首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R D Snyder 《Mutation research》1984,131(3-4):163-172
The effects of hydroxyurea (HU) on the DNA-excision repair process in human cells has been systematically examined. It is demonstrated that HU induces DNA single-strand break accumulation in a dose-dependent fashion in ultraviolet-irradiated and MMS-treated confluent but not log-phase fibroblasts and that these breaks are clearly the consequence of the inhibition by HU of the enzyme, ribonucleotide reductase. The breaks form rapidly, are stable for at least 10 h and largely disappear by 20 h. The production of these DNA-strand breaks is antagonized by a combined treatment of 10 microM deoxyadenosine, deoxycytidine and deoxyguanosine whereas thymidine potentiates strand-break formation at low HU concentrations. It is also confirmed that HU, while inhibiting replicative synthesis has no apparent inhibitory effect on unscheduled DNA synthesis (UDS) although the increased uptake of labeled DNA precursors into HU-treated cells makes it difficult to assess the actual effects on the repair-synthetic process. Analysis of the effects of HU on deoxynucleoside triphosphate pool levels and the demonstration of the failure of the HU block to replicative synthesis to be reversed by high (1 mM) concentrations of added deoxynucleosides lend support to the notion of compartmentalized dNTP pools for repair and replication.  相似文献   

2.
Inhibition of the gap-filling, polymerizing step of excision repair by 1-β-D-arabinofuranosylcytosine (ara-C) after irradiation with ultraviolet light in human diploid fibroblasts resulted in the formation of persistent DNA strand breaks in G1, G2, and plateau phase cells, but not in S phase cells. Addition of hydroxyurea to ara-C resulted in partial inhibition of repair in S phase cells. These observations can be explained either in terms of changing roles in repair for different DNA polymerases throughout the cell cycle or by the presence of a pool of deoxycytidine nucleotides during S phase equivalent to an external source of deoxycytidine at 50 μM concentration. A similar concentration dependence on ara-C was observed for inhibition of repair in normal human, xeroderma pigmentosum (XP) variant, and Cockayne's syndrome cells. Ara-C produced a similar number of breaks in normal and Cockayne's syndrome cells but slightly more in XP variant cells. Exonuclease III and S1 nuclease independently both degraded about 50% of the 3H-thymidine incorporated into repaired regions in the presence of ara-C. Sequential digestion with both enzymes degraded nearly 90% of the repaired regions. These observations can be explained if excision repair proceeds by displacing the damaged strand so that both the 3H-labeled patch and the damaged region are still ligated to high molecular weight DNA and compete for the same complementary strand during in vitro incubation with the nucleases. The amount of 3H-thymidine incorporated in DNA by repair decreased with increasing concentrations of ara-C and hydroxyurea, suggesting that the incomplete patches became shorter under these conditions. Extrapolation of the digestion kinetics with exonuclease III permits an estimate of the normal patch size of about 100 nucleotides, consistent with previous estimates.  相似文献   

3.
We have investigated the effects of fluctuations in deoxynucleoside triphosphate (dNTP) pool size on DNA repair and, conversely, the effect of DNA repair on dNTP pool size. In confluent normal human skin fibroblasts, dNTP pool size was quantitated by the formation of [3H]TTP from [3H]thymidine; DNA repair was examined by repair replication in cultures irradiated with UV light. As defined by HPLC analysis, the [3H]TTP pool was formed within 30 min of the addition of [3H]thymidine and remained relatively constant for the next 6 h. Addition of 2–10 mM hydroxyurea (HU) caused a gradual 2–4-fold increase in the [3H]TTP pool as HU inhibited DNA synthesis but not TTP production. No difference was seen between the [3H]TTP pool size in cells exposed to 20 M/m2 and unrradiated controls, although DNA-repair synthesis was readily quantitated in the former. This result was observed even though the repair replication protocol caused an 8–10-fold reduction in the size of the [3H]TTP pool relative to the initial studies. In the UV excision-repair studies the precense of hydroxyurea did not alter the specific activity of [3H] thymidine 5'-monophospahte incorporated into parental DNA due to repaier replication. These results suggest that fluctuations in the deoxynucleoside triphosphate pools do not limit the extent of excision-repair sythesis in human cells and demonstrate that DNA nucleotide excision-repair synthesis does not significantly diminish the size of the [3H]TTP pool.  相似文献   

