to warming. We used the Arrhenius relationship, biochemical transition state theory, and thermal physiology theory to predict the responses of extracellular enzyme Vmax and Km to temperature. Based on these concepts, we hypothesized that Vmax and Km would correlate positively with each other and show positive temperature sensitivities. For enzymes from warmer environments, we expected to find lower Vmax, Km, and Km temperature sensitivity but higher Vmax temperature sensitivity. We tested these hypotheses with isolates of the filamentous fungus Neurospora discreta collected from around the globe and with decomposing leaf litter from a warming experiment in Alaskan boreal forest. For Neurospora extracellular enzymes, Vmax Q10 ranged from 1.48 to 2.25, and Km Q10 ranged from 0.71 to 2.80. In agreement with theory, Vmax and Km were positively correlated for some enzymes, and Vmax declined under experimental warming in Alaskan litter. However, the temperature sensitivities of Vmax and Km did not vary as expected with warming. We also found no relationship between temperature sensitivity of Vmax or Km and mean annual temperature of the isolation site for Neurospora strains. Declining Vmax in the Alaskan warming treatment implies a short‐term negative feedback to climate change, but the Neurospora results suggest that climate‐driven changes in plant inputs and soil properties are important controls on enzyme kinetics in the long term. Our empirical data on enzyme Vmax, Km, and temperature sensitivities should be useful for parameterizing existing biogeochemical models, but they reveal a need to develop new theory on thermal adaptation mechanisms.  相似文献   

12.
In order to determine whether repeated cocaine administration produced persistent changes in dopamine (DA) receptor binding and release consistent with behavioral sensitization, rats were treated with either cocaine (25 mg/kg ip) or saline twice daily for 14 consecutive days followed by a 3-d withdrawal period. The DA transporter site was assayed using [3H]GBR 12935, whereas D1 and D2 sites were assayed using [3H]SCH 23390 and [3H]spiperone, respectively. The density (B max) of the DA transporter binding sites in the ST of the cocaine-treated group increased significantly (p<0.05) over controls 3 d after the last injection, whereas the density of striatal D1 and D2 binding sites remained unchanged. The DA transporter in the nucleus accumbens (NA) was also studied with [3H]GBR 12935 and was unchanged following drug treatment. D1 and D2 binding parameters for the NA were not determined in this study. Furthermore, cocaine administration did not affect the affinities (K d ) of the radioligands used to label the transporter, D1, or D2 sites in any of the studies performed. In addition, striatal DA release was measured using in vivo microdialysis in anesthetized rats. Linear regression analysis on maximal decreases in DA release after apomorphine (0.02, 0.2, and 2.0 mg/kg sc) injection showed no difference in the functional capacity of the ST to modulate DA transmission between control and treated groups. Moreover, animals pretreated with cocaine showed a significant (p<0.01) decrease in locomotor activity (LA) after a presynaptic, autoregulating dose of apomorphine (0.03 mg/kg sc) was given. These results suggest that the effects seen after repeated exposure to cocaine may be regulated, in part, by changes in striatal DA transporter binding site densities and not necessarily by DA-releasing mechanisms or D1 and D2 receptor modification.  相似文献   

13.
The activating or inhibiting actions of a variety of anion species and of oligomycin, aurovertin and Dio-9 on the ATPase of a sonic particle preparation of rat liver mitochondria have been characterized by measurements of the relevantV max,K i andK m values.The normalV max was increased by a factor near 7 by the anions: dichromate, chromate, pyrophosphate, orthophosphate, orthoarsenate and sulphate. The fully activating concentration varied from about 2 mM for dichromate to 150 mM for sulphate. The increase inV max was accompanied by a time-dependent decrease in (K i)ADP, but there was no change in (K m)ATP. The increase inV max by the activating anions was abolished by aurovertin; but in presence of oligomycin, the lowV max was increased by the activating anions by the same factor as theV max in absence of oligomycin.Certain anions, notably azide, decreasedV max, but did not affect (K i)ADP or (K m)ATP. The decrease inV max by azide and oligomycin were approximately additive. Even at high concentration, Dio-9 was without detectable effect on the ATPase, but it had a gramicidinlike effect on the intact mitochondria.The specificity of the ATPase for ATP relative to GTP was found to be attributable to the high value of (V max)ATP compared with (V max)GTP. The values of (K m)ATP and (K m)GTP were virtually the same.Some rationalization of these and other supporting observations is attempted in terms of present knowledge of the constitution of the ATPase complex.  相似文献   

