首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphatidylserine and cholesterol are two major components of the cytoplasmic leaflet of the plasma membrane. The arrangement of cholesterol is markedly affected by the presence of phosphatidylserine in model membranes. At relatively low mol fractions of cholesterol in phosphatidylserine, compared with other phospholipids, cholesterol crystallites are formed that exhibit both thermotropic phase transitions as well as diffraction of x-rays. In the present study we have observed and characterized a novel thermotropic transition occurring in mixtures of phosphatidylserine and cholesterol. This new transition is observed at 96 degrees C by differential scanning calorimetry (DSC), using a heating scan rate of 2 degrees C/min. Observation of the transition requires that the hydrated lipid mixture be incubated for several days, depending on the temperature of incubation. The rate of formation of the material exhibiting a transition at 96 degrees C is more rapid at higher incubation temperatures. At 37 degrees C the half-time of conversion is approximately 7 days. Concomitant with the appearance of the 96 degrees C peak the previously known transitions of cholesterol, occurring at approximately 38 degrees C and 75 degrees C on heating scans of freshly prepared suspensions, disappear. These two transitions correspond to the polymorphic transition of anhydrous cholesterol and to the dehydration of cholesterol monohydrate, respectively. The loss of the 75 degrees C peak takes a longer time than that of the 38 degrees C peak, indicating that anhydrous cholesterol first gets hydrated to the monohydrate form exhibiting a transition at 75 degrees C and subsequently is converted by additional time of incubation to an altered form of the monohydrate, showing a phase transition at 96 degrees C. After several weeks of incubation at 37 degrees C, only the form with a phase transition at 96 degrees C remains. If such a sample undergoes several successive heating and cooling cycles, the 96 degrees C peak disappears and the 38 degrees C transition reappears on heating. For samples of 1-palmitoyl-2-oleoyl phosphatidylserine or of 1-stearoyl-2-oleoyl phosphatidylserine having mol fractions of cholesterol between 0.4 and 0.7, the 38 degrees C transition that reappears after the melting of the 96 degrees C component generally has the same enthalpy as do freshly prepared samples. This demonstrates that, at least for these samples, the amount of anhydrous cholesterol crystallites formed is indeed a property of the lipid mixture. We have also examined variations in the method of preparation of the sample and find similar behavior in all cases, although there are quantitative differences. The 96 degrees C transition is partially reversible on cooling and reheating. This transition is also scan rate dependent, indicating that it is, at least in part, kinetically determined. The enthalpy of the 96 degrees C transition, after incubation of the sample for 3 weeks at 37 degrees C is dependent on the ratio of cholesterol to 1-palmitoyl-2-oleoyl phosphatidylserine or to 1-stearoyl-2-oleoyl phosphatidylserine, with the enthalpy per mole cholesterol increasing between cholesterol mol fractions of 0.2 and 0.5. Dimyristoyl phosphatidylserine at a 1:1 molar ratio with cholesterol, after incubation at 37 degrees C, exhibits a transition at 95 degrees C that reverses on cooling at 44 degrees C, instead of 60 degrees C, as observed with either 1-palmitoyl-2-oleoyl phosphatidylserine or 1-stearoyl-2-oleoyl phosphatidylserine. These findings along with the essential absence of the 96 degrees C transition in pure cholesterol or in cholesterol/phosphatidylcholine mixtures, indicates that the phospholipid affects the characteristics of the transition, and therefore the cholesterol crystallites must be in direct contact with the phospholipid and are not simply in the form of pure crystals of cholesterol. These observations are particularly important in view of recent observations of the presence of cholesterol crystals in biological systems.  相似文献   