4.
The tetracyclic diterpenoid, aphidicolin, is an effective inhibitor of DNA repair in human cells following ultraviolet irradiation. This inhibition is very efficient in confluent resting cells but not in rapidly cycling cells as measured by (1) analysis of DNA single-strand breaks by alkaline sucrose sedimentation, (2) chromatographic analysis of pyrimidine-dimer removal, and (3) repair replication using CsCl density centrifugation. The inhibition is reversed by deoxycytidine or thymidine but not by deoxyadenosine or deoxyguanosine during the repair period. The data suggest that differences in deoxynucleoside triphosphate pools between cycling and confluent resting cells determine the different efficacies of the agent in these two situations.  相似文献   

5.
We have investigated the effects of fluctuations in deoxynucleoside triphosphate (dNTP) pool size on DNA repair and, conversely, the effect of DNA repair on dNTP pool size. In confluent normal human skin fibroblasts, dNTP pool size was quantitated by the formation of [3H]TTP from [3H]thymidine; DNA repair was examined by repair replication in cultures irradiated with UV light. As defined by HPLC analysis, the [3H]TTP pool was formed within 30 min of the addition of [3H]thymidine and remained relatively constant for the next 6 h. Addition of 2-10 mM hydroxyurea (HU) caused a gradual 2-4-fold increase in the [3H]TTP pool as HU inhibited DNA synthesis but not TTP production. No difference was seen between the [3H]TTP pool size in cells exposed to 20 J/m2 and unirradiated controls, although DNA-repair synthesis was readily quantitated in the former. This result was observed even though the repair replication protocol caused an 8-10-fold reduction in the size of the [3H]TTP pool relative to the initial studies. In the UV excision-repair studies the presence of hydroxyurea did not alter the specific activity of [3H] thymidine 5'-monophosphate incorporated into parental DNA due to repair replication. These results suggest that fluctuations in the deoxynucleoside triphosphate pools do not limit the extent of excision-repair synthesis in human cells and demonstrate that DNA nucleotide excision-repair synthesis does not significantly diminish the size of the [3H]TTP pool.  相似文献   

6.
Hydroxyurea (HU) causes inhibition of DNA synthesis in regenerating rat liver due to an inhibition of the ribonucleotide reductase. We studied the consequences of a continuous HU infusion for deoxyribonucleoside triphosphate (dNTP) pools in the liver after partial hepatectomy and tried to modify imbalances by application of deoxyribonucleosides in vivo. In normal liver, an intracellular concentration of 0.16, 0.84, 0.33 and 0.27 pmol/micrograms DNA was observed for dATP, dCTP, dGTP and dTTP, respectively. In regenerating liver the dNTP pools show minor changes until 18 h after partial hepatectomy. During and after a continuous HU infusion 14--24 h after partial hepatectomy, the intracellular dNTP pools change considerably. At 19.5 h after partial hepatectomy, 5.5 h after the start of HU infusion, and at 25 h after partial hepatectomy, 1 h after termination of HU infusion, the dTTP pool was more than 10-times, and the dGTP pool about 2-times higher than in controls, while the dATP and dCTP pools remain relatively unchanged. Simultaneous infusion of HU and deoxythymidine (dThd) 14--25 h after partial hepatectomy results in a further increase of the dTTP pool during and after HU infusion. Administration of deoxycytidine (dCyd) leads to a moderate increase of the dCTP pool and a weak decrease of the dTTP pool during HU infusion. The combined application of dCyd and dThd after HU infusion had similar effects on dNTP pools as observed with dThd alone. These results show that intracellular pools of dNTPs in hepatocytes can be altered by exogenous factors in a controlled pattern. This system can be used as a model for studying the implications of induced dNTP pool dysbalances for the initiation of liver carcinogenesis by mutagenic chemicals.  相似文献   

