首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutrophil transmigration requires the localization of neutrophils to endothelial cell junctions, in which receptor-ligand interactions and the action of serine proteases promote leukocyte diapedesis. NB1 (CD177) is a neutrophil-expressed surface molecule that has been reported to bind proteinase 3 (PR3), a serine protease released from activated neutrophils. PR3 has demonstrated proteolytic activity on a number of substrates, including extracellular matrix proteins, although its role in neutrophil transmigration is unknown. Recently, NB1 has been shown to be a heterophilic binding partner for the endothelial cell junctional protein, PECAM-1. Disrupting the interaction between NB1 and PECAM-1 significantly inhibits neutrophil transendothelial cell migration on endothelial cell monolayers. Because NB1 interacts with endothelial cell PECAM-1 at cell junctions where transmigration occurs, we considered that NB1-PR3 interactions may play a role in aiding neutrophil diapedesis. Blocking Abs targeting the heterophilic binding domain of PECAM-1 significantly inhibited transmigration of NB1-positive neutrophils through IL-1β-stimulated endothelial cell monolayers. PR3 expression and activity were significantly increased on NB1-positive neutrophils following transmigration, whereas neutrophils lacking NB1 demonstrated no increase in PR3. Finally, using selective serine protease inhibitors, we determined that PR3 activity facilitated transmigration of NB1-positive neutrophils under both static and flow conditions. These data demonstrate that PR3 contributes in the selective recruitment of the NB1-positive neutrophil population.  相似文献   

2.
During acute inflammation, neutrophil recruitment into extravascular tissue requires neutrophil tethering and rolling on cytokine-activated endothelial cells (ECs), tight adhesion, crawling towards EC junctions and transendothelial migration (TEM). Following TEM, neutrophils must still traverse the subendothelial basement membrane and network of pericytes (PCs). Until recently, the contribution of the PC layer to neutrophil recruitment was largely ignored. Here we analyze human neutrophil interactions with interleukin (IL)-1β-activated human EC monolayers, PC monolayers and EC/PC bilayers in vitro. Compared to EC, PC support much lower levels of neutrophil binding (54.6% vs. 7.1%, respectively) and transmigration (63.7 vs. 8.8%, respectively) despite comparable levels of IL-8 (CXCL8) synthesis and display. Remarkably, EC/PC bilayers support intermediate levels of transmigration (37.7%). Neutrophil adhesion to both cell types is Mac-1-dependent and while ICAM-1 transduction of PCs increases neutrophil adhesion to (41.4%), it does not increase transmigration through PC monolayers. TEM, which increases neutrophil Mac-1 surface expression, concomitantly increases the ability of neutrophils to traverse PCs (19.2%). These data indicate that contributions from both PCs and ECs must be considered in evaluation of microvasculature function in acute inflammation.  相似文献   

3.
Endothelial cell junctions are thought to be preferential sites for transmigration. However, the factors that determine the site of transmigration are not well defined. Our data show that the preferential role of endothelial cell junctions is not limited to transmigration but extends to earlier steps of leukocyte recruitment, such as rolling and arrest. We used primary mouse neutrophils and mouse aortic endothelium in a flow chamber system to compare adhesive interactions near endothelial cell junctions to interactions over endothelial cell centers. We found differences in both rolling velocity and arrest frequency for neutrophils at endothelial cell junctions vs. more central areas of endothelial cells. Differences were governed by adhesion molecule interactions, not local topography. Interestingly, the role of particular adhesion molecules depended on their location on the endothelial cell surface. Although ICAM-1 stabilized and slowed rolling over central areas of the cell, it did not influence rolling velocity over endothelial cell junctions. P-selectin and VCAM-1 were more important for rolling near endothelial cell junctions than E-selectin. This demonstrates that adhesive properties of endothelial cell junctions influence early events in the adhesion cascade, which may help explain how leukocytes are localized to sites of eventual transmigration. endothelial cells; rolling; selectins; integrins  相似文献   