2.
In the present work, we demonstrate that phosphatidylcholine with (16:1)9 acyl chains undergoes polymorphic rearrangements in mixtures with 0.6-0.8 mol fraction cholesterol. Studies were performed using differential scanning calorimetry, X-ray diffraction, cryo-electron microscopy, 31P NMR static powder patterns and 13C MAS/NMR. Mixtures of phosphatidylcholine with (16:1)9 acyl chains and 0.6 mol fraction cholesterol, after being heated to 100 degrees C, can form an ordered array with periodicity 14 nm which may be indicative of a cubic phase. Our results indicate that the formation of highly curved bilayer structures, such as those required for membrane fusion, can occur in mixtures of cholesterol with certain phosphatidylcholines that do not form non-lamellar structures in the absence of cholesterol. We also determine the polymorphic behavior of mixtures of symmetric phosphatidylcholines with cholesterol. Species of phosphatidylcholine with (20:1)11, (22:1)13 or (24:1)15 acyl chains in mixtures with 0.6-0.8 mol fraction cholesterol undergo a transition to the hexagonal phase at temperatures 70-80 degrees C. This is not the case for phosphatidylcholine with (18:1)6 acyl chains which remains in the lamellar phase up to 100 degrees C when mixed with as much as 0.8 mol fraction cholesterol. Thus, the polymorphic behavior of mixtures of phosphatidylcholine and cholesterol is not uncommon and is dependent on the intrinsic curvature of the phospholipid. Crystals of cholesterol can be detected in mixtures of all of these phosphatidylcholines at sufficiently high cholesterol mole fraction. What is unusual about the formation of these crystals in several cases is that cholesterol crystals are present in the monohydrate form in preference to the anhydrous form. Furthermore, after heating to 100 degrees C and recooling, the cholesterol crystals are again observed to be in the monohydrate form, although pure cholesterol crystals require many hours to rehydrate after being heated to 100 degrees C. Both the nature of the acyl chain as well as the mole fraction cholesterol determine whether cholesterol crystals in mixtures with the phospholipids will be in the monohydrate or in the anhydrous form.  相似文献   

3.
Adenoviral dodecahedron is a virus-like particle composed of twelve penton base proteins, derived from the capsid of human adenovirus type 3. Due to the high cell penetration capacity, it was used as a vector for protein, peptide and drug delivery. Two receptors are known to be involved in the endocytic dodecahedron uptake, namely αv integrins and heparan sulfate proteoglycans. Since it has been observed, that dodecahedron efficiently penetrates a wide range of cancer cells, it suggests that other cellular compounds may play a role in the particle endocytosis. To shed some light onto the interactions with membrane lipids and their potential role in dodecahedron entry, we performed a series of experiments including biochemical assays, fluorescence confocal imaging of giant unilamellar vesicles and surface plasmon resonance, which indicated specific preference of the particle to anionic phosphatidylserine. Experiments performed on cholesterol-depleted epithelial cells showed that cholesterol is essential in the endocytic uptake, however a direct interaction was not observed. We believe that the results will allow to better understand the role of lipids in dodecahedron entry and to design more specific dodecahedron-based vectors for drug delivery to cancer cells.  相似文献   

4.
5.
Li XM  Momsen MM  Smaby JM  Brockman HL  Brown RE 《Biochemistry》2001,40(20):5954-5963
The interfacial interactions of cholesterol with sphingomyelins (SMs) containing various homogeneous acyl chains have been investigated by Langmuir film balance approaches. Low in-plane elasticity among the packed lipids was identified as an important physical feature of the cholesterol-sphingomyelin liquid-ordered phase that correlates with detergent resistance, a characteristic property of sphingolipid-sterol rafts. Changes in the in-plane elastic packing, produced by cholesterol, were quantitatively assessed by the surface compressional moduli (C(s)(-1)) of the monolayer isotherms. Of special interest were C(s)(-1) values determined at high surface pressures (>30 mN/m) that mimic the biomembrane situation. To identify structural features that uniquely affect the in-plane elasticity of the sphingomyelin-cholesterol lateral interaction, comparisons were made with phosphatidylcholine (PC)-cholesterol mixtures. Cholesterol markedly decreased the in-plane elasticity of either SM or PC regardless of whether they were fluid or gel phase without cholesterol. The magnitude of the reduction in in-plane elasticity induced by cholesterol was strongly influenced by acyl chain structure and by interfacial functional groups. Liquid-ordered phase formed at lower cholesterol mole fractions when SM's acyl chain was saturated rather than monounsaturated. At similar high cholesterol mole fractions, the in-plane elasticity within SM-cholesterol liquid-ordered phase was significantly lower than that of PC-cholesterol liquid-ordered phase, even when PCs were chain-matched to the SMs. Sphingoid-base functional groups (e.g., amide linkages), which facilitate or strengthen intermolecular hydrogen bonds, appear to be important for forming sphingomyelin-cholesterol, liquid-ordered phases with especially low in-plane elasticity. The combination of structural features that predominates in naturally occurring SMs permits very effective resistance to solubilization by Triton X-100.  相似文献   

