首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Viability of long-distance pollen links ecological models to the genetic structure of forest tree populations, determining how forests will adapt to climate change and how far genes flow from genetically modified (GM) pine plantations. Addressing this landscape-scale inquiry is feasible when the pollen source, the delivery system, and the receiver field can be made explicit. To this end, I measured long-distance pollen germination along a 160-km transect along the North Carolina coastline, including 45000 ha of mature Pinus taeda plantations and barrier islands. Using this system, I tested three hypotheses: (1) pine pollen germinates after dispersal on meso-scale distances, (2) sodium chloride exposure reduces germination of pollen captured over open saltwater, and (3) viable pine pollen is present at high altitudes before local peak pollen shed. The experimental findings are as follows: pine pollen had germination rates of 2 to 57% after dispersal at distances from 3 to 41 km, sodium chloride solutions mildly reduced P. taeda pollen germination, and viable pine pollen grains were captured at an altitude of 610 m. GM pine plantings thus have a potential to disperse viable pollen at least 41 km from the source. Wind and rainfall, as integral parts of regional atmospheric systems, together exert a powerful influence on the genetic structure of forest tree populations.  相似文献   

2.
3.
There are few statistical methods for estimating contemporary dispersal among plant populations. A maximum-likelihood procedure is introduced here that uses pre- and post-dispersal population samples of biparentally inherited genetic markers to jointly estimate contemporary seed and pollen immigration rates from a set of discrete external sources into a target population. Monte Carlo simulations indicate that accurate estimates and reliable confidence intervals can be obtained using this method for both pollen and seed migration rates at modest sample sizes (100 parents/population and 100 offspring) when population differentiation is moderate (F(ST) ≥ 0.1), or by increasing pre-dispersal samples (to about 500 parents/population) when genetic divergence is weak (F(ST) = 0.01). The method exhibited low sensitivity to the number of source populations and achieved good accuracy at affordable genetic resolution (10 loci with 10 equifrequent alleles each). Unsampled source populations introduced positive biases in migration rate estimates from sampled sources, although they were minor when the proportion of immigration from the latter was comparatively low. A practical application of the method to a metapopulation of the Australian resprouter shrub Banksia attenuata revealed comparable levels of directional seed and pollen migration among dune groups, and the estimate of seed dispersal was higher than a previous estimate based on conservative assignment tests. The method should be of interest to researchers and managers assessing broad-scale nonequilibrium seed and pollen gene flow dynamics in plants.  相似文献   

4.
Variation in flowering plant density can have conflicting effects on pollination and seed production. Dense flower patches may attract more pollinators, but flowers in those patches may also compete for pollinator visits and abiotic resources. We examined how natural and experimental conspecific flowering plant density affected pollen receipt and seed production in a protandrous, bumble bee-pollinated wildflower, Delphinium barbeyi (Ranunculaceae). We also compared floral sex ratios, pollinator visitation rates, and pollen limitation of seed set from early to late in the season to determine whether these factors mirrored seasonal changes in pollen receipt and seed production. Pollen receipt increased with natural flowering plant density, while seed production increased across lower densities and decreased across higher flower densities. Experimental manipulation of flowering plant density did not affect pollinator visitation rate, pollen receipt, or seed production. Although pollinator visitation rate increased 10-fold from early to late in the season, pollen receipt and seed set decreased over the season. Seed set was never pollen-limited. Thus, despite widespread effects of flowering plant density on plant reproduction in other species, the effects of conspecific flowering plant density on D. barbeyi pollination and seed production are minor.  相似文献   

