首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oviducts of 25 tortoises (Gopherus polyphemus) were examined by using histology and scanning electron microscopy to determine oviductal functional morphology. Oviductal formation of albumen and eggshell was of particular interest. The oviduct is composed of 5 morphologically distinct regions; infundibulum, uterine tube, isthmus, uterus, and vagina. The epithelium consists of ciliated cells and microvillous secretory cells throughout the oviduct, whereas bleb secretory cells are unique to the infundibulum. The epithelium and endometrial glands of the uterine tube histologically resemble those of the avian magnum which produce egg albumen and may be functionally homologous. The isthmus is a short, nonglandular region of the oviduct and appears to contribute little to either albumen or eggshell formation. The uterus retains the eggs until oviposition and may form both the fibrous and calcareous eggshell. The endometrial glands are histologically similar to the endometrial glands of the isthmus of birds, which are known to secrete the fibers of the eggshell. These glands hypertrophy during vitellogenesis but become depleted during gravidity. The uterine epithelium may supply "plumping water" to the egg albumen as well as transport calcium ions for eggshell formation. The vagina is extremely muscular and serves as a sphincter to retain the eggs until oviposition. Sperm are found within the oviductal lumen and endometrial glands from the posterior tube to the anterior uterus throughout the reproductive cycle. This indicates sperm storage within the female tract, although the viability and reproductive significance of these sperm are unknown.  相似文献   

2.
The evolutionary process leading to the emergence of viviparity in Squamata consists of lengthening the period of egg retention in utero coupled with marked reduction in the thickness of the eggshell. We used light microscopy and scanning electron microscopy to study uterine structure during the reproductive cycle of oviparous and viviparous females of the reproductively bimodal Lacerta vivipara. We compared the structure of the uterine shell glands, which secrete components of the eggshell, during preovulatory and early gestation phases of the reproductive cycle and also compared histochemistry of the eggshells. The uterine glands of both reproductive forms undergo considerable growth within a period of a few weeks during folliculogenesis and vitellogenesis preceding ovulation. The majority of the proteinaceous fibers of the shell membrane are secreted early in embryonic development and the uterine glands regress shortly thereafter. This supports previous observations indicating that, in Squamata, secretion of the shell membrane occurs very rapidly after ovulation. The most striking differences between reproductive modes were larger uterine glands at late vitellogenesis in oviparous females, 101 microm compared to 60 microm in viviparous females, and greater thickness of the shell membrane during early gestation in oviparous females (52-73 microm) compared to viviparous females (4-8 microm). Our intraspecific comparison supports the conclusions of previous studies that, prior to ovulation, the uterine glandular layer is less developed in viviparous than in oviparous species, and that this is the main factor accounting for differences in the thickness of the shell membrane of the two reproductive forms of squamates.  相似文献   

3.
The avian eggshell is a composite biomaterial composed of non-calcifying eggshell membranes and the overlying calcified shell matrix. The calcified shell forms in a uterine fluid where the concentration of different protein species varies between the initial, rapid calcification and terminal phases of eggshell deposition. The role of these avian eggshell matrix proteins during shell formation is poorly understood. The properties of the individual components must be determined in order to gain insight into their function during eggshell mineralization. In this study, we have identified lysozyme as a component of the uterine fluid by microsequencing, and used western blotting, immunofluorescence and colloidal-gold immunocytochemistry to document its localization in the eggshell membranes and the shell matrix. Furthermore, Northern blotting and RT-PCR indicates that there is a gradient to the expression of lysozyme message by different regions of the oviduct, with significant albeit low levels expressed in the isthmus and uterus. Lysozyme protein is abundant in the limiting membrane that circumscribes the egg white and forms the innermost layer of the shell membranes. It is also present in the shell membranes, and in the matrix of the calcified shell. Calcite crystals grown in the presence of purified hen lysozyme exhibited altered crystal morphology. Therefore, in addition to its well-known anti-microbial properties that could add to the protective function of the eggshell during embryonic development, shell matrix lysozyme may also be a structural protein which in soluble form influences calcium carbonate deposition during calcification.  相似文献   