6.
Through the analysis of the ESR spectra of spin labels, we investigated the thermotropic properties of dioctadecyl dimethylammonium bromide (DODAB) liposomes, in low and high ionic strength, with different cholesterol contents. The cationic lipid gel phase is stabilized by the presence of ions, the bilayer having a higher gel/fluid transition temperature (Tm) in high ionic strength. As found for low ionic strength [Benatti, C.R., Feitosa, E., Fernandez, R.M., Lamy-Freund, M.T., 2001. Structural and thermal characterization of dioctadecyldimethylammonium bromide dispersions by spin labels. Chem. Phys. Lipids, 111, 93-104], high salt DODAB membranes also present a clear coexistence of the two phases around Tm. Cholesterol solubility in DODAB bilayers seems to be rather low, as the coexistence of DODAB and cholesterol-rich domains can be clearly detected by spin labels, for cholesterol concentration as low as 15 mol% of the total lipid. For lower cholesterol concentrations, the effect of cholesterol in DODAB bilayers is similar to that in phospholipids. For concentrations at or above 45 mol% of cholesterol, spin labels do not detect the coexistence of structurally different domains.  相似文献   

7.
Cholesterol metabolism; cholesterol metabolism in the rat   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

8.
9.
In any lipid bilayer membrane, there is an upper limit on the cholesterol concentration that can be accommodated within the bilayer structure; excess cholesterol will precipitate as crystals of pure cholesterol monohydrate. This cholesterol solubility limit is a well-defined quantity. It is a first-order phase boundary in the phospholipid/cholesterol phase diagram. There are many different solubility limits in the literature, but no clear picture has emerged that can unify the disparate results. We have studied the effects that different sample preparation methods can have on the apparent experimental solubility limit. We find that artifactual demixing of cholesterol can occur during conventional sample preparation and that this demixed cholesterol may produce artifactual cholesterol crystals. Therefore, phospholipid/cholesterol suspensions which are prepared by conventional methods may manifest variable, falsely low cholesterol solubility limits. We have developed two novel preparative methods which are specifically designed to prevent demixing during sample preparation. For detection of the cholesterol crystals, X-ray diffraction has proven to be quantitative and highly sensitive. Experiments based on these methods yield reproducible and precise cholesterol solubility limits: 66 mol% for phosphatidylcholine (PC) bilayers and 51 mol% for phosphatidylethanolamine (PE) bilayers. We present evidence that these are true, equilibrium values. In contrast to the dramatic headgroup effect (PC vs. PE), acyl chain variations had no effect on the cholesterol solubility limit in four different PC/cholesterol mixtures.  相似文献   

10.
A solubility analysis of crystalline ox-liver catalase   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

11.
Despite the fact that a considerable amount of albumin is present in bile, little is known about the effect of albumin on micellar solubility of cholesterol. The effect of albumin on solubility of cholesterol in various micellar bile salt solutions was studied using Millipore filtration after equilibration. In addition, partitioning of cholesterol from micellar solution was studied using a polyethylene disc method. Decrease of the solubility of cholesterol by the presence of albumin was observed only in unconjugated bile salt solution. The lowering effect of albumin on the cholesterol solubility was found to be proportional to the hydrophobicity of bile salt. In contrast, albumin had almost no effect on cholesterol solubility, either in conjugated bile salt solution or in micellar bile salt solution containing phosphatidylcholine. Addition of albumin enhanced the partitioning of cholesterol out of the micelles in sodium chenodeoxycholate solution as a result of decreased micellar solubility and increased the aqueous solubility of cholesterol in the presence of albumin. Therefore, conjugated bile salt and phosphatidylcholine exert a buffering action on the albumin-induced adverse effect on cholesterol solubility, thus stabilising bile against inadvertent precipitation of cholesterol.  相似文献   