5.
Urban development increasingly occupies more landscape and is responsible for habitat alteration and fragmentation of so many ecosystems that urban environments can no longer be excluded from the areas to be considered in conservation strategies. Appropriate management measures ensuring population viability are needed, but due to the usually irreversible feature of the urbanisation process, the measures may differ from non-urbanised areas. Sufficient gene flow levels, leading to successful seed production, appear to be a key element in the sustainable persistence of insect-pollinated plant remnant populations. This study investigated reproductive success and pollen dispersal patterns in Centaurea jacea, an insect-pollinated hay-meadow herb, in the Brussels urban area (Belgium). Reproductive performance of urban park populations was compared with populations occurring in urban semi-natural sites. Pollen dispersal patterns were examined within and among-population patches from two urban parks using fluorescent dye as a pollen analogue. Urban park populations showed a higher reproductive success than those in urban semi-natural sites. Depositions of fluorescent dye particles on recipient individuals were found within populations (<20 m), among populations within parks (over a few hundred meters) and among parks (maximal investigated distance: 2.6 km), indicating pollinator movements and a potential gene flow by pollen over relatively long distances. Dye dispersal showed an exponential decay distribution with respect to spatial distance. The very small populations received more immigrant dye deposition when located at short distances from the source population. These findings demonstrate that urban populations do not perform worse in reproductive success than populations from agricultural landscapes, despite their small size, and can function as a network exchanging pollen. The conversion of urban park lawns into interconnected networks of ecologically managed hay meadows, allowing simultaneous flowering and seed production in many patches of target species, is to be strongly encouraged.  相似文献   

6.
The majority of flowering plants require animals for pollination, a critical ecosystem service in natural and agricultural systems. However, quantifying useful estimates of pollinator visitation rates can be nearly impossible when pollinator visitation is infrequent. We examined the utility of an indirect measure of pollinator visitation, namely pollen receipt by flowers, using the hummingbird-pollinated plant, Ipomopsis aggregata (Polemoniaceae). Our a priori hypothesis was that increased pollinator visitation should result in increased pollen receipt by stigmas. However, the relationship between pollinator visitation rate and pollen receipt may be misleading if pollen receipt is a function of both the number of pollinator visits and variation in pollinator efficiency at depositing pollen, especially in the context of variable floral morphology. Therefore, we measured floral and plant characters known to be important to pollinator visitation and/or pollen receipt in I. aggregata (corolla length and width and plant height) and used path analysis to dissect and compare the effect of pollinator visitation rate vs. pollinator efficiency on pollen receipt. Of the characters we measured, pollinator visitation rate (number of times plants were visited multiplied by the mean percentage of flowers probed per visit) had the strongest direct positive effect on pollen receipt, explaining 36% of the variation in pollen receipt. Plant height had a direct positive effect on pollinator visitation rate and an indirect positive effect on pollen receipt. Despite the supposition that floral characters would directly affect pollen receipt as a result of changes in pollinator efficiency, corolla length and width only weakly affected pollen receipt. These results suggest a direct positive link between pollinator visitation rate and pollen receipt across naturally varying floral morphology in I. aggregata. Understanding the relationship between pollinator visitation rate and pollen receipt may be of critical importance in systems where pollinator visitation is difficult to quantify.  相似文献   

7.
In alpine ecosystems, microscale variation in snowmelt timing often causes different flowering phenology of the same plant species and seasonal changes in pollinator activity. We compared the variations in insect visitation, pollen dispersal, mating patterns, and sexual reproduction of Rhododendron aureum early and late in the flowering season using five microsatellites. Insects visiting the flowers were rare early in the flowering season (mid-June), when major pollinators were bumblebee queens and flies. In contrast, frequent visitations by bumblebee workers were observed late in the season (late July). Two-generation analysis of pollen pool structure demonstrated that quality of pollen-mediated gene flow was more diverse late in the season in parallel with the high pollinator activity. The effective number of pollen donors per fruit (N(ep)) increased late in the season (N(ep) = 2.2-2.7 early, 3.4-4.4 late). However, both the outcrossing rate (t(m)) and seed-set ratio per fruit were smaller late in the season (t(m) = 0.89 and 0.71, seed-set ratio = 0.52 and 0.18, early and late in the season, respectively). In addition, biparental inbreeding occurred only late in the season. We conclude that R. aureum shows contrasting patterns of pollen movement and seed production between early and late season: in early season, seed production can be high but genetically less diverse and, during late season, be reduced, possibly due to higher inbreeding and inbreeding depression, but have greater genetic diversity. Thus, more pollinator activity does not always mean more pollen movement.  相似文献   