4.
Embryos of oviparous Reptilia (=turtles, lepidosaurs, crocodilians and birds) extract calcium for growth and development from reserves in the yolk and eggshell. Yolk provides most of the calcium to embryos of lizards and snakes. In contrast, the eggshell supplies most of the calcium for embryonic development of turtles, crocodilians and birds. The yolk sac and chorioallantoic membrane of birds recover and transport calcium from the yolk and eggshell and homologous membranes of squamates (lizards and snakes) probably transport calcium from these two sources as well. We studied calcium mobilization by embryos of the snake Pantherophis guttatus during the interval of greatest embryonic growth and found that the pattern of calcium transfer was similar to other snakes. Calcium recovery from the yolk is relatively low until the penultimate embryonic stage. Calcium removal from the eggshell begins during the same embryonic stage and total eggshell calcium drops in each of the final 2 weeks prior to hatching. The eggshell supplies 28% of the calcium of hatchlings. The timing of calcium transport from the yolk and eggshell is coincident with the timing of growth of the yolk sac and chorioallantoic membrane and expression of the calcium binding protein, calbindin-D28K, in these tissues as reported in previous studies. In the context of earlier work, our findings suggest that the timing and mechanism of calcium transport from the yolk sac of P. guttatus is similar to birds, but that both the timing and mechanism of calcium transport by the chorioallantoic membrane differs. Based on the coincident timing of eggshell calcium loss and embryonic calcium accumulation, we also conclude that recovery of eggshell calcium in P. guttatus is regulated by the embryo.  相似文献   

5.
The avian eggshell is an acellular bioceramic containing organic and inorganic phases that are sequentially assembled during the time the egg moves along the oviduct. As it has been demonstrated in other mineralized tissues, mineralization of the eggshell is regulated by extracellular matrix proteins especially the anionic side chains of proteoglycans. Among them, osteopontin has been found in the avian eggshell and oviduct. However, its precise localization in the eggshell or in different oviduct regions during eggshell formation, nor its function have been established. By using anti-osteopontin antibody (OPN 1), we studied its immunolocalization in the isthmus, red isthmus and shell gland of the oviduct, and in the eggshell during formation. In the eggshell, osteopontin was localized in the core of the non-mineralized shell membrane fibers, in the base of the mammillae and in the outermost part of the palisade. In the oviduct, OPN 1 was localized in the ciliated epithelial but not in the tubular gland cells of the isthmus, in the ciliated epithelial cells of the red isthmus, and in the non-ciliated epithelial cells of the shell gland. The occurrence of osteopontin in each of the oviduct regions, coincided with the concomitant presence of the egg in such region. Considering the reported inhibitory function of osteopontin in other mineralized systems, together with its main occurrence in the non-mineralized parts of the eggshell and at the outermost part of the shell, suggests that this molecule could be part of the mechanism regulating the eggshell calcification.  相似文献   

6.
Lampropholis guichenoti is an oviparous lizard that lays eggs with a calcareous outer shell. We used immunofluorescence microscopy to describe the occurrence and distribution of Ca2+ ATPase pumps in the uterus of L. guichenoti at different stages of the reproductive and egg-shelling cycles. Ca2+ ATPase pumps were not demonstrated by immunofluorescent techniques in any uterine tissue until egg-shelling had commenced and at least partly calcified eggs were in the uterus. During egg-shelling, Ca2+ ATPase pumps occur on the apical and baso-lateral surfaces of uterine epithelial cells, and those of associated shell glands in the stroma of the uterus. We conclude that Ca2+ ATPase pumps provide a major mechanism for deposition of the calcareous eggshell of L. guichenoti and that the pumps are up-regulated when required in the reproductive cycle. Furthermore, it is likely that specific calcium glands in the stroma of the uterus are involved in the rapid transport required for egg-shelling, but the differential contribution of luminal and glandular epithelial cells is not known.  相似文献   

