首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Herpes simplex virus type 1 DNA replication occurs in nuclear domains termed replication compartments, which are areas of viral single-stranded DNA-binding protein (UL29) localization (M.P. Quinlan, L. B. Chen, and D. M. Knipe, Cell 36:857-868). In the presence of herpesvirus-specific polymerase inhibitors, UL29 localizes to punctate nuclear foci called prereplicative sites. Using versions of the helicase-primase complex proteins containing short peptide epitopes which can be detected in an immunofluorescence assay, we have found that the helicase-primase complex localizes to prereplicative sites and replication compartments. To determine if prereplicative site formation is dependent upon these and other essential viral replication proteins, we have studied UL29 localization in cells infected with replication-defective viruses. Cells infected with viruses that fail to express one of the three helicase-primase subunits or the origin-binding protein show a diffuse nuclear staining for UL29. However, in the presence of polymerase inhibitors, mutant-infected cells contain UL29 in prereplicative sites. Replication-defective viruses containing subtle mutations in the helicase or origin-binding proteins behaved identically to their null mutant counterparts. In contrast, cells infected with viral mutants which fail to express the polymerase protein contain prereplicative sites in the absence and presence of polymerase inhibitors. We propose that active viral polymerase prevents the formation of prereplicative sites. Models of the requirement of essential viral replication proteins in the assembly of prereplicative sites are presented.  相似文献   

3.
Temperature-sensitive mutants of herpes simplex virus type 1 representing eight DNA-negative complementation groups were grouped into the following three categories based on the viral DNA synthesis patterns after shift-up from the permissive to the nonpermissive temperature and after shift-down from the nonpermissive to the permissive temperature in the presence and absence of inhibitors of RNA and protein synthesis. (i) Viral DNA synthesis was inhibited after shift-up in cells infected with tsB, tsH, and tsJ. After shift-down, tsB- and tsH-infected cells synthesized viral DNA in the absence of de novo RNA and protein synthesis whereas tsJ-infected cells synthesized no viral DNA in the absence of protein synthesis. The B, H, and J proteins appear to be continuously required for the synthesis of viral DNA. (ii) Viral DNA synthesis continued after shift-up in cells infected with tsD and tsK whereas no viral DNA was synthesized after shift-down in the absence of RNA and protein synthesis. Mutants tsD and tsK appear to be defective in early regulatory functions. (iii) Cells infected with tsL, tsS, and tsU synthesized viral DNA after shift-up and after shift-down in the absence of RNA and protein synthesis. The functions of the L, S, and U proteins cannot yet be determined.  相似文献   

4.
An isolated nuclei system prepared from herpes type II- and mock-infected human embryonic lung cells is able to synthesize cellular and viral DNA in the same proportion as in vivo at various times after infection. Incorporation of (3H)TTP in the in vitro reaction mixture requires Mg2 plus and ATP. Overall in vitro DNA synthesis in nuclei isolated from herpes-infected cells is semiconservative as demonstrated by bromodeoxyuridine-substituted DNA density-transfer experiments, but exhibits a significant fraction of repair-type replication. Relative rates of total DNA synthesis in vitro and in vivo are the same any time after infection. Isolated nuclei synthesize cell and viral DNA for a length of time and at a rate dependent upon the incubation temperature, but there are differences in the length of time of linear in vitro DNA synthesis between herpes- and mock-infected cells. The temperature optima for in vitro DNA synthesis differ significantly for herpes- and mock-infected cells, and are the same for cells abortively infected with herpes type II as for mock-infected cells.  相似文献   

