共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Urease activity of adherent bacteria and rumen fluid bacteria 总被引:1,自引:0,他引:1
In experiments on six sheep fed on a low nitrogen diet (3.7 g N/day), urease (EC 3.5.1.5) activity (nkat X mg-1 bacterial dry weight) 3 h after feeding was found to be highest in the bacteria adhering to the rumen wall (13.25 +/- 2.10), lower in the rumen fluid bacteria (8.96 +/- 1.35) and lowest in the bacteria adhering to feed particles in the rumen (5.69 +/- 2.13). The urease activity of bacteria adhering to the rumen wall and of the rumen fluid bacteria of six sheep fed on a high nitrogen diet (21 g N/day) was significantly lower than in sheep with a low N intake and in both cases was roughly the same (3.81 +/- 1.37 and 3.76 +/- 1.02 respectively); it was lowest in bacteria adhering to feed particles in the rumen (1.92 +/- 0.90). It is concluded from the results that the urease activity of rumen fluid bacteria and of bacteria adhering to the rumen wall and to feed particles in the rumen is different and that it falls significantly in the presence of a high nitrogen intake. From the relatively high ureolytic activity of bacteria adhering to the rumen wall in the presence of a low nitrogen intake it is assumed that this is one of the partial mechanisms of the hydrolysis of blood urea entering the rumen across the rumen wall and of its reutilization in the rumen-liver nitrogen cycle in ruminants. 相似文献
11.
12.
13.
14.
15.
Until 10 years ago, R bodies were known only as diagnostic features by which endosymbionts of paramecia were identified as kappa particles. They were thought to be limited to the cytoplasm of two species in the Paramecium aurelia species complex. Now, R bodies have been found in free-living bacteria and other Paramecium species. The organisms now known to form R bodies include the cytoplasmic kappa endosymbionts of P. biaurelia and P. tetraurelia, the macronuclear kappa endosymbionts of P. caudatum, Pseudomonas avenae (a free-living plant pathogen), Pseudomonas taeniospiralis (a hydrogen-oxidizing soil microorganism), Rhodospirillum centenum (a photosynthetic bacterium), and a soil bacterium, EPS-5028, which is probably a pseudomonad. R bodies themselves fall into five distinct groups, distinguished by size, the morphology of the R-body ribbons, and the unrolling behavior of wound R bodies. In recent years, the inherent difficulties in studying the organization and assembly of R bodies by the obligate endosymbiont kappa, have been alleviated by cloning and expressing genetic determinants for these R bodies (type 51) in Escherichia coli. Type 51 R-body synthesis requires three low-molecular-mass polypeptides. One of these is modified posttranslationally, giving rise to 12 polypeptide species, which are the major structural subunits of the R body. R bodies are encoded in kappa species by extrachromosomal elements. Type 51 R bodies, produced in Caedibacter taeniospiralis, are encoded by a plasmid, whereas bacteriophage genomes probably control R-body synthesis in other kappa species. However, there is no evidence that either bacteriophages or plasmids are present in P. avenae or P. taeniospiralis. No sequence homology was detected between type 51 R-body-encoding DNA and DNA from any R-body-producing species, except C. varicaedens 1038. The evolutionary relatedness of different types of R bodies remains unknown. 相似文献
16.
Growing unculturable bacteria 总被引:3,自引:0,他引:3
Stewart EJ 《Journal of bacteriology》2012,194(16):4151-4160
The bacteria that can be grown in the laboratory are only a small fraction of the total diversity that exists in nature. At all levels of bacterial phylogeny, uncultured clades that do not grow on standard media are playing critical roles in cycling carbon, nitrogen, and other elements, synthesizing novel natural products, and impacting the surrounding organisms and environment. While molecular techniques, such as metagenomic sequencing, can provide some information independent of our ability to culture these organisms, it is essentially impossible to learn new gene and pathway functions from pure sequence data. A true understanding of the physiology of these bacteria and their roles in ecology, host health, and natural product production requires their cultivation in the laboratory. Recent advances in growing these species include coculture with other bacteria, recreating the environment in the laboratory, and combining these approaches with microcultivation technology to increase throughput and access rare species. These studies are unraveling the molecular mechanisms of unculturability and are identifying growth factors that promote the growth of previously unculturable organisms. This minireview summarizes the recent discoveries in this area and discusses the potential future of the field. 相似文献
17.
Three morphologically similar strains of halophilic, box-shaped procaryotes have been isolated from brines collected in the Sinai, Baja California (Mexico), and southern California (United States). Although the isolates in their morphology resemble Walsby's square bacteria, which are a dominant morphological type in the Red Sea and Baja California brines, they are probably not identical to them. The cells show the general characteristics of extreme halophiles and archaebacteria. They contain pigments similar to bacteriorhodopsin which apparently mediate light-driven ion translocation and photophosphorylation. 相似文献
18.
19.
A comparative study was made of all available milky-disease species and strains that have been isolated around the world from beetle larvae (family Scarabaeidae). Included in the study were Bacillus popilliae Dutky, B. lentimorbus Dutky, and B. lentimorbus var. maryland from the United States; B. euloomarahae Beard and B. lentimorbus var. australis Beard from Australia; B. fribourgensis Wille from Switzerland; and New Zealand milky disease (Dumbleton). The organisms were classified into three groups: (i) those containing parasporal bodies, including B. popilliae Dutky, B. fribourgensis Wille, and New Zealand milky disease (Dumbleton); (ii) those without a visible parasporal body and with spore morphology similar to B. lentimorbus Dutky, including B. lentimorbus var. australis Beard; and (iii) those with very tiny spores and no parasporal body, including B. euloomarahae Beard and B. lentimorbus var. maryland. All available milky-disease species and strains were cultivated in vitro on Brain Heart Infusion Agar plates. However, the most fastidious organisms-B. euloomarahae and B. lentimorbus var. maryland-could not be grown until they were passed through a life cycle in larvae of a large scarabaeid beetle infesting rotting wood. Then they remained stable for only one or two subcultures. All the milky-disease organisms produced larger cells in vitro than they did in vivo. The pattern of sugar fermentations was similar for all milky-disease species. It appears that there is a very low percentage of strains of B. popilliae, B. lentimorbus, and the other milky-disease organisms that have the inherent genetic makeup to permit them to sporulate on artificial media, if conditions are favorable. Among these conditions are a sufficiently high cell population and a reduced oxygen tension. Spores produced in vitro may have a low virulence via the normal ingestion pathway, even though they show apparent virulence when injected directly into the hemocoel. 相似文献
20.
The review deals with the phenomenon of allolysis, i.e., lysis of a part of a bacterial population induced by a group of epigenetically differentiated cells of the same species or phylotype. Allolysis is best studied in two species of gram-positive bacteria, Streptococcus pneumoniae and Bacillus subtilis. In S. pneumoniae, allolysis is associated with the onset of the competence stage, while in B. subtilis it is associated with transition to the stage of spore formation. The mechanisms of allolysis are considered, as well as its possible role in the populational and symbiotic relationships of bacterial cells. The relation between allolysis ant the programmed death of a part of the cells within a bacterial population (apoptosis) is discussed. 相似文献