14.
Data from the authors’ laboratory on the neural substrates of Pavlovian conditioning and behavioral sensitization to psychomotor stimulants are reviewed. The findings of a recent experiment on the role of occupation of dopamine receptors by dopamine and its association to behavioral sensitization are reported. Daily intermittent injections of cocaine produced behavioral sensitization to the locomotor response in rats, whereas continuous cocaine infusions produced behavioral tolerance. Behavioral sensitization to cocaine was blocked by coadministration of nimodipine, anL-type calcium channel blocker. The increases in locomotion produced by cocaine was associated with an increase in the occupation of striatal dopamine D1 and D2 receptors, measured as the density of receptors protected from denaturation byN-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). This association was not observed when rats were given a challenge injection of cocaine 10 d after withdrawal from similar treatment regimens. Rats given a cocaine challenge after withdrawal from either intermittent or continuous cocaine treatment regimens exhibited increased occupations of striatal D1 and D2 receptors. This increase was similar in magnitude to that observed in rats without a history of cocaine treatments after a challenge injection of cocaine. This suggests tnat the differences in occupancy of striatal dopamine receptors by dopamine observed in the prewithdrawal condition are likely the result of differences in brain levels of cocaine achieved by the two treatment regimens. Occupancy of striatals dopamine D1 and D2 receptors does not appear to be related to the development of sensitization to the motor-stimulating effects of cocaine.  相似文献   

15.
TheVmaxvalues (in nmol/mg protein/15 min) for AAAD in OK cells (0.94±0.08) were found to be significantly (P<0.01) lower than those observed in LLC-PK1cells (4.37±0.08). However, in both cell lines decarboxylation reaction was a saturable process with similarKmvalues (OK cells=1.1 mm (0.3, 1.8); LLC-PK1cells=1.8 mm (1.6, 2.1)). Contrariwise to OK cells, decarboxylation ofl -DOPA to dopamine in LLC-PK1cells followed a linear (7.6±0.1 pmol/mg protein/min) non-saturable kinetics till 120 min of incubation. The formation of dopamine from increasing concentrations ofl -DOPA (10 to 500 μm ) followed a non-linear kinetics in both cell lines; the process ofl -DOPA decarboxylation was saturated at low concentrations ofl -DOPA with an apparentKmvalue of 11 μm (0.2, 22.6) in OK cells and 27.4 μm (11.1, 43.7) in LLC-PK1cells. The formation of dopamine in LLC-PK1cells (Vmax=2097±113 pmol/mg protein/6 min) was 13.7-fold that occurred in OK cells (Vmax=153±10 pmol/mg protein/6 min). In conclusion, LLC-PK1cells appear to be endowed with a greater ability to form dopamine from exogenousl -DOPA when compared to OK cells.  相似文献   

16.
《Life sciences》1996,58(13):PL257-PL261
In humans, the plasma enzyme, butyrylcholinesterase (E.C. 3.1.1.8), metabolizes cocaine to the water-soluble, pharmacologically inactive compounds, ecgonine methylester and benzoic acid. Homogenous enzyme was purified from human plasma and used to determine the enzyme kinetic parameters of Km and Vmax with cocaine as the substrate. The KM (11.9 μM) indicates that cocaine is tightly bound to the four active sites of the native tetramer. The Vmax (1.17 μM/min) is 50-fold greater than cocaine catalytic antibodies. Administration of purified human butyrylcholmesterase to a cocaine-intoxicated patient would be expected to shift the metabolism to the inactive metabolites and reduce the toxicity.  相似文献   