4.
Endothelial cells in vivo are well known to respond to parallel shear stress induced by luminal blood flow. In addition, fluid filtration across endothelium (transendothelial flow) may trigger nitric oxide (NO) production, presumably via shear stress within intercellular clefts. Since NO regulates neutrophil-endothelial interactions, we determined whether transendothelial flow regulates neutrophil transmigration. Interleukin-1beta-treated human umbilical vein endothelial cell (HUVEC) monolayers cultured on a polycarbonate filter were placed in a custom chamber with or without a modest hydrostatic pressure gradient (DeltaP, 10 cm H(2)O) to induce transendothelial flow. In other experiments, cells were studied in a parallel plate flow chamber at various transendothelial flows (DeltaP = 0, 5, and 10 cm H(2)O) and luminal flows (shear stress of 0, 1, and 2 dyn/cm(2)). In the absence of luminal flow, transendothelial flow reduced transmigration of freshly isolated human neutrophils from 57% to 14% (P < 0.05) and induced an increase in NO detected with a fluorescent assay (DAF-2DA). The NO synthase inhibitor L-NAME prevented the effects of transendothelial flow on neutrophil transmigration, while a NO donor (DETA/NO, 1 mM) inhibited neutrophil transmigration. Finally, in the presence of luminal flow (1 and 2 dyn/cm(2)), transendothelial flow also inhibited transmigration. On the basis of HUVEC morphometry and measured transendothelial volume flow, we estimated cleft shear stress to range from 49 to 198 dyn/cm(2). These shear stress estimates, while substantial, are of similar magnitude to those reported by others with similar analyses. These data are consistent with the hypothesis that endothelial cleft shear stress inhibits neutrophil transmigration via a NO-dependent mechanism.  相似文献   

5.
JAM-A belongs to a family of immunoglobulin-like proteins called junctional adhesion molecules (JAMs) that localize at epithelial and endothelial intercellular tight junctions. JAM-A is also expressed on dendritic cells, neutrophils, and platelets. Homophilic JAM-A interactions play an important role in regulating paracellular permeability and leukocyte transmigration across epithelial monolayers and endothelial cell junctions, respectively. In addition, JAM-A is a receptor for the reovirus attachment protein, sigma1. In this study, we used single molecular force spectroscopy to compare the kinetics of JAM-A interactions with itself and sigma1. A chimeric murine JAM-A/Fc fusion protein and the purified sigma1 head domain were used to probe murine L929 cells, which express JAM-A and are susceptible to reovirus infection. The bond half-life (t(1/2)) of homophilic JAM-A interactions was found to be shorter (k(off)(o) = 0.688 +/- 0.349 s(-1)) than that of sigma1/JAM-A interactions (k(off)(o) = 0.067 +/- 0.041 s(-1)). These results are in accordance with the physiological functions of JAM-A and sigma1. A short bond lifetime imparts a highly dynamic nature to homophilic JAM-A interactions for regulating tight junction permeability while stable interactions between sigma1 and JAM-A likely anchor the virus to the cell surface and facilitate viral entry.  相似文献   

6.
CD99 is a key mediator of the transendothelial migration of neutrophils   总被引:5,自引:0,他引:5  
Transendothelial migration of leukocytes is a critical event for inflammation, but the molecular regulation of this event is only beginning to be understood. PECAM (CD31) is a major mediator of monocyte and neutrophil transmigration, and CD99 was recently defined as a second mediator of the transmigration of monocytes. Expression of CD99 on the surface of circulating polymorphonuclear cells (PMN) is low compared with expression of CD99 on monocytes or expression of PECAM on PMN. We demonstrate here that, despite low expression of CD99, Fab of Abs against CD99 blocked over 80% of human neutrophils from transmigrating across HUVEC monolayers in an in vitro model of inflammation. Blocking CD99 on either the neutrophil or endothelial cell side resulted in a quantitatively equivalent block, suggesting a homophilic interaction between CD99 on the neutrophil and CD99 on the endothelial cell. Blocking CD99 and PECAM together resulted in additive effects, suggesting the two molecules work at distinct steps. Confocal microscopy confirmed that CD99-blocked neutrophils lodged in endothelial cell junctions at locations distal to PECAM-blocked neutrophils. The CD99-blocked PMN exhibited dynamic lateral movement within endothelial cell junctions, indicating that only the diapedesis step was blocked by interference with CD99. Anti-CD99 mAb also blocked PMN transmigration in a second in vitro model that incorporated shear stress. Taken together, the evidence demonstrates that PECAM and CD99 regulate distinct, sequential steps in the transendothelial migration of neutrophils during inflammation.  相似文献   

