首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxalic acid metabolism and calcium oxalate formation in Lemna minor L.   总被引:6,自引:0,他引:6  
Abstract Axenic Lemna minor plants, which form numerous calcium oxalate crystals, were exposed to [14C]-glycolic acid, -glyoxylic acid, -oxalic acid and -ascorbic acid and prepared for microautoradiography by a technique that preserves only insoluble label to determine specifically the pathway leading to oxalic acid used for crystal formation. Label from glycolic, glyoxylic, and oxalic acids was incorporated into crystals. Label from oxalic acid was also found in starch when exposure to label was done in the light but not dark, while plastids specialized for lipid storage were heavily labelled under both conditions. Incorporation of label from glycolic and glyoxylic acids, but not oxalic acid, was inhibited in the presence of the glycolate oxidase inhibitors, αHPMS (2-pyridylhydroxy methanesulphonic acid) and mHBA (methyl 2-hydroxy-3-butynoic acid), and inhibition of labelling was not due to an effect on uptake. These studies show that the glycolate oxidase pathway to oxalic acid is operational in L. minor and that the product is available for crystal formation. Dark-grown plants form almost four times as many crystal cells (idioblasts) as do light-grown plants, indicating crystal formation is not in response to photorespiratory glycolate production. Label from [1-14C]ascorbic acid was also incorporated into crystals and labelling was inhibited by mHBA, indicating glycolic acid and/or glyoxylic acid are possible intermediates of ascorbic acid catabolism. The effect of nitrogen source on crystal formation was also investigated. Significantly more crystal idioblasts were formed, on a surface area basis, by plants grown on ammonium than by plants grown on nitrate nitrogen. When grown with mixed ammonium and nitrate, an intermediate number of crystal idioblasts were formed.  相似文献   

2.
Reaction of small sugars of less than four carbons with ammonia in water yielded organic microspherules generally less than ten microns in size. The time course of microspherule growth was examined for the D-erythrose-ammonia reaction that yielded microspherules attached to the glass walls of containers. Measurements were made of the elemental composition and infrared spectrum of the microspherule material. These viscose semi-solid microspherules are viewed as possible containers for prebiotic catalytic processes relevant to the origin of life.  相似文献   

3.
Sugar-Driven Prebiotic Synthesis of Ammonia from Nitrite   总被引:1,自引:0,他引:1  
Reaction of 3–5 carbon sugars, glycolaldehyde, and α-ketoaldehydes with nitrite under mild anaerobic aqueous conditions yielded ammonia, an essential substrate for the synthesis of nitrogen-containing molecules during abiogenesis. Under the same conditions, ammonia synthesis was not driven by formaldehyde, glyoxylate, 2-deoxyribose, and glucose, a result indicating that the reduction process requires an organic reductant containing either an accessible α-hydroxycarbonyl group or an α-dicarbonyl group. Small amounts of aqueous Fe+3 catalyzed the sugar-driven synthesis of ammonia. The glyceraldehyde concentration dependence of ammonia synthesis, and control studies of ammonia’s reaction with glyceraldehyde, indicated that ammonia formation is accompanied by incorporation of part of the synthesized ammonia into sugar-derived organic products. The ability of sugars to drive the synthesis of ammonia is considered important to abiogenesis because it provides a way to generate photochemically unstable ammonia at sites of sugar-based origin-of-life processes from nitrite, a plausible prebiotic nitrogen species.  相似文献   

4.
Kiwifruit plants (Actinidia deliciosa cv. Hayward) were grown in Hoagland nutrient solution with calcium nitrate, potassium nitrate, ammonium nitrate or ammonium chloride as the nitrogen source. Plants grown in the solution with nitrate nitrogen displayed a higher oxalate content, greater shoot length and leaf area, and higher content of ascorbic acid and NO3 ions in the leaves. Plants grown in the solution with ammonium nitrate, and particularly with ammonium chloride, showed low oxalate content, low content of ascorbic acid and NO3 , high content of Cl and Na+, low shoot length and leaf area. Oxalate formation appeared to be connected with the assimulation of nitrate, more precisely with nitrate reduction, while ammonium nitrogen assimilation did not induce the synthesis of oxalic acid.  相似文献   

5.
The Sugar Model: Autocatalytic Activity of the Triose–Ammonia Reaction   总被引:1,自引:0,他引:1  
Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose–ammonia reaction product on the kinetics of a second identical triose–ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate of formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.  相似文献   

6.
The role of bacilli in cocoa fermentation is not well known. Their potential of production of pectinolytic enzymes during this process was evaluated. Bacillus growth was monitored and pectinolytic strains were screened for their use of pectin as sole carbon source. Effects of cocoa fermentation parameters susceptible to influence on enzyme production were analysed. Among 98 strains isolated, 90 were positive for pectin degradation and 80% of them presented detectable pectinolytic activities in submerged fermentation. Forty-eight strains produced polygalacturonase (PG), 47 yielded pectin lyase (PL) and 23 strains produced both enzymes. Bacilli growth was not significantly affected during fermentation. PL production was favoured by galactose, lactose, glucose as sugars, and arginine, glutamine, cysteine and ammonium sulphate as nitrogen compounds. Pectin at low concentration (0.05%) and iron stimulated PL production. It was strongly repressed by galacturonic acid (1%), and negatively affected by nitrogen starvation, zinc and temperatures above 45°C. PL yield was very weak below pH 4.0 and in anaerobic conditions. PG production was weakened by sucrose and cation depletion. It was increased slightly by cysteine, ammonium nitrate and nitrogen starvation and significantly above 40°C. PG synthesis was not affected by acidic pH (3.0–6.0) or oxygen availability. As fermentation products, lactate and acetate lowered the production of both enzymes while ethanol had no effect. The high proportion of pectinolytic producers among the strains studied and analysis of factors influencing pectinolytic enzymes production, suggest that Bacillus sp. is liable to produce at least one enzyme during cocoa fermentation.  相似文献   