7.
Oviductal functional morphology remains poorly understood in oviparous snakes, particularly in regard to oviductal formation of albumen and the eggshell and to sperm storage. The oviduct of Diadophis punctatus was examined using histology and scanning electron microscopy to determine oviductal functional morphology throughout the reproductive cycle. The oviduct is composed of four morphologically distinct regions: infundibulum, uterine tube, uterus, and vagina. The infundibulum is thin, flaccid, and lined with simple ciliated cuboidal epithelial cells. The tube contains ciliated and secretory epithelial cells, which reach a maximum height and hypertrophy during early gravidity and produce glycosaminoglycans. The posterior portion of the tube contains temporary sperm storage receptacles. The uterus retains eggs throughout gestation and secretes the eggshell constituents. The endometrial glands of the uterus hypertrophy during vitellogenesis and become depleted of the secretory granules during gravidity. The functional morphology of the oviduct therefore shows cyclical changes that are correlated with eggshell formation. The vagina consists of thick longitudinal and circular smooth muscle layers, which may serve in retention of eggs during gestation. Furthermore, the vagina contains long furrows in the mucosa that serve as sperm storage receptacles. These receptacles store sperm following fall mating and overwintering, whereas the receptacles in the tube are utilized briefly during vitellogenesis just prior to ovulation. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Calcium ATPase (Ca2+-ATPase) is a key enzyme that participates in the translocation of calcium in the uterus of oviparous amniotes during eggshell formation. We used Western blot and indirect immunofluorescence microscopy to determine expression and localisation of uterine Ca2+-ATPase during the reproductive cycle of king quail and zebra finch. The pattern of Ca2+-ATPase expression and localisation during the reproductive cycle was similar for both species. Immunoblots of uterine extracts from quail and finch indicated that Ca2+-ATPase expression is reduced in non-reproductive compared to reproductive females. Similarly, in non-reproductive females, weak apical immunofluorescent staining of Ca2+-ATPase is localised to epithelial cells in a small number of uterine tubular glands. A large increase in apical immunofluorescent staining of tubular gland epithelia occurs in both vitellogenic and reproductive females. The presence of Ca2+-ATPase on the apical surface of tubular gland epithelial cells suggests that the enzyme is involved in the translocation of calcium out of the tubular gland epithelia and into the concentrated fluid of the uterine lumen. Presence of Ca2+-ATPase in vitellogenic females indicates that the enzyme is expressed prior to the time of ovulation and eggshell calcification.  相似文献   

9.
Calcium ATPase (Ca2+-ATPase) is a key enzyme that participates in the translocation of calcium in the uterus of oviparous amniotes during eggshell formation. We used Western blot and indirect immunofluorescence microscopy to determine expression and localisation of uterine Ca2+-ATPase during the reproductive cycle of king quail and zebra finch. The pattern of Ca2+-ATPase expression and localisation during the reproductive cycle was similar for both species. Immunoblots of uterine extracts from quail and finch indicated that Ca2+-ATPase expression is reduced in non-reproductive compared to reproductive females. Similarly, in non-reproductive females, weak apical immunofluorescent staining of Ca2+-ATPase is localised to epithelial cells in a small number of uterine tubular glands. A large increase in apical immunofluorescent staining of tubular gland epithelia occurs in both vitellogenic and reproductive females. The presence of Ca2+-ATPase on the apical surface of tubular gland epithelial cells suggests that the enzyme is involved in the translocation of calcium out of the tubular gland epithelia and into the concentrated fluid of the uterine lumen. Presence of Ca2+-ATPase in vitellogenic females indicates that the enzyme is expressed prior to the time of ovulation and eggshell calcification.  相似文献   

10.
The eggshell is a highly ordered structure resulting from the deposition of calcium carbonate concomitantly with an organic matrix upon the eggshell membranes. Mineralization takes place in an acellular uterine fluid, which contains the ionic and matrix precursors of the eggshell. We have identified a novel 32-kDa protein, ovocalyxin-32, which is expressed at high levels in the uterine and isthmus regions of the oviduct, and concentrated in the eggshell. Sequencing of peptides derived from the purified protein allowed expressed sequence tag sequences to be identified that were assembled to yield a full-length composite sequence whose conceptual translation product contained the complete amino acid sequence of ovocalyxin-32. Data base searches revealed that ovocalyxin-32 has limited identity (32%) to two unrelated proteins: latexin, a carboxypeptidase inhibitor expressed in the rat cerebral cortex and mast cells, and a skin protein, which is encoded by a retinoic acid receptor-responsive gene, TIG1. High level expression of ovocalyxin-32 was limited to the isthmus and uterus tissue, where immunocytochemistry at the light and electron microscope levels demonstrated that ovocalyxin-32 is secreted by surface epithelial cells. In the eggshell, ovocalyxin-32 localizes to the outer palisade layer, the vertical crystal layer, and the cuticle of the eggshell, in agreement with its demonstration by Western blotting at high levels in the uterine fluid during the termination phase of eggshell formation. Ovocalyxin-32 is therefore identified as a novel protein synthesized in the distal oviduct where hen eggshell formation occurs.  相似文献   