5.
Herpes simplex type 1 (HSV)-infected Vero cells can be permeabilized by a combination of hypotonic shock and a mild emulsifier, gum arabic. Permeabilized cells will incorporate triphosphate precursors into viral and host DNA in vitro in ratios similar to those seen in vivo. This reaction is ATP-dependent and is shown to be replicative by the single strand density shift of DNA synthesized in the presence of BrdUTP. The product is heterogeneous in size, and contains a significant proportion of rapidly sedimenting forms and of unit size (55S) viral DNA. The presence of polyamines and EGTA (a specific chelator of Ca2+ ions) in the labeling medium is shown to be necessary to maintain the integrity of the replicating DNA. The average size of newly synthesized single strands, however, is smaller than seen in vivo. The reaction is sensitive to phosphonoacetic acid added at the time of labeling, at concentrations which inhibit in vivo synthesis only after one hour of pre-exposure. These properties make permeabilized cell monolayers an attractive system for the study of HSV DNA replication.  相似文献   

6.
Herpes simplex virus (HSV)-infected cells produce not only infectious nucleocapsid-containing virions but also virion-related noninfectious light particles (L-particles) composed of the envelope and tegument components of the virus particle (J. F. Szilágyi and C. Cunningham, J. Gen. Virol. 62:661-668, 1991). We show that BHK and MeWO cells infected either with wild-type (WT) HSV type 1 (HSV-1) in the presence of viral DNA replication inhibitors (cytosine-beta-D-arabinofuranoside, phosphonoacetic acid, and acycloguanosine) or with a viral DNA replication-defective mutant of HSV-1 (ambUL8) synthesize a new type of virus-related particle that is morphologically similar to an L-particle but differs in its relative protein composition. These novel particles we term pre-viral DNA replication enveloped particles (PREPs). The numbers of PREPs released into the culture medium were of the same order as those of L-particles from control cultures. The particle/PFU ratios of different PREP stocks ranged from 6 x 10(5) to 3.8 x 10(8), compared with ratios of 3 x 10(3) to 1 x 10(4) for WT L-particle stocks. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblot analyses revealed that true late proteins, such as 273K (VP1-2), 82/81K (VP13/14), and gC (VP8), were greatly reduced or absent in PREPs and that gD (VP17) and 40K proteins were also underrepresented. In contrast, the amounts of proteins 175K (VP4; IE3), 92/91K (VP11/12), 38K (VP22), and gE (with BHK cells) were increased. The actual protein composition of PREPs showed some cell line-dependent differences, particularly in the amount of gE. PREPs were biologically competent and delivered functional Vmw65 (VP16; alpha TIF) to target cells, but the efficiency of complementation of the HSV-1 (strain 17) mutant in1814 was 10 to 30% of that of WT L-particles.  相似文献   

7.
Treatment of herpes simplex virus type 1 (HSV-1)-infected human embryo lung (HEL) cells with phosphonoacetic acid (PAA) resulted in complete inhibition of HSV DNA replication. DNA was extracted from PAA-treated HEL cells infected with HSV-1 and centrifuged in a neutral CsCl density gradient. The HSV DNA sequences in the nuclei of PAA treated cells at 24 hr post infection banded at the same density as free HSV DNA (1.725 g/cm3), but a significant amount of viral DNA sequences were detected in the regions of cell DNA (1.700 g/cm3) as well as in the intermediate fractions as determined by hybridization with 3H HSV complementary RNA. The viral DNA sequences of lower deisntiy did not change in density by recentrifugation in a CsCl density gradient, but did change to the density of free viral DNA after treatment with EcoR1 restriction endonuclease. When the DNA from the nuclei of PAA treated cells was analyzed in an alkaline glycerol gradient, more than 95% of the viral DNA sequences were found in the free viral DNA fractions. Since the viral and cellular hybrid DNA represented approximately 33% of the total viral DNA sequences, it is concluded that some of the HSV DNA sequences in PAA treated, infected cells are associated with cell DNA by alkali-labile bonds.  相似文献   