7.
We have developed a technique whereby 3-h pulses of arabinofuranosyl cytosine (ara-C) and hydroxyurea (HU) are used to analyze the kinetics of repair with time after ultraviolet irradiation in human fibroblasts. We demonstrate that this technique offers a significant improvement over existing repair assays in its ability to visualize between 57 and 100% of all sites undergoing repair in a given period of time. In addition, kinetic analyses of repair are more easily made and yield more information than techniques such as repair replication or unscheduled DNA synthesis. We have also examined the nature of the inhibition event by ara-C and have determined that repair breaks accumulate in the presence of ara-C and HU only up to a certain time beyond which no further breaks appear. The time needed to reach this saturation point depends on the number of sites undergoing repair during the treatment time. This observation is discussed with respect to a possible mechanism of excision repair inhibition by ara-C and HU.  相似文献   

8.
The role of UV-induced DNA lesions and their repair in the formation of chromosomal aberrations in the xrs mutant cell lines xrs 5 and xrs 6 and their wild-type counterpart, CHO-K1 cells, were studied. The extent of induction of DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs) due to UV irradiation in the presence or absence of 1-beta-D-arabinofuranosylcytosine (ara-C) and hydroxyurea (HU) was determined using the alkaline and neutral elution methods. Results of these experiments were compared with the frequencies of induced chromosomal aberrations in UV-irradiated G1 cells treated under similar conditions. Xrs 6 cells showed a defect in their ability to perform the incision step of nucleotide repair after UV irradiation. Accumulation of breaks 2 h after UV irradiation in xrs 6 cells in the presence of HU and ara-C remained at the level of incision breaks estimated after 20 min, which was about 35% of that found in wild-type CHO-K1 cells. In UV-irradiated CHO-K1 and xrs 5 cells, more incision breaks were present after 2 h compared with 20 min post-treatment with ara-C, a further increase was evident when HU was added to the combined treatment. The level of incision breaks induced under these conditions in xrs 5 was about 80% of that observed in CHO-K1 cells. UV irradiation itself did not induce any detectable DNA strand breaks. Accumulation of SSBs in UV-irradiated cells post-treated with ara-C and HU coincides with the increase in the frequency of chromosomal aberrations. These data suggest that accumulated SSBs when converted to DSBs in G1 give rise to chromosome-type aberrations, whereas strand breaks persisting until S-phase result in chromatid-type aberrations. Xrs 6 appeared to be the first ionizing-radiation-sensitive mutant with a partial defect in the incision step of DNA repair of UV-induced damage.  相似文献   

9.
《Mutation Research Letters》1991,262(3):151-157
The extent of DNA-excision repair was determined in human fibroblast strains from clinically normal and xeroderma pigmentosum complementation group A (XP-A) donors after irradiation with 254-nm ultraviolet (UV) light. Repair was monitored by the use of 1-β-d-arabinofuranosylcytosine (araC), a potent inhibitor of DNA synthesis, and alkaline sucrose velocity sedimentation to quantitate DNA single-strand breaks. In this approach, the number of araC-accumulated breaks in post-UV incubated cultures becomes a measure of the efficiency of a particular strain to perform long-patch excision repair. The maximal rate of removal of araC-detectable DNA lesions equalled ∼ 1.8 sites/108 dalton/h in the normal strains (GM38, GM43), while it was more than 10-fold lower in both XP-A strains (XP4LO, XP12BE) examined. In normal fibroblasts the number of lesions removed during the first 4 h after irradiation saturated at ∼ 10 J/m2. In contrast, the residual amount of repair in the excision-deficient cells increased as a linear function of UV fluence over a range 5–120 J/m2. Thus we conclude that the repair of araC-detectable UV photoproducts in XP group A fibroblasts is limited by availability of damaged regions in the genome to repair complexes.  相似文献   

10.
A method was devised for extracting, from cells of Escherichia coli K12, DNA molecules which sedimented on neutral sucrose gradients as would be expected for free DNA molecules approaching the genome in size. Gamma ray irradiation of oxygenated cells produced 0.20 DNA double-strand breaks per kilorad per 109 daltons. Incubation after irradiation of cells grown in K medium, with four to five genomes per cell, showed repair of the double-strand breaks. No repair of double-strand breaks was found in cells grown in aspartate medium, with only 1.3 genomes per cell, although DNA single-strand breaks were still efficiently repaired. Cells which were recA? or recA?recB? also did not repair double-strand breaks. These results suggest that repair of DNA double-strand breaks may occur by a recombinational event involving another DNA double helix with the same base sequence.  相似文献   