7.
L.ymphocyte interactions with endothelial cells in microcirculation are an important regulatory step in the delivery of lymphocytes to peripheral sites of inflammation. In normal circumstances, the predicted wall shear stress in small venules range from 10 to 100 dyn/cm2. Attempts to measure the adhesion of lymphocytes under physiologic conditions have produced variable results, suggesting the importance of studying biologically relevant migratory lymphocytes. To quantify the effect of shear stress on these migratory lymphocytes, we used lymphocytes obtained from sheep efferent lymph ducts, defined as migratory cells, to perfuse sheep endothelial monolayers under conditions of flow. Quantitative cytomorphometry was used to distinguish cells in contact with the endothelial monolayers from cells in the flow stream. As expected, migratory cells in contact with the normal endothelial monolayer demonstrated flow velocities less than the velocity of cells in the adjacent flow stream. The flow velocities of these efferent lymphocytes were independent of cell size. To model the inflammatory microcirculation, lymphocytes were perfused over sequential endothelial monolayers to directly compare the velocity of cells in contact with cytokine-activated and unactivated control monolayers. The tumor necrosis factor and interleukin-1-activated endothelial monolayers marginally decreased cell velocities at 1.2 dyn/cm2 (3.6%), but significantly reduced cell velocities 0.3 dyn/cm2 (27.4%; P < 0.05). Similarly, the fraction of statically adherent lymphocytes decreased as shear stress increased to 1.2 dyn/cm2. These results suggest that typical wall shear stress in small venules. of the order of 20 dyn/cm2, are too high to permit adhesion and transmigration of migratory lymphocytes. Additional mechanisnis must be present in vivo to facilitate lymphocyte transmigration in the inflammatory microcircu-  相似文献   

8.
An enzyme-linked immunosorbent assay (ELISA) has been developed to measure apolipoproteins in rat serum. Nondelipidated whole serum was heat-treated at 52 degrees C for 3 h in phosphate-buffered saline containing 0.1% Tween-20 before assay. Monospecific rabbit anti-rat apolipoprotein antibodies were added to 96-well polystyrene microtiter plates which had been coated with purified rat serum apolipoproteins or unknown samples. After incubation and washing, goat anti-rabbit serum antibodies conjugated with horseradish peroxidase were added to the plates and incubated. The bound peroxidase activity was assayed after further washing. Serum apolipoprotein concentrations were calculated by comparison against purified standards that were assayed simultaneously with the unknown samples. The intraassay coefficients of variation for apolipoprotein AI, E, and AIV (Apo AI, E, and AIV) were 2.3, 4.4, and 5.3%, and interassay coefficients of variation were 6.1, 5.5, and 7.9%, respectively. The ELISA assay is sensitive to nanogram quantities of rat serum apolipoproteins and the results agree well with those measured by densitometry. The serum concentrations of Apo AI, E, and AIV of a normal fed rat were found to be 504 +/- 8, 413 +/- 20, and 262 +/- 20 micrograms/ml, respectively. When cultured as monolayers in Waymouth's medium for 1 day, rat hepatocytes secreted Apo AI, E, and AIV at rates of 2.51, 61.8, and 48.9 ng protein/mg cell protein/h.  相似文献   

9.
Dendritic cells (DCs) accumulate in the CNS during inflammatory diseases, but the exact mechanism regulating their traffic into the CNS remains to be defined. We now report that MIP-1alpha increases the transmigration of bone marrow-derived, GFP-labeled DCs across brain microvessel endothelial cell monolayers. Furthermore, occludin, an important element of endothelial tight junctions, is reorganized when DCs migrate across brain capillary endothelial cell monolayers without causing significant changes in the barrier integrity as measured by transendothelial electrical resistance. We show that DCs produce matrix metalloproteinases (MMP) -2 and -9 and GM6001, an MMP inhibitor, decreases both baseline and MIP-1alpha-induced DC transmigration. These observations suggest that DC transmigration across brain endothelial cell monolayers is partly MMP dependent. The migrated DCs express higher levels of CD40, CD80, and CD86 costimulatory molecules and induce T cell proliferation, indicating that the transmigration of DCs across brain endothelial cell monolayers contributes to the maintenance of DC Ag-presenting function. The MMP dependence of DC migration across brain endothelial cell monolayers raises the possibility that MMP blockers may decrease the initiation of T cell recruitment and neuroinflammation in the CNS.  相似文献   