12.
We introduce a microscopic model of a lipid with a charged headgroup and flexible hydrophobic tails, a neutral solvent, and counter ions. Short-ranged interactions between hydrophilic and hydrophobic moieties are included as are the Coulomb interactions between charges. Further, we include a short-ranged interaction between charges and neutral solvent, which mimics the short-ranged, thermally averaged interaction between charges and water dipoles. We show that the model of the uncharged lipid displays the usual lyotropic phases as a function of the relative volume fraction of the headgroup. Choosing model parameters appropriate to dioleoylphosphatidylethanolamine in water, we obtain phase behavior that agrees well with experiment. Finally we choose a solvent concentration and temperature at which the uncharged lipid exhibits an inverted hexagonal phase and turn on the headgroup charge. The lipid system makes a transition from the inverted hexagonal to the lamellar phase, which is related to the increased waters of hydration correlated with the increased headgroup charge via the charge-solvent interaction. The polymorphism displayed upon variation of pH mimics that of the behavior of phosphatidylserine.  相似文献   

13.
14.
We have examined the association of Ca2+ with phosphatidylserine/cholesterol and phosphatidylserine/ dimyristoylphosphatidylcholine mixed monolayers using a surface radiocounting technique. No Ca2+ association with pure monolayers of the uncharged molecules was observed. The Ca2+/phosphatidylserine surface ratio was approximately 1:2 in expanded monolayers of the pure anionic lipid and in phosphatidylserine/phosphatidylcholine mixtures. An increase in surface-associated Ca2+ to a number ratio of 1:1 was observed in phosphatidylserine/cholesterol films when the mole fraction of cholesterol was raised to 0.5 and above and the phospholipid number density held constant. We interpret these findings as a prevention of intermolecular salt formation by the sterol. Further support is provided by particle electrophoresis  相似文献   

15.
16.
Wang MM  Olsher M  Sugár IP  Chong PL 《Biochemistry》2004,43(8):2159-2166
Here, the interplay between membrane cholesterol lateral organization and the activity of membrane surface-acting enzymes was addressed using soil bacteria cholesterol oxidase (COD) as a model. Specifically, the effect of the membrane cholesterol mole fraction on the initial rate of cholesterol oxidation catalyzed by COD was investigated at 37 degrees C using cholesterol/1-palmitoyl-2-oleoyl-l-alpha-phosphatidylcholine (POPC) large unilamellar vesicles (LUVs, approximately 800 nm in diameter). In the three concentration ranges examined (18.8-21.2, 23.6-26.3, and 32.2-34.5 mol % cholesterol), the initial activity of COD changed with cholesterol mole fraction in a biphasic manner, exhibiting a local maximum at 19.7, 25.0, and 33.4 mol %. Within the experimental errors, these mole fractions agree with the critical cholesterol mole fractions (C(r)) (20.0, 25.0, and 33.3) theoretically predicted for maximal superlattice formation. The activity variation with cholesterol content was correlated well with the area of regular distribution (A(reg)) in the plane of the membrane as determined by nystatin fluorescence. A similar biphasic change in COD activity was detected at the critical sterol mole fraction 20 mol % in dehydroergosterol (DHE)/POPC LUVs (approximately 168 nm in diameter). These results indicate that the activity of COD is regulated by the extent of sterol superlattice for both sterols (DHE and cholesterol) and for a wide range of vesicle sizes (approximately 168-800 nm). The present work on COD and the previous study on phospholipase A(2) (sPLA(2)) [Liu and Chong (1999) Biochemistry 38, 3867-3873] suggest that the activities of some surface-acting enzymes may be regulated by the extent of sterol superlattice in the membrane in a substrate-dependent manner. When the substrate is a sterol, as it is with COD, the enzyme activity reaches a local maximum at C(r). When phospholipid is the substrate, the minimum activity is at C(r), as is the case with sPLA(2). Both phenomena are in accordance with the sterol superlattice model and manifest the functional importance of membrane cholesterol content.  相似文献   