11.
Summary The formation and repair of double-strand breaks induced in DNA by MMS was studied in haploid wild type and MMS-sensitive rad6 mutant strains of Saccharomyces cerevisiae with the use of the neutral and alkaline sucrose sedimentation technique. A similar decrease in average molecular weight of double-stranded DNA from 5–6x108 to 1–0.7x108 daltons was observed following treatment with 0.5% MMS in wild type and mutant strains. Incubation of cells after MMS treatment in a fresh drug-free growing medium resulted in repair of double-strand breaks in the wild type strain, but only in the exponential phase of growth. No repair of double-strand breaks was found when cells of the wild type strain were synchronized in G-1 phase by treatment with factor, although DNA single-strand breaks were still efficiently repaired. Mutant rad6 which has a very low ability to repair MMS-induced single-strand breaks, did not repair double-strand breaks regardless of the phase of growth.These results suggest that (1) repair of double-strand breaks requires the ability for single-strand breaks repair, (2) rejoining of double-strand breaks requires the availability of two homologous DNA molecules, this strongly supports the recombinational model of DNA repair.  相似文献   

12.
Aphidicolin, a mycotoxin that inhibits eucaryotic DNA polymerase alpha, blocked the growth of Toxoplasma gondii in confluent cultured human fibroblasts. Aphidicolin immediately inhibited DNA synthesis by T. gondii while it had a delayed and less dramatic effect on RNA synthesis. A mutant of T. gondii resistant to aphidicolin was isolated with the aid of mutagenesis by ethylnitrosourea. Parasite growth measured three days after drug treatment and parasite DNA synthesis measured immediately after drug treatment were, respectively, five- and four-fold more resistant to aphidicolin in the mutant as compared with the wild type parasite. The mutant had a three-fold greater capacity than the wild type to incorporate uracil into its deoxycytidine triphosphate pool. This increased deoxycytidine triphosphate pool is the probable explanation for the mutant's resistance because this deoxynucleotide is known, in mammalian cells, to reverse the inhibition of DNA synthesis by aphidicolin in a competitive manner.  相似文献   

13.
In confluent, stationary phase cells, an aphidicolin-sensitive DNA polymerase mediates UV-induced excision repair, but the situation in growing cells is still controversial. The sensitivity of repair synthesis to aphidicolin, an inhibitor of DNA polymerases alpha and delta, was determined in growth phase and confluent normal human fibroblasts (AG1518) using several techniques. Repair synthesis in confluent cells was always inhibited by aphidicolin, no matter which measurement technique was used. However, the inhibition of repair synthesis in growth-phase cells by aphidicolin was only detectable when techniques unaffected by changes in nucleotide metabolism were used. We conclude that UV-induced repair synthesis in growing cells is actually aphidicolin sensitive, but that this inhibition can be obscured by changes in nucleotide metabolism. Employing butylphenyl-deoxyguanosine triphosphate, a potent inhibitor of polymerase alpha and a weak inhibitor of delta, we have obtained evidence that polymerase delta is responsible for repair synthesis in growth-phase cells following UV irradiation.  相似文献   

14.
Crosslink repair of mitomycin C-induced interstrand crosslinks was studied in exponentially growing and confluent normal human, transformed WI38CT-1, Fanconi's anemia (FA) and xeroderma pigmentosum (XP) group-A fibroblasts by the assay methods of alkaline sucrose centrifugation, hydroxyapatite column chromatography and S1-nuclease digestion. These three methods demonstrated unequivocally that crosslinking occurred at a rate of 0.13 crosslinks/108 Da per μg per ml mitomycin C ( 10 μg/ml) and the first half-excision of crosslinks followed the rapid first-order kinetics of 2–3 h half-life in exponentially-growing normal, WI38CT-1 and XP group-A cells. However, the first half-excision was completely defective in three out of the four FA strains tested and severely retarded in an FA strain. These results strongly support our previous observations in different strains of normal human, FA and XP group-A cells. An important new addition is that confluent, otherwise proficient, normal and XP cells almost completely lost the ability of the first, rapid half-excision of mitomycin C crosslinks in their DNA. This probably suggests that the enzyme or regulatory factor responsible for the half-excision, which differs from that for nucleotide excision repair, present constitutively in confluent cells, may be induced or activated only in the cycling cells. However, its relation to a defective FA factor is not clear at present.  相似文献   