11.
1. Eggs of Crocodilia and Chelonia, like those of birds, have a pair of egg membranes separating a thick layer of albumen from the calcareous shell. In contrast, eggs of oviparous Lepidosauria have only a single shell membrane, upon which relatively small amounts of calcium carbonate are deposited; and the volume of albumen in eggs is extraordinarily small at the time of oviposition. 2. With the possible exception of certain geckos and some chelonians, eggs of oviparous reptiles seem always to absorb water from the substrate during the course of normal incubation. In so far as the rate of water absorption exceeds the rate of water loss by transpiration from exposed surfaces, the eggs swell during incubation. The term ‘cleidoic’ cannot be used to describe eggs of this type. 3. Embryos of lizards and snakes influence the water potential of extra-embryonic fluids contained within their eggs, thereby maintaining or increasing the gradient in water potential that drives water absorption. 4. Embryos of Crocodilia and Chelonia obtain a substantial portion of the calcium used in ossification of skeletal elements from the inner surfaces of the eggshell. In contrast, embryonic lizards and snakes draw upon extensive reserves of calcium present in the yolk, and obtain little (if any) calcium from the eggshell. 5. All reptilian embryos seem to produce substantial quantities of urea as a detoxification product of protein catabolism. Contrary to expectation, uricotelism may not be common among reptilian embryos, even in those few instances where development takes place within a hard, calcareous egg. 6. In eggs of Crocodilia and Chelonia, respiratory gases seem to pass by diffusion through pores in the calcareous eggshell and through spaces between the fibres of the pair of egg membranes. No pores have been observed in the shell of lepidosaurian eggs, and so gases presumably diffuse between the fibres of the single (multilayered) shell membrane. 7. Metabolism of reptilian embryos is temperature-dependent, as is true for most ectothermic organisms. For each species, there appears to be a particular temperature at which embryonic development proceeds optimally, and departures from this optimum elicit increases in developmental anomalies and/or embryonic mortality. 8. Viviparity has evolved on numerous occasions among species of the Squamata, but seemingly never among Crocodilia or Chelonia. Since the evolution of viviparity entails a progressive reduction in the eggshell, only those organisms whose embryos do not depend upon the eggshell as a source of calcium may have the evolutionary potential to become viviparous. 9. Evolutionary transitions from oviparity to viviparity could have been driven by selection related to (i) thermal benefits to embryos consequent upon retention of eggs within the body of a parent capable of behavioural thermoregulation; (ii) protection of the eggs from nest predators and/or soil microbes; and (iii) more effective exploitation of a seasonal food resource by early emerging young.  相似文献   

12.
The avian eggshell is a composite biomaterial composed of noncalcifying eggshell membranes and the overlying calcified shell matrix. The shell is deposited in a uterine fluid where the concentration of different protein species varies at different stages of its formation. The role of avian eggshell proteins during shell formation remains poorly understood, and we have sought to identify and characterize the individual components in order to gain insight into their function during elaboration of the eggshell. In this study, we have used direct sequencing, immunochemistry, expression screening, and EST data base mining to clone and characterize a 1995-bp full-length cDNA sequence corresponding to a novel chicken eggshell protein that we have named Ovocalyxin-36 (OCX-36). Ovocalyxin-36 protein was only detected in the regions of the oviduct where egg-shell formation takes place; uterine OCX-36 message was strongly up-regulated during eggshell calcification. OCX-36 localized to the calcified eggshell predominantly in the inner part of the shell, and to the shell membranes. BlastN data base searching indicates that there is no mammalian version of OCX-36; however, the protein sequence is 20-25% homologous to proteins associated with the innate immune response as follows: lipopolysaccharide-binding proteins, bactericidal permeability-increasing proteins, and Plunc family proteins. Moreover, the genomic organization of these proteins and OCX-36 appears to be highly conserved. These observations suggest that OCX-36 is a novel and specific chicken eggshell protein related to the superfamily of lipopolysaccharide-binding proteins/bactericidal permeability-increasing proteins and Plunc proteins. OCX-36 may therefore participate in natural defense mechanisms that keep the egg free of pathogens.  相似文献   