17.
Decomposition of soil organic matter (SOM) is mediated by microbial extracellular hydrolytic enzymes (EHEs). Thus, given the large amount of carbon (C) stored as SOM, it is imperative to understand how microbial EHEs will respond to global change (and warming in particular) to better predict the links between SOM and the global C cycle. Here, we measured the Michaelis–Menten kinetics [maximal rate of velocity (Vmax) and half‐saturation constant (Km)] of five hydrolytic enzymes involved in SOM degradation (cellobiohydrolase, β‐glucosidase, β‐xylosidase, α‐glucosidase, and N‐acetyl‐β‐d ‐glucosaminidase) in five sites spanning a boreal forest to a tropical rainforest. We tested the specific hypothesis that enzymes from higher latitudes would show greater temperature sensitivities than those from lower latitudes. We then used our data to parameterize a mathematical model to test the relative roles of Vmax and Km temperature sensitivities in SOM decomposition. We found that both Vmax and Km were temperature sensitive, with Q10 values ranging from 1.53 to 2.27 for Vmax and 0.90 to 1.57 for Km. The Q10 values for the Km of the cellulose‐degrading enzyme β‐glucosidase showed a significant (= 0.004) negative relationship with mean annual temperature, indicating that enzymes from cooler climates can indeed be more sensitive to temperature. Our model showed that Km temperature sensitivity can offset SOM losses due to Vmax temperature sensitivity, but the offset depends on the size of the SOM pool and the magnitude of Vmax. Overall, our results suggest that there is a local adaptation of microbial EHE kinetics to temperature and that this should be taken into account when making predictions about the responses of C cycling to global change.  相似文献   

18.
The influence of growth rate, the presence of acetate and variation in the dissolved oxygen concentration on the kinetics of nitrite oxidation was studied in suspensions of intact cells of Nitrobacter winogradskyi and Nitrobacter hamburgensis. The cells were grown in nitrite-limited chemostats at different dilution rates under chemolithotrophic and mixotrophic conditions. Growth of N. hamburgensis in continuous culture was dependent on the presence of acetate. Acetate hardly affected the maximal nitrite oxidation rate per cell (V max), but displayed a distinctly negative effect on the saturation constants for nitrite oxidation (K m ) of both Nitrobacter species. This effect was reversible; when acetate was removed from the suspensions the K m -values for nitrite oxidation returned to their original values. A reduction of the dissolved oxygen concentration from 100% to 18% air saturation slightly decreased the V max of chemolithotrophically grown N. winogradskyi cells, whereas a 2.3 fold increase was observed with mixotrophically grown cells of N. hamburgensis. It is suggested that the large variation in K m encountered in field samples could be due to this observed phenotypic variability. The V max per cell is not a constant, but apparently is dependent on growth rate and environmental conditions. This implies that potential nitrite oxidation activity and numbers of cells are not necessarily related. Considering their kinetic characteristics, it is unlikely that N. hamburgensis is able to compete succesfully with N. winogradskyi for limiting amounts of nitrite under mixotrophic conditions. However, at reduced partial oxygen tensions, N. hamburgensis may become the better competitor.  相似文献   

19.
The H+-ATPase activities of root and leaf plasma membranes from tobacco (Nicotiana tabacum) have been characterized with respect to Vmax, Km for ATP, pH dependence and activation involving the C-terminal autoinhibitory domain. With root plasma membranes, addition of lysophosphatidylcholine (lyso-PC) resulted in the expected increase in Vmax, a decrease in Km(ATP), and a shift in pH optimum to a more alkaline pH, typical for activation via the C-terminal inhibitory domain. With leaf plasma membranes, however, Km(ATP) was relatively low and the pH optimum was around pH 7.0 before the addition of lyso-PC and did not change upon addition of the activator, although Vmax increased twofold. Similar results were obtained with the in vivo activator fusicoccin. The results obtained with the leaf plasma membranes show that Vmax may be regulated independently of Km(ATP) and pH optimum, and suggest the presence of at least two regulatory sites within the C-terminal autoinhibitory domain of the H+-ATPase.  相似文献   

20.
To gain a deeper understanding of the mechanisms underlying associations between allozyme genotypes and rates of respiration in Lolium perenne, Vmax Km and rates of glucose flux through glycolysis and the pentose phosphate pathway were estimated for the three genotypes of the 6pgd locus. Km Vmax and Vmax/Km differed significantly among genotypes. Values of Km for the 11, 12, and 22 genotypes were 0.29, 0.25, 0.13, while the values of Vmax/Km for die 11, 12, and 22 genotypes were 3.79, 3.85, 6.70. Flux through the pentose shunt did not differ among genotypes at 20 °C, but at 35 °C the rates of flux for the 11, 12, and 22 genotypes were 0.15, 0.25 and 0.42, respectively. Thus, the 6PGD allozyme genotypes differ markedly in both enzyme kinetic characteristics and in flux through a metabolic pathway. These associations reveal potentially causal relationships between allozyme genotypes and rates of respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号