15.
DNA repair synthesis in 8 explant-outgrowth cultures of epidermal cells isolated from variant and complementation groups A and E of xeroderma pigmentosum (XP) was examined by measuring unscheduled DNA synthesis (UDS) on autoradiographs. The extents of UDS in XP epidermal cells were compared with those in normal epidermal cells obtained from 26 subjects. In both normal and XP epidermal cells, UDS was induced dose-dependently by radiation at doses of 5-20 J/m2. XP epidermal cells showed various extents of defect in DNA repair depending on the type of XP. In XP-A, the extent of UDS in epidermal cells was very low, being seen in only 3-10% of the normal epidermal cells. But epidermal cells isolated from XP-E and XP-variants exhibited relatively high levels of residual DNA repair; i.e., 69-84% of the control in XP-E and 67-85% in XP-variant. The extents of UDS in XP epidermal cells were almost the same as those in fibroblastic cells isolated from the same specimens.  相似文献   

16.
Treatment of normal and xeroderma pigmentosum complementation group E skin fibroblasts with 8-methoxypsoralen plus repeated doses of near-ultraviolet radiation elicited a marked increase in DNA strand breakage during a subsequent incubation. No such induction of breaks was noted with cells from xeroderma pigmentosum groups A and D. The results suggest that the gene product which is deficient in xeroderma pigmentosum group E cells is involved in a critical step of DNA repair of far-ultraviolet photoproducts but not so in the repair of psoralen cross-links.  相似文献   

17.
The ability of polypeptides consisted of aspartic and glutamic acids to inhibit the repair and to promote the formation of unrepaired double-strand DNA breaks and chromosomal aberrations in gamma-ray induced Chinese hamster cells was shown. A complete inhibition of the double-strand DNA breaks repair was observed at the concentrations of 20 mu M/l (polyglutamic acid with molecular weight 2000-15,000 daltons) and 100 mu M/l (aspartylglutamic acid with molecular weight 1500-4500 daltons). Both polypeptides were low toxic at the given concentrations.  相似文献   

18.
DNA precursor synthesis can be blocked specifically by the drug hydroxyurea (HU) which has therefore been used for anticancer therapy. High concentrations of HU, however, affect other processes than DNA synthesis; nevertheless, most studies on the biological action of HU have been made with concentrations at least one order of magnitude higher than those needed for cell-growth inhibition. In this study we characterized the effects of low concentrations of HU (i.e. concentrations leading to 50% inhibition of cell growth in 72 h) on cell cycle kinetics and nucleotide pools in mouse S49 cells with various defined alterations in DNA precursor synthesis. The effect of 50 microM HU on deoxyribonucleoside triphosphate pools was a 2-3-fold decrease in the dATP and dGTP pools, with no change in the dCTP pool and a certain increase in the dTTP pool. Addition of deoxycytidine or thymidine led to a partial reversal of the growth inhibition and cell-cycle perturbation caused by HU, and was accompanied by an increased level of the deoxyribonucleoside triphosphates. Addition of purine deoxyribonucleoside gave no protection, indicating that salvage of these nucleosides could not supply precursors for DNA synthesis in T-lymphoma cells. We observed a higher sensitivity to HU of cells lacking purine nucleoside phosphorylase or with a ribonucleotide reductase with altered allosteric regulation. Cells lacking thymidine kinase or deoxycytidine kinase were just as sensitive as wild-type cells.  相似文献   

19.
20.
IN normal human cells DNA which has been damaged by ultraviolet radiation is repaired by excision of thymidine dimers and by repair replication. Patients suffering from xeroderma pigmentosum have a hereditary defect of the excision step and therefore their cells repair ultraviolet-induced lesions in their DNA less efficiently than do normal cells1–4. An analogous situation has been well characterized in bacteria5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号