10.
In this study we examined the importance of neutrophil adherence in neutrophil-mediated endothelial cell injury. Phorbol myristate acetate (PMA)-activated neutrophils from a patient with a congenital defect in neutrophil adherence (Gp-150 deficiency) and PMA-activated normal neutrophils pretreated with monoclonal antibody (MoAb) 60.3 were used. Both Gp-150-deficient and MoAb 60.3-treated normal neutrophils failed to adhere to cultured human umbilical vein endothelial cell (HEC) monolayers when activated by PMA (adherence less than 10% with patient and MoAb 60.3-treated cells compared with 53 +/- 3% with normal cells). The addition of PMA-activated normal neutrophils to 51Cr-labeled HEC monolayers failed to induce significant 51Cr release but did produce marked HEC detachment (percentage of detachment 50 +/- 3 at 6 hr). In marked contrast, PMA-activated Gp-150-deficient neutrophils failed to induce significant HEC detachment (percentage of detachment zero (0) at 6 hr). Moreover, the addition of MoAb 60.3 to normal neutrophils inhibited neutrophil-mediated HEC detachment in a time- and dose-dependent fashion. Non-lytic HEC detachment was determined to be largely oxygen radical independent, because PMA-activated chronic granulomatous disease neutrophils and PMA-activated normal neutrophils produced similar disruption of HEC monolayers. Soybean trypsin inhibitor, a chloromethylketone elastase inhibitor, and autologous serum all failed to inhibit neutrophil-mediated HEC detachment. From these studies there is no evidence that nonlytic HEC detachment by PMA-activated neutrophils is mediated by the neutrophil-derived proteases, elastase and cathepsin G. Neutrophil-mediated HEC detachment also required intact neutrophils, because postsecretory medium from PMA-activated normal neutrophils and a suspension of frozen-thawed PMA-activated normal neutrophils were without effect. These in vitro studies indicate that the neutrophil cell surface glycoprotein Gp-150 is required for nonlytic HEC detachment by intact PMA-activated neutrophils.  相似文献   

11.
Betulinic acid and its derivatives as anti-angiogenic agents   总被引:2,自引:0,他引:2  
Betulinic acid (1) significantly caused cytotoxicity to endothelial cell line ECV304 (IC(50) 1.26+/-0.44 microg/mL) in a 5-day MTT assay. Novel and more potent derivatives of betulinic acid (2, 4, 6-8) have been synthesized with IC(50) less than 0.4 microg/mL. The endothelial cell specificity against human tumor cell lines DU145, L132, A549, and PA-1 were determined. Further betulinic acid (1) inhibited TLS formation of ECV304 cells on Matrigel(TM) by 5.5% while its derivatives caused an inhibition of 13.1-49.2%.  相似文献   

12.
Neutrophils are the most abundant type of white blood cell. They form an essential part of the innate immune system1. During acute inflammation, neutrophils are the first inflammatory cells to migrate to the site of injury. Recruitment of neutrophils to an injury site is a stepwise process that includes first, dilation of blood vessels to increase blood flow; second, microvascular structural changes and escape of plasma proteins from the bloodstream; third, rolling, adhesion and transmigration of the neutrophil across the endothelium; and fourth accumulation of neutrophils at the site of injury2,3. A wide array of in vivo and in vitro methods has evolved to enable the study of these processes4. This method focuses on neutrophil transmigration across human endothelial cells.One popular method for examining the molecular processes involved in neutrophil transmigration utilizes human neutrophils interacting with primary human umbilical vein endothelial cells (HUVEC)5. Neutrophil isolation has been described visually elsewhere6; thus this article will show the method for isolation of HUVEC. Once isolated and grown to confluence, endothelial cells are activated resulting in the upregulation of adhesion and activation molecules. For example, activation of endothelial cells with cytokines like TNF-α results in increased E-selectin and IL-8 expression7. E-selectin mediates capture and rolling of neutrophils and IL-8 mediates activation and firm adhesion of neutrophils. After adhesion neutrophils transmigrate. Transmigration can occur paracellularly (through endothelial cell junctions) or transcellularly (through the endothelial cell itself). In most cases, these interactions occur under flow conditions found in the vasculature7,8.The parallel plate flow chamber is a widely used system that mimics the hydrodynamic shear stresses found in vivo and enables the study of neutrophil recruitment under flow condition in vitro9,10. Several companies produce parallel plate flow chambers and each have advantages and disadvantages. If fluorescent imaging is needed, glass or an optically similar polymer needs to be used. Endothelial cells do not grow well on glass.Here we present an easy and rapid method for phase-contrast, DIC and fluorescent imaging of neutrophil transmigration using a low volume ibidi channel slide made of a polymer that supports the rapid adhesion and growth of human endothelial cells and has optical qualities that are comparable to glass. In this method, endothelial cells were grown and stimulated in an ibidi μslide. Neutrophils were introduced under flow conditions and transmigration was assessed. Fluorescent imaging of the junctions enabled real-time determination of the extent of paracellular versus transcellular transmigration.  相似文献   