17.
The solubility of cholesterol and its exchange between membranes   总被引:1,自引:0,他引:1  
It has been proposed that exchange between membrane cholesterol pools occurs by desorption of molecules into the aqueous environment rather than by formation of a transitory collision complex between the membranes. The rate of exchange is likely to be determined by the rate of dissociation of cholesterol from the membrane bilayer and by the concentration of cholesterol monomers or aggregates of cholesterol molecules in solution. The aim of this study was to measure the effects of agents known to increase cholesterol exchange rates on cholesterol solubility, critical micellar concentration and on the activation energy of exchange. A comparison was also made with regard to these parameters, of the exchange of cholesterol to that of 4-cholesten-3-one, another steroid which exchanges more rapidly than cholesterol. Acetone and dimethylsulphoxide increased cholesterol exchange between liposomes and erythrocytes, but only modestly increased the apparent solubility of cholesterol in saline and had no effect on the activation energy of the exchange process. However, acetone and dimethylsulphoxide increased the critical micellar concentration of the cholesterol 3-fold, although tetraethylammonium iodide, which had a smaller effect on exchange, did not. 4-Cholesten-3-one had a lower solubility and critical micellar concentration than that of cholesterol, but had the same activation energy for exchange. It is concluded that the apparent solubility of steroid aggregates are unlikely to determine the rate of exchange, but that agents which substantially increase exchange also increase the critical micellar concentration. The low critical micellar concentration of cholestenone suggests that the actual monomer concentration in an exchange system is low and that the rate of dissociation of the molecules from the liposomes must determine the exchange rate. This is not reflected in the activation energy measurements since these are a composite of all the elements of the exchange process.  相似文献   

18.
To study the involvement of cholesterol esters in myelination and demyelination, we determined the concentration of free cholesterol and cholesterol esters and the activity of hydrolytic cholesterol esterase (sterol ester hydrolase; EC 3.1.1.13) in hen sciatic nerve during Wallerian degeneration. A progressive increase in the ratio of cholesterol ester to free cholesterol was observed in the degenerating nerve at 8, 16 and 32 days after nerve section. Hydrolytic cholesterol esterase activity decreased progressively in the degenerating nerves at the same time. In addition we measured the ratio of RNA to DNA, and the activity of the NADP+-dependent isocitrate dehydrogenase [L8-isocitrate: NADP oxidoreductase (decarboxylating); EC 1.1.1.42] at 8, 16 and 32 days after nerve section. The RNA to DNA ratios decreased progressively in the degenerating nerves. NADP+-dependent isocitrate dehydrogenase increased in activity after nerve section, reaching a peak at 16 days.  相似文献   

19.
We have examined the association of Ca2+ with phosphatidylserine/cholesterol and phosphatidylserine/dimyristoylphosphatidylcholine mixed monolayers using a surface radiocounting technique. No Ca2+ association with pure monolayers of the uncharged molecules was observed. The Ca2+/phosphatidylserine surface ratio was approximately 1:2 in expanded monolayers of the pure anionic lipid and in phosphatidylserine/phosphatidylcholine mixtures. An increase in surface-associated Ca2+ to a number ratio of 1:1 was observed in phosphatidylserine/cholesterol films when the mole fraction of cholesterol was raised to 0.5 and above and the phospholipid number density held constant. We interpret these findings as a prevention of intermolecular salt formation by the sterol. Further support is provided by particle electrophoresis.  相似文献   

20.
Activated T lymphocytes release vesicles, termed exosomes, enriched in cholesterol and exposing phosphatidylserine (PS) at their outer membrane leaflet. Although CD4(+) activated T lymphocytes infiltrate an atherosclerotic plaque, the effects of T cell exosomes on the atheroma-associated cells are not known. We report here that exosomes isolated from the supernatants of activated human CD4(+) T cells enhance cholesterol accumulation in cultured human monocytes and THP-1 cells. Lipid droplets found in the cytosol of exosome-treated monocytes contained both cholesterol ester and free cholesterol. Anti-phosphatidylserine receptor antibodies recognized surface protein on the monocyte plasma membrane and prevented exosome-induced cholesterol accumulation, indicating that exosome internalization is mediated via endogenous phosphatidylserine receptor. The production of proinflammatory cytokine TNF-alpha enhanced in parallel with monocyte cholesterol accumulation. Our data strongly indicate that exosomes released by activated T cells may represent a powerful, previously unknown, atherogenic factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号