8.
In plants, genes may disperse through both pollen and seeds. Here we provide a first theoretical study of the mechanisms and consequences of the joint evolution of pollen and seed dispersal. We focus on hermaphroditic self-compatible species distributed in structured populations, assuming island dispersal of pollen and seeds among small patches of plants within large populations. Three traits are studied: the rate of among-patch seed dispersal, the rate of among-patch pollen dispersal, and the rate of within-patch pollen movement. We first analytically derive the evolutionary equilibrium state of each trait, dissect the pairwise selective interactions, and describe the joint three-trait evolutionary equilibrium under the cost of dispersal and kin competition. These results are then analytically and numerically extended to the case when selfed seeds suffer from depressed competitiveness (inbreeding depression, no heterosis). Finally individual-based simulations are used to account for a more realistic model of inbreeding load. Pollen movement is shown to generate opposite selection pressures on seed dispersal depending on spatial scale: within-patch pollen movement favors seed dispersal, whereas among-patch pollen dispersal inhibits seed dispersal. Seed dispersal selects for short-distance movements of pollen and it selects against long-distance dispersal. These interactions shape the joint evolution of these traits. Kin competition favors among-patch seed dispersal over among-patch pollen dispersal for low costs of within-patch pollen movement (and vice versa for significant costs of within-patch pollen movement). Inbreeding depression favors allogamy through high rates of within- and among-patch pollen movement. Surprisingly, it may select either for or against seed dispersal depending on the cost of among-patch pollen dispersal. Heterosis favors increased among-patch dispersal through pollen and seeds. But because these two stages inhibit each other, their joint evolution might lead to decreased seed dispersal in the presence of heterosis. Of crucial importance are the costs of dispersal.  相似文献   

9.
Some mechanisms that promote long-distance dispersal of tree seeds by wind are explored. Winged seeds must be lifted above the canopy by updrafts to have a chance of further dispersal in high velocity horizontal winds aloft or in landscape-scale convection cells. Shear-induced turbulent eddies of a scale up to one-third of canopy height provide a lifting mechanism. Preliminary data suggest that all seeds of a given species may be viable candidates for uplift and long-distance dispersal, despite the evidence that slow-falling seeds are dispersed farther under any given wind conditions. Turbulence is argued more often and more extensively to advance long-distance dispersal than to retard it. Seeds may take advantage of Bernoulli sailing to move with faster than average winds. Elasticity of branches and trees may play a role in regulating the release of seeds into unusually favorable winds. Dispersal is at least biphasic, and the study of long-distance dispersal calls for mixed models and mixed methods of gathering data.  相似文献   

10.
The dispersal of parasites is critical for epidemiology, and the interspecific vectoring of parasites when species share resources may play an underappreciated role in parasite dispersal. One of the best examples of such a situation is the shared use of flowers by pollinators, but the importance of flowers and interspecific vectoring in the dispersal of pollinator parasites is poorly understood and frequently overlooked. Here, we use an experimental approach to show that during even short foraging periods of 3 h, three bumblebee parasites and two honeybee parasites were dispersed effectively onto flowers by their hosts, and then vectored readily between flowers by non-host pollinator species. The results suggest that flowers are likely to be hotspots for the transmission of pollinator parasites and that considering potential vector, as well as host, species will be of general importance for understanding the distribution and transmission of parasites in the environment and between pollinators.  相似文献   