13.
Vascular endothelial-cadherin (VE-cadherin) is a component of the adherens junctions of endothelial cells whose role in endothelial transmigration of leukocytes has been controversial. Using a VE-cadherin/green fluorescent protein fusion construct (VEcadGFP) that mimics the native molecule, we visualized alterations in endothelial junctional structure in real time during transmigration of human neutrophils and monocytes in an in vitro flow model. We observed abundant transmigration occurring exclusively at the cell borders (paracellularly). Surprisingly, transmigration occurred both through de novo formation of transient gaps in VEcadGFP junctional distribution, and also through preexisting gaps. De novo gaps 4-6 microm in size were formed after a leukocyte arrived at a junction, whereas preexisting gaps were present even before the leukocyte had interacted with the endothelial cells contributing to a junction. Gaps rapidly resealed within 5 min after leukocyte transmigration. Migrating leukocytes appeared to push aside VEcadGFP in the plane of the junction, and this displaced material subsequently diffused back to refill the junction. To our knowledge, this is the first example where molecular events at the lateral junction have been tracked in real time during transmigration.  相似文献   

14.
Transmigration of neutrophils across the endothelium occurs at the cell-cell junctions where the vascular endothelium cadherin (VE cadherin) is expressed. This adhesive receptor was previously demonstrated to be involved in the maintenance of endothelium integrity. We propose that neutrophil transmigration across the vascular endothelium goes in parallel with cleavage of VE cadherin by elastase and cathepsin G present on the surface of neutrophils. This hypothesis is supported by the following lines of evidence. 1) Proteolytic fragments of VE cadherin are released into the culture medium upon adhesion of neutrophils to endothelial cell monolayers; 2) conditioned culture medium, obtained after neutrophil adhesion to endothelial monolayers, cleaves the recombinantly expressed VE cadherin extracellular domain; 3) these cleavages are inhibited by inhibitors of elastase; 4) VE cadherin fragments produced by conditioned culture medium or by exogenously added elastase are identical as shown by N-terminal sequencing and mass spectrometry analysis; 5) both elastase- and cathepsin G-specific VE cadherin cleavage patterns are produced upon incubation with tumor necrosis factor alpha-stimulated and fixed neutrophils; 6) transendothelial permeability increases in vitro upon addition of either elastase or cathepsin G; and 7) neutrophil transmigration is reduced in vitro in the presence of elastase and cathepsin G inhibitors. Our results suggest that cleavage of VE cadherin by neutrophil surface-bound proteases induces formation of gaps through which neutrophils transmigrate.  相似文献   

15.
We studied the effects of a C60 water suspension at 4 microg/mL (nC60) and the water soluble fullerenol C60(OH)24 at final concentrations of 1-100 microg/mL on human umbilical vein endothelial cells (HUVECs) in culture. We found that a 24 hr treatment of HUVECs with C60(OH)24 at 100 microg/mL significantly increased cell surface expression of ICAM-1(CD54) (67 +/- 4% CD54+ cells vs. 19 +/- 2 % CD540 cells in control; p < 0.001). In addition, this treatment induced the expression of tissue factor (CD142) on HUVECs (54 +/- 20% CD142+ cells vs 4 +/- 2% CD142+ cells in control; p = 0.008) and increased exposure of phosphatidylserine (PS) (29 +/- 2% PS+ cells vs. 12 +/- 5% PS+ cells in control; p < 0.001). Analysis of cell cycle and DNA fragmentation (TUNEL) showed that both nC60 and C60(OH)24 caused G1 arrest of HUVECs and C60(OH)24 induced significant apoptosis (21 +/- 2% TUNEL+ cells at 100 microg/mL of C60(OH)24 vs. 4 +/- 2% TUNEL+ cells in control; p < 0.001). We also demonstrated that both nC60 and C60(OH)24 induced a rapid concentration dependent elevation of intracellular calcium [Ca2+]i. This could be inhibited by EGTA, suggesting that the source of [Ca2+]i in fullerene stimulated calcium flux is predominantly from the extracellular environment. In conclusion, fullerenol C60(OH)24 had both pro-inflammatory and pro-apoptotic effects on HUVECs, indicating possible adverse effects of fullerenes on the endothelium.  相似文献   