13.
Despite a great deal of work in recent years on the structure of reptilian eggshells, few studies have examined the structure and regulation of the female reproductive tract in the formation of eggshell components, and none have examined the entire process from ovulation to oviposition. In this study, we examined oviductal structure in the oviparous lizard, Sceloporus woodi, followed changes in oviductal structure during gravidity, and determined uterine function in the formation of eggshell components. The endometrial glands of the uterus produce the proteinaceous fibers of the eggshell membrane mainly during the first 24 hours following ovulation, and the fibers are secreted intact and subsequently wrapped around the in utero eggs. Eggshell fibers of different thicknesses are layered around each egg, ranging from an inner layer of thick fibers that gradually become thinner medially and finally forms an outer layer of densely packed particulate matter. These changes in the fibrous layer are reflected by the thickness and length of fibers released from the endometrial glands. Calcium deposition occurs from 3 days following ovulation through day 14 (oviposition) and is accompanied by cellular changes in the luminal epithelium suggestive of secretory activity. Deposition of the eggshell components within the uterus occurs on all eggs simultaneously, rather than sequentially. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Summary The tissues of the domestic hen's reproductive tract have been shown to contain both acidic and neutral mucins. The presence of an egg in the isthmus was always accompanied with an increase in the concentration in the isthmus secretory epithelium of PAS-positive mucins without free acidic groups. Staining of uterine tissue for strongly acidic groups with basic dyes was greater when an egg had been present in the shell gland at the time of death and the same was true for tissues of the upper oviduct. The results are discussed with special reference to the periodic secretion of organic mammillary core and egg shell mucins.  相似文献   

15.
The timing of sexual maturation in non-avian dinosaurs is not known. In extant squamates and crocodilians it occurs in conjunction with the initial slowing of growth rates as adult size is approached. In birds (living dinosaurs) on the other hand, reproductive activity begins well after somatic maturity. Here we used growth line counts and spacing in all of the known brooding non-avian dinosaurs to determine the stages of development when they perished. It was revealed that sexual maturation occurred well before full adult size was reached-the primitive reptilian condition. In this sense, the life history and physiology of non-avian dinosaurs was not like that of modern birds. Palaeobiological ramifications of these findings include the potential to deduce reproductive lifespan, fecundity and reproductive population sizes in non-avian dinosaurs, as well as aid in the identification of secondary sexual characteristics.  相似文献   

16.
Shells from eggs of five species of kinosternid turtle (Sternotherus minor, Kinosternon flavescens, K. baurii, K. Hirtipes, and K. alamosae) were examined with light and scanning electron microscopy. Except for possible differences among species in thickness of eggshells, structure of shells from all eggs was similiar. In general, kinosternid turtles lay eggs having a rigid calcareous layer composed of calcium carbonate in the form of aragonite. The calcareous layer is organized into individual shell units with needlelike crystallites radiating from a common center. Most of the thickness of the eggshell is attributable to the calcareous layer, with the fibrous shell membrane comprising only a small fraction of shell thickness. Pores are found in the calcareous layer, but they are not numereous. The outer surface of the eggshells is sculptured and may have a thick, organic layer in places. The outer surface of the shell membrane of decalcified eggshells is studded with spherical cores which presumably nucleate growth of shell units during shell formation. The shell membrane detaches from eggs incubated to hatching, carrying with it remnants of the calcareous layer. Such changes in shell structure presumably reflect withdrawal of calcium from the eggshell by developing embryos.  相似文献   

17.
The objective of this work was to survey and compare the composition of the parts of the reproductive system of the female fowl in glycosaminoglycans and proteoglycans. Those parts analyzed were ovary, infundibulum, magnum, isthmus, shell gland and vagina. Methods of analysis included cellulose acetate electrophoresis, infrared spectroscopy, colorimetry, amino acid determination and scanning electron microscopy. Concentrations of glycosaminoglycans were higher in vagina, ovary, infundibulum and isthmus than in shell gland and magnum. Glycosaminoglycans may be important in those parts of the reproductive tract which contribute membraneous and mucosal material to the descending egg, and where fertilization of the egg occurs.  相似文献   