11.
High‐altitude and high‐latitude sites are expected to be very sensitive to global warming, because the biological activity of most plants is restricted by the length of the short snow‐free season, which is determined by climate. Long‐term observational studies in subalpine meadows of the Colorado Rocky Mountains have shown a strong positive correlation between snowpack and flower production by the forb Delphinium nuttallianum. If a warmer climate reduces annual snowfall in this region then global warming might reduce fitness in D. nuttallianum. In this article we report effects of experimental warming on the abundance and flower production of D. nuttallianum. Plant abundance (both flowering and vegetative plants) was slightly greater on warmed than control plots prior to initiation of the warming treatment in 1991. Since 1994 experimental warming has had a negative effect on D. nuttallianum flower production, reducing both the abundance of flowering plants and the total number of flowers per plant. Flower bud abortion was higher in the heated plots than the controls only in 1994 and 1999. Results from both the warming experiment and analyses of unmanipulated long‐term plots suggest that global warming may affect the fecundity of D. nuttallianum, which may have cascading effects on the pollinators that depend on it and on the fecundity of plants that share similar pollinators.  相似文献   

12.
Pollen and seed migration patterns are not the same in most plant populations, and the differences affect conditions for protection of alleles. We analyzed conditions for protectedness when pollen is freely exchanged along all demes, while seeds are deposited within the female parents' deme. Protectedness was analyzed at the boundary of fixation and necessary conditions were derived.If no selection among female genotypes exists, then simple average heterozygote superiority in the males can guarantee protection. However, regardless of the form of selection in females, simply doubling the male heterozygote superiority can still guarantee protectedness. Conditions for guaranteeing protectedness with female selection were also derived but are more complicated.The effect of inter-demic variability on protectedness of a biallelic polymorphim is studied for a particular method of reducing the variances of the selection values. It is shown that decreasing the variance of the female selection values also decreases protectedness. This is not necessarily true for the male selection values.  相似文献   

13.
Summary An example of the potential importance of air masses as carriers of aero-allergens from distant source areas is provided. Considerable amount ofBetula pollen is relatively often transported to Fennoscandia before the local birch flowering period, mainly by southeastern air masses from eastern part of central Europe. Although the distance and the transport time in some cases can be extensive, the pollen grains seem to cause allergic reactions among sensitive persons.A comparison between the clinical results andBetula pollen counts from the time before the local flowering season in Stockholm in 1989 is presented.  相似文献   

14.
Asymmetric dispersal is a common trait among populations, often attributed to heterogeneity and stochasticity in both environment and demography. The cumulative effects of population dispersal in space and time have been described with some success by Van Kirk and Lewis’s average dispersal success approximation (Bull Math Biol 59(1): 107–137 1997), but this approximation has been demonstrated to perform poorly when applied to asymmetric dispersal. Here we provide a comparison of different characterizations of dispersal success and demonstrate how to capture the effects of asymmetric dispersal. We apply these different methods to a variety of integrodifference equation population models with asymmetric dispersal, and examine the methods’ effectiveness in approximating key ecological traits of the models, such as the critical patch size and the critical speed of climate change for population persistence.  相似文献   

15.
Summary Fruit and seed set was studied in New Zealand flax (Phormium tenax Phormiaceae) a large monocot that preferentially sets outcrossed seeds. Fruit set was low and in particular situations could result from insufficient pollinator visitation. Observations of pollinator (Meliphagidae) movements showed that birds preferentially visited male phase flowers and predominantly moved pollen within inflorescences of the same plant. More dominant resident birds moved more between plants that subordinate non-resident birds. Combination of results of fluorescent dye carryover with known bird movements allowed predictions of fruit set and seed size that closely approximated observed levels. Resident birds account for almost half the observed foraging bouts but are predicted to be responsible for the vast majority of the viable seeds.  相似文献   

16.
17.
During recent climate warming, some species have expanded their ranges northwards to keep track of climate changes. Evolutionary changes in dispersal have been demonstrated in these expanding populations and here we show that increased dispersal is associated with reduced investment in reproduction in populations of the speckled wood butterfly, Pararge aegeria. Evolutionary changes in flight versus reproduction will affect the pattern and rate of expansion at range boundaries in the future, and understanding these responses will be crucial for predicting the distribution of species in the future as climates continue to warm.  相似文献   