16.
During acute inflammation, neutrophil-mediated injury to epithelium may lead to disruption of epithelial function, including the induction of epithelial apoptosis. Herein, we report the effects of neutrophil transmigration and of purified leukocyte elastase on epithelial cell survival. Neutrophil transmigration induced apoptosis of epithelial cells [control monolayers: 5 +/- 1 cells/25 high-power fields (HPF) vs. neutrophil-treated monolayers: 29 +/- 10 cells/HPF, P < 0.05, n = 3 as determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay] as did low concentrations (0.1 U/ml) of purified leukocyte elastase (control monolayers: 6.4 +/- 2.5% apoptotic vs. elastase: 26.2 +/- 2.9% apoptotic, P < 0.05, as determined by cytokeratin 18 cleavage). Treatment with elastase resulted in decreased mitochondrial membrane potential, release of cytochrome c to the cytosol, and cleavage of caspases-9 and -3 as determined by Western blot analysis, implicating altered mitochondrial membrane permeability as a primary mechanism for elastase-induced apoptosis. Additionally, incubation of epithelial cells with leukocyte elastase resulted in an early increase followed by a decrease in the phosphorylation of epithelial Akt, a serine/threonine kinase important in cell survival. Inhibition of epithelial Akt before elastase treatment potentiated epithelial cell apoptosis, suggesting that the initial activation of Akt represents a protective response by the epithelial cells to the proapoptotic effects of leukocyte elastase. Taken together, these observations suggest that epithelial cells exhibit a dual response to cellular stress imposed by leukocyte elastase with a proapoptotic response mediated via early alterations in mitochondrial membrane permeability countered by activation of the survival pathway involving Akt.  相似文献   

17.
Changes in the permeability of human endothelial monolayers in response to activated human neutrophils were examined in a novel, in vitro model of vasopermeability changes. Microcarrier-cultured human umbilical vein endothelial monolayers were used in a system that responds to histamine. Human neutrophils did not increase Evans Blue staining of the endothelium-covered microcarriers if added alone or if added with the neutrophil-dependent mediator of vasopermeability, formyl-methionyl-leucyl-phenylalanine (FMLP, 0.1 microM). In contrast, neutrophils, added to the endothelial cells in a ratio as low as 2.5:1 caused time-dependent increases in microcarrier staining if pretreated with cytochalasin B (5 micrograms/mL) before addition with FMLP. Neutrophil cell-free releasate and purified human sputum elastase also caused concentration-related increases in Evans Blue staining of the endothelial-covered microcarriers and these effects were inhibited by the elastase inhibitor methoxysuccinyl-alanyl-alanyl-prolyl-valyl chloromethyl ketone. This compound also inhibited neutrophil-mediated endothelial permeability increases. The microcarrier-cultured human endothelial monolayer system rapidly detects permeability alterations of endothelial monolayers in response to activated human neutrophils. This model is a potentially useful screening assay for the development of therapeutic agents, directed at neutrophil degranulation or degranulation products, for the control of inflammatory vasopermeability abnormalities.  相似文献   