8.
The incorporation of [32P]Pi and [3H]inositol into the inositol lipids of baby-hamster kidney cells was studied in herpes-simplex-virus-type-1(HSV-1)-infected and mock-infected cells. The infection was conducted during incorporation of, as well as after prelabelling with, the precursors. These methods were used in order to study both synthesis de novo of, and steady-state changes in, the phosphoinositides. Both with infection during labelling, and after prelabelling, we found increased [32P]- and [3H]-phosphatidylinositol 4,5-bisphosphate (PIP2) and decreased [32P]- and [3H]-phosphatidylinositol 4-monophosphate in infected as compared with mock-infected cells, whereas no effect was observed on phosphatidylinositol. This altered inositol-lipid metabolism was (at least in the case of PIP2) not present until 3-6 h after infection and remained stable, or increased slightly, throughout the infection period. Polyphosphoinositide metabolism constitutes an important step in signal processing in many forms of cellular stimulation, and the results obtained suggest that HSV-1 infection may induce such events in our cell system.  相似文献   

9.
We have used in situ hybridization at the ultrastructural level to localize non-encapsidated and encapsidated herpes simplex virus type 1 (HSV-1) genomes in nuclei of infected rabbit fibroblasts. A biotinylated cloned subgenomic HSV DNA fragment was used as hybridization probe. The probe hybridized to the viral DNA accessible at the surface of Lowicryl sections was revealed by immunogold labeling. Non-encapsidated viral DNA was detected exclusively within the virus-induced central region of 4 h to 17 h infected nuclei. Localization of the probe either near the nuclear envelope or within marginated host chromatin was found only on HSV DNA which was packaged into viral nucleoids. The use in parallel of in situ hybridization with specific staining for DNA and autoradiography after tritiated thymidine incorporation, followed by either conventional fixation of the cells or the nucleoprotein loosening procedure, indicated that non-encapsidated viral DNA and marginated host chromatin formed two juxtaposed compartments without interpenetration even after experimentally produced mild dispersion of the nuclear components.  相似文献   

10.
11.
In herpes simplex virus type 1-infected Vero cells, reorganization of microfilaments was observed approximately 4 h postinfection. Conversion of F (filamentous) actin to G (globular) actin, as assessed by a DNase I inhibition assay, was continuous over the next 12 to 16 h, at which time a level of G actin of about twice that observed in uninfected cells was measured. Fluorescent localization of F actin, using 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin, demonstrated that microfilament fibers began to diminish at about 16 to 18 h postinfection, roughly corresponding to the time that G actin levels peaked and virus-induced cytopathology was first observable. In measles virus-infected cells, no such disassembly of microfilaments occurred. Rather, there was a modest decrease in G actin levels. Fluorescent localization of F actin showed that measles virus-infected Vero cells maintained a complex microfilament network characterized by fibers which spanned the entire length of the newly formed giant cells. Disruption of microfilaments with cytochalasin B, which inhibits measles virus-specific cytopathology, was not inhibitory to measles virus production at high multiplicities of infection (MOI) but was progressively inhibitory as the MOI was lowered. The carbobenzoxy tripeptide SV-4814, which inhibits the ability of Vero cells to fuse after measles virus infection, like cytochalasin B, inhibited measles virus production at low MOI but not at high MOI. Thus, it appears that agents which affect the ability of Vero cells to fuse after measles virus infection may be inhibitory to virus production and that the actin network is essential to this process.  相似文献   

12.
13.
Summary We studied the interaction of human polymorphonuclear leukocytes (PMNs) with umbilical vein endothelial cells infected with herpes simplex virus (HSV) type 1. PMNs labeled with51Cr were added to endothelial monolayers at varying times after infection and their adherence assessed 1 h later. Granulocyte adherence (GA) to uninfected cells averaged 26.5±1.9%. Increased adherence began 6 h postinfection and rose to a maximum at 20 to 24 h. HSV-1 glycoproteins seemed to mediate the increase in GA: tunicamycin treatment of infected monolayers for 18 h abolished the increased GA as did incubation of infected cells with F(ab')2 fragments prepared from human antiserum containing HSV-1 antibody. Supported by grants R01-AA-06029 and T32-AA07233 from the National Institute of Alcohol Abuse and Alcoholism, and R01-HL-28220 from the National Heart, Lung, and Blood Institute.  相似文献   