18.
Long-distance dispersal (LDD) of seeds enables alleles, individuals and species of plants to (re)colonize suitable but remote habitats. Banksia attenuata is a long-lived resprouting shrub restricted to dune crests in fire-prone sclerophyll shrublands of the Eneabba sandplain, southwestern Australia. Highly polymorphic microsatellite DNA genetic markers and population assignment tests were employed to identify LDD immigrants among 788 individuals from 27 stands of B. attenuata comprising a metapopulation. Of the 487 (61.8% of the total) individuals unambiguously assigned to a unique source population, 27 (5.5%) were identified as immigrants by assignment to a known population other than that from which they were sampled, while the remaining 460 were assigned to the population from which they were sampled. The distance between source and sink populations for these immigrants ranged from 0.2 to 2.6  km, averaging 1.4  km, and broadly trending in the direction of seasonal winds. These results suggest that B. attenuata has similar long-distance seed dispersal properties as its co-occurring shorter-lived and fire-sensitive congener, B. hookeriana , despite fewer, larger and less mobile seeds. The frequency and distance of LDD for seeds observed in both species (5.5–6.8%) helps explain the persistence of populations on these geographically isolated dunes, where they are subject to local extinction from recurrent fire and severe summer drought, and will remain important under predicted climate change conditions. Analysis also revealed that species richness of the functional group to which B. attenuata belongs was positively correlated with the number of immigrants identified per dune, and such correlation was likely driven by environmental properties of the dunes, particularly water availability.  相似文献   

19.
Austerlitz F  Smouse PE 《Genetics》2001,157(2):851-857
We study the behavior of Phi(ft), a recently introduced estimator of instantaneous pollen flow, which is basically the intraclass correlation of inferred pollen cloud genetic frequencies among a sample of females drawn from a single population. Using standard theories of identity by descent and spatial processes, we show that Phi(ft) depends on the average distance of pollen dispersal (delta) and on the average distance between sampled mothers (x(1)). Provided that mothers are sampled far enough apart (x(1) > 5delta), Phi(ft) becomes independent of x(1) and is then inversely proportional to the square of delta. Provided that this condition is fulfilled, delta is directly estimable from Phi(ft). Even when x(1) < 5delta, estimation can easily be achieved via numerical evaluation. We show that the relation between Phi(ft) and delta is only modestly affected by the shape of the distribution function, a result of importance, since this shape is generally unknown. We also study the impact of adult density within the population on Phi(ft), showing that to achieve the correct inference of delta from Phi(ft) it must be taken into account, but that it has no effect on the distance at which mothers must be sampled.  相似文献   

20.
Recent declines in managed honey bee, Apis mellifera L., colonies have increased interest in the current and potential contribution of wild bee populations to the pollination of agricultural crops. Because wild bees often live in agricultural fields, their population density and contribution to crop pollination may be influenced by farming practices, especially those used to reduce the populations of other insects. We took a census of pollinators of squash and pumpkin at 25 farms in Virginia, West Virginia, and Maryland to see whether pollinator abundance was related to farming practices. The main pollinators were Peponapis pruinosa Say; honey bees, and bumble bees (Bombus spp.). The squash bee was the most abundant pollinator on squash and pumpkin, occurring at 23 of 25 farms in population densities that were commonly several times higher than that of other pollinators. Squash bee density was related to tillage practices: no-tillage farms hosted three times as great a density of squash bees as tilled farms. Pollinator density was not related to pesticide use. Honey bee density on squash and pumpkin was not related to the presence of managed honey bee colonies on farms. Farms with colonies did not have more honey bees per flower than farms that did not keep honey bees, probably reflecting the lack of affinity of honey bees for these crops. Future research should examine the economic impacts of managing farms in ways that promote pollinators, particularly pollinators of crops that are not well served by managed honey bee colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号