18.
Monocyte emigration into areas of inflammation is initiated by monocyte adherence to the microvascular endothelium which may be induced by the local production of chemotactic factors at the inflammatory site. However, it is not clear whether such stimuli act on the monocyte and/or the endothelial cell to promote this effect. Accordingly, the effect of the chemotactic peptides C5a des arg and formyl-methionyl-leucyl-phenylalanine (FMLP) on human monocyte adherence to human microvascular endothelial cell monolayers was investigated in vitro. Monocytes (92 to 98% pure) were isolated by discontinuous plasma-Percoll density gradients and cell elutriation, methods designed to minimize monocyte exposure to endotoxin. Mean spontaneous (unstimulated) adherence of 111Indium-tropolonate-radiolabeled monocytes to microvascular endothelial cell monolayers was 19.7% +/- 1.3. Monocyte adherence to microvascular endothelial cell monolayers was stimulated in a dose-response fashion in the presence of C5a des arg or FMLP to a maximum mean adherence of 47.2% +/- 2.9 or 43.8% +/- 2.2, respectively. C5a des arg or FMLP stimulated monocytes to adhere to monolayers of human vascular smooth muscle cells, human dermal fibroblasts, or serum-coated plastic wells in a comparable fashion as to endothelial cells. The simultaneous presence of both chemotactic peptides C5a des arg and FMLP in the assay system stimulated monocyte adherence to the same degree as either stimulus alone. This finding suggested that those monocytes stimulated to adhere by C5a des arg were the same subpopulation responding to FMLP. Spontaneous monocyte adherence (in the absence of chemotactic peptides) to both endothelial cell monolayers and serum-coated plastic wells was reduced in the presence of plasma, but chemotactic peptides induced a significant, albeit reduced, adhesion of monocytes in this circumstance. The pretreatment of monocytes with either C5a des arg or FMLP prior to the adherence assay induced stimulus-specific desensitization of monocyte adherence. Neither a desensitization nor stimulated monocyte adherence occurred when endothelial cell monolayers or serum-coated plastic wells were pretreated with either of the chemotactic peptides. The fixation of endothelial cell monolayers prior to the adherence assay did not alter the degree of spontaneous, C5a des arg-stimulated, or FMLP-stimulated monocyte adherence. These data suggest that the stimulated adhesion of monocytes to endothelial cells by C5a des arg or FMLP represents primarily an effect of these chemotactic peptides on the monocyte.  相似文献   

19.
We examined the mechanism regulating intercellular cell adhesion molecule-1 (ICAM-1)-dependent monocyte transendothelial migration. Monocyte migration through endothelial cells expressing ICAM-1 alone was comparable to that of tumor necrosis factor-alpha-treated cells. Transmigration was reduced in ICAM-1 lacking the cytoplasmic tail and in tyrosine to alanine substitutions at Tyr-485 and Tyr-474. Tissue inhibitors of matrix metalloproteinases (TIMPs) -2 and -3 blocked transmigration, whereas TIMP-1 was ineffective. This profile suggested a role for membrane-type matrix metalloproteinases (MT-MMPs) in transmigration. Inhibitory antibodies and small interference RNA directed against MT1-MMP blocked transmigration, whereas overexpression of MT1-MMP in endothelial cells or monocytes promoted transmigration. MT1-MMP mediated the ectodomain cleavage of ICAM-1 that was blocked by TIMP-2 and -3. Overexpression of MT1-MMP rescued function in ICAM-1Y485A, and to a lesser extent in the cytoplasmic tail-deleted ICAM-1. In a binding assay, wild-type ICAM-1 bound to purified MT1-MMP while ICAM-1 mutants bound poorly. MT1-MMP co-localized with ICAM-1 at distinct structures in endothelial cells. MT1-MMP localization with cells expressing ICAM-1 mutations was reduced and diffused. These results indicate that the cytoplasmic tail of ICAM-1 regulates leukocyte transmigration through MT1-MMP interaction.  相似文献   

20.
In a previous study we observed that neutrophils respond with a rapid rise in [Ca2+]i during adherence to cytokine-activated endothelial cells (EC), caused by EC membrane-associated platelet-activating factor (PAF). In the present study, we investigated whether this form of PAF was important in neutrophil adherence and migration across monolayers of rIL-1 beta- or rTNF alpha-prestimulated EC. PAF receptor antagonists prevented neutrophil migration across cytokine-pretreated EC by approximately 60% (P less than 0.005) without interfering with the process of adherence. The antagonists WEB 2086 and L-652,731 had no effect on neutrophil migration across resting EC induced by formylmethionyl-leucyl-phenylalanine (FMLP). A murine anti-IL-8 antiserum was found to also partially inhibit the neutrophil transmigration across cytokine-activated EC. When the anti-IL-8 antiserum was used in combination with a PAF receptor antagonist, neutrophil migration across cytokine-pretreated monolayers of EC was completely prevented. During transmigration, LAM-1 and CD44 on the neutrophils were down-modulated; both WEB 2086 and anti-IL-8 antiserum partially prevented this down-modulation caused by cytokine-prestimulated EC. Our results indicate that human neutrophils are activated and guided by EC-associated PAF and EC-derived IL-8 during the in vitro diapedesis in between cytokine-stimulated EC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号