14.
The phenomenon of antibody-dependent cell-mediated cytoxicity (ADCC) has been extended to include target cells acutely infected with herpes simplex type 1 virus (HSV-1) or herpes simplex type 2 virus (HSV-2) in an in vitro system that employs immune human serum and human blood mononuclear cells. The cytotoxic reaction was detectable after 1 hr of incubation and was complete between 4 and 8 hr. The amount of ADCC noted was directly proportional to the logarithm(10) of the effector: target cell ratio (E:T), and ADCC was noted at E:T as low as 1:1. The mononuclear effector cell was present in the blood of both HSV immune and non-immune individuals. The immune serum factor was demonstrated to be an antibody with specificity for HSV membrane antigen(s) and was reactive with target cells infected with either of the two HSV types. The antibody rendered the mononuclear cell cytotoxic by sensitization of the target cell rather than by direct attachment to or "arming" of the mononuclear cell. The physiochemical properties of the antibody as well as its presence in cord blood demonstrated that it is an immunoglobulin on the IgG class.  相似文献   

15.
16.
Herpes simplex viruses (HSV) have developed several immunoevasive strategies. Here we demonstrate a novel mechanism by which HSV type 1 may interfere with the immune response through infection of immature dendritic cells (DC) and selective downmodulation of costimulatory molecules. In our study we show productive infection of immature monocyte-derived DC, which closely resemble sessile Langerhans cells, by sequential expression of immediate-early, early, and late viral proteins and of glycoprotein D mRNA, as well as production of infectious virus of moderate titers. Infection was cytopathic, with the progressive loss of 20 to 45% of cells from 24 to 48 h after infection, with no more than 80% of DC found to be infected. These results are in contrast to those of previous findings of nonpermissive or abortive infection of monocytes and mature monocyte-derived DC. Infection of immature DC also led to selective and asynchronous downregulation of CD1a, CD40, CD54 (ICAM-1) (12 h postinfection), CD80 (24 h postinfection), and CD86 (48 h postinfection) but not of CD11c or major histocompatibility complex class I and II molecules when compared to DC exposed to UV-inactivated virus. Thus, we propose that productive infection of epidermal Langerhans cells in vivo may lead to delayed activation of T cells, allowing more time for replication of HSV type 1 in epidermal cells.  相似文献   

17.
18.
19.
How viral infections affect host cell mitochondrial functions is largely unknown. In this study, uptake of radiolabeled precursors was used to assess how a herpes simplex virus type 1 (HSV 1) infection influences synthesis of macromolecules comprising Vero cell mitochondria. Total macromolecular synthesis in infected cells was determined for comparative purposes. Mitochondrial and total cellular DNA syntheses were approximately halved at 1-2.5 h postinfection (PI). Mitochondrial DNA synthesis in infected cells then rose to 3.5-fold that in control cells at 3-4.5 h PI. Total DNA synthesis in infected cells also rose, but more slowly, reaching threefold that for control cells at 5-6.5 h PI. Mitochondrial and total RNA synthesis in infected cells were both decreased by approximately 40% at 1-3 h PI. Over the next 4 h, total RNA synthesis in infected cells slowly continued to decrease, while that in mitochondria recovered to control levels. Synthesis of mitochondrial proteins in infected cells decreased progressively, dropping to about 60% of control levels by 5-6.5 h PI. With the metabolic inhibitors ethidium bromide and cycloheximide, it was determined that nuclear DNA and mitochondrial DNA and mitochondrial DNA directed synthesis of mitochondrial proteins were each partially inhibited in infected cells. Total cellular protein synthesis was decreased by 30% at 1-2.5 h PI and then recovered to control levels by 5-6.5 h PI. Finally, phospholipid synthesis in mitochondria from infected cells was elevated 2.3-fold at 1-5 h PI, but dropped to 14% below control levels during 4-8 h PI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号