18.
1. Since calmodulin or some closely related peptide may activate the Ca2(+)-transporting system in the avian eggshell gland, the calmodulin content in different parts of the oviduct mucosa was determined in egg-laying birds killed at 1600 hr. 2. The highest content was noted in the shell gland mucosa both in egg-laying ducks and hens. The calmodulin content was high even in the isthmus part, where the shell formation begins. 3. Treatment of ducks (Indian runner variety) with DDE (40 ppm for 45 days) did not influence the calmodulin content of the shell gland, however. 4. The content of the protein avidin, the formation of which is stimulated by progesterone, was increased significantly in the oviduct. The carbanhydrase activity did not change significantly. 5. The dry weight of the shell gland was reduced by DDE administration in ducks but not in domestic fowls. 6. These and earlier observations indicate that DDE can act as an partial agonist which is able both to stimulate and to inhibit reactions in the shell gland and other parts of the oviduct. 7. In vivo DDE in the dose used probably acted on higher centres, influencing the activity of the shell gland and probably other parts of the oviduct. 8. A regulation centre which influences several sexual functions is the hypothalamic-hypophyseal region, but the endocrine function of the ovary has also been considered.  相似文献   

19.
In reptiles, the evolutionary transition from egg-laying to live-bearing is thought to involve a gradual increase in the duration of egg retention, with progressively more development occurring prior to oviposition, and culminating in the birth of fully developed offspring. However, prolonging the retention of fully-shelled eggs within the oviducts may pose serious gas-exchange problems for the embryos. Thus, evolutionary increases in the period of intrauterine retention may require correlated decreases in the thickness of eggshells and/or their degree of calcification to allow for adequate embryonic gas exchange. To test this evolutionary model, eggs of three distinct reproductive forms of the scincid lizard Lerista bougainvillii were examined to determine the evolutionary relationships between the thickness of the shell membrane, degree of eggshell calcification, and the duration of uterine egg retention. These comparisons revealed the predicted pattern of correlated shifts in eggshell morphology and embryonic stage at oviposition. Evolutionary increases in the duration of egg retention were accompanied by decreases in the thickness of the eggshell membrane and degree of eggshell calcification. This evolutionary model suggests that there may be a tradeoff between the advantages of extended egg retention and the disadvantages of a thinner eggshell. On the basis of this tradeoff, I propose that oviparous taxa with relatively thin eggshells may be preadapted to evolve viviparity. Comparative examination of the limited data available on eggshell thickness in lizards supports this possibility. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Eggshell formation and egg production in domestic fowl were studied following the administration of methyl mercury (two dose regimes: 5 mg daily for 6 consecutive days and 1 mg daily for 50 consecutive days). A daily oral dose of 5 mg of methyl mercury for 6 consecutive days induced significant eggshell thinning and deformation and inhibited egg production. Uptake of 45Ca and synthesis of prostaglandins by a homogenate of eggshell gland mucosa from methyl-mercury-treated birds were significantly reduced, as was the calcium content of blood plasma. A daily oral dose of 1 mg of methyl mercury administered for 50 consecutive days also induced eggshell deformation and thinning and reduced egg production. This dose did not, however, have significant effects on the following: 45Ca uptake and prostaglandin synthesis by a homogenate of the eggshell gland mucosa; 45Ca uptake by a homogenate of duodenal mucosa; the Ca content of the blood plasma, shell gland mucosa or shell gland lumen; the HCO3 content of the shell gland lumen or the specific gravity of tibia. Methyl mercury added in vitro to a homogenate of eggshell gland mucosa significantly stimulated the synthesis of prostaglandins PGF and PGE2. Addition of mercury chloride to the same type of preparation stimulated the synthesis of PGF at the expense of thromboxane (T × B2) synthesis. Administration of 5 mg methyl mercury for 6 consecutive days seemed to reduce the availability of calcium for eggshell formation. This effect could have been due to a direct inhibitory effect of methyl mercury on calcium uptake from the gastrointestinal tract and/or to mobilization of medullary bone. The administration of 1 mg methyl mercury for 50 consecutive days probably induced the reproductive effects by another mechanism. The effects of methyl mercury on avian eggshell formation are quite different from the effects p,p′-DDE exerts on that process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号