7.
Sheng M  Tang M  Zhang F  Huang Y 《Mycorrhiza》2011,21(5):423-430
A pot experiment was conducted to examine the effect of the arbuscular mycorrhizal (AM) fungus, Glomus mosseae, on plant biomass and organic solute accumulation in maize leaves. Maize plants were grown in sand and soil mixture with three NaCl levels (0, 0.5, and 1.0 g kg−1 dry substrate) for 55 days, after 15 days of establishment under non-saline conditions. At all salinity levels, mycorrhizal plants had higher biomass and higher accumulation of organic solutes in leaves, which were dominated by soluble sugars, reducing sugars, soluble protein, and organic acids in both mycorrhizal and non-mycorrhizal plants. The relative abundance of free amino acids and proline in total organic solutes was lower in mycorrhizal than in non-mycorrhizal plants, while that of reducing sugars was higher. In addition, the AM symbiosis raised the concentrations of soluble sugars, reducing sugars, soluble protein, total organic acids, oxalic acid, fumaric acid, acetic acid, malic acid, and citric acid and decreased the concentrations of total free amino acids, proline, formic acid, and succinic acid in maize leaves. In mycorrhizal plants, the dominant organic acid was oxalic acid, while in non-mycorrhizal plants, the dominant organic acid was succinic acid. All the results presented here indicate that the accumulation of organic solutes in leaves is a specific physiological response of maize plants to the AM symbiosis, which could mitigate the negative impact of soil salinity on plant productivity.  相似文献   

8.
Azotobacter salinestris, a sodium-dependent, microaerophilic N2-fixing soil bacterium, formed polyhydroxyalkanoate copolymers comprised of β-hydroxybutyric acid and 9–12 mol% β-hydroxyvaleric acid (HV) during growth on sugars. Increased HV content was achieved by feeding valeric acid to the culture growing on glucose, but propionic acid could be directed to HV formation only when it served as the sole C source. Polymer production in nitrogen-fixing cells was increased at higher aeration, provided that a complex organic nitrogen source was also present, but there was no HV in the polymer. HV production was increased to 28 mol% in nitrogen-fixing cells when aeration was lower and acetate was provided with glucose in the medium. Enzymes leading to the production of polyhydroxyalkanoate copolymers were found to be similar in A. salinestris and Azotobacter vinelandii, but A. vinelandii is unable to form HV from propionate or from sugars without valeric acid addition. A biochemical scheme is proposed for the production of HV in A. salinestris, whereby the glyoxylate bypass assimilates acetate to generate succinate, which may be converted into propionyl-CoA for HV synthesis. The results suggest that it may be possible to control the molar yield of HV formed from sugars by A. salinestris. Received: 21 January 1997 / Received revision: 7 April 1997 / Accepted: 13 April 1997  相似文献   

9.
Six non-amino acid nitrogen compounds were examined as nitrogen source for growth of Streptomyces hygroscopicus and biosynthesis of rapamycin. Of the nitrogen sources studied, ammonium sulfate was the best with respect to formation of rapamycin, and supported cell growth comparable to the organic nitrogen sources used in the control chemically defined medium, ie, aspartate, arginine plus histidine. In the new chemically defined medium, which is buffered with 200 mM 2-(N-morpholino)ethanesulfonic acid to prevent decline of pH during fermentation, an ammonium sulfate concentration of 40 mM was optimal for biosynthesis of rapamycin. Rapamycin production increased by more than 30% on both volumetric and specific bases as compared to the previous medium containing the three amino acids as nitrogen source. Received 08 November 1996/ Accepted in revised form 07 April 1997  相似文献   

10.
Nitrate was formed from ammonium at pH 3.2 to 6.1 in suspensions of a naturally acid forest soil; the maximum rates of formation occurred at ca. pH 4 to 5. Nitrate was also formed from soil nitrogen in suspensions incubated at 50°C. Autotrophic nitrifying bacteria could not be isolated from this soil. Enrichment cultures produced nitrate in a medium with β-alanine if much soil was added to the medium, and nitrite but not nitrate was formed in the presence of small amounts of soil. Nitrification by these enrichments was abolished by eucaryotic but not procaryotic inhibitors. A strain of Absidia cylindrospora isolated from this soil was found to produce nitrate and nitrite in a medium with β-alanine at pH values ranging from 4.0 to 4.8. Nitrate production by A. cylindrospora required the presence of sterile soil. Free and bound hydroxylamine, hydroxamic acids, and primary aliphatic nitro compounds did not accumulate during the conversion of β-alanine to nitrite by the fungus. The organism also formed nitrite from ammonium in a medium containing acetate. We suggest that nitrification in this soil is a heterotrophic process catalyzed by acid-tolerant fungi and not by autotrophs or heterotrophs in nonacid microsites.  相似文献   

11.
The present study deals with submerged ethanol, citric acid, and α-amylase fermentation by Saccharomyces cerevisiae SDB, Aspergillus niger ANSS-B5, and Candida guilliermondii CGL-A10, using date wastes as the basal fermentation medium. The physical and chemical parameters influencing the production of these metabolites were optimized. As for the ethanol production, the optimum yield obtained was 136.00 ± 0.66 g/l under optimum conditions of an incubation period of 72 h, inoculum content of 4% (w/v), sugars concentration of 180.0 g/l, and ammonium phosphate concentration of 1.0 g/l. Concerning citric acid production, the cumulative effect of temperature (30°C), sugars concentration of 150.0 g/l, methanol concentration of 3.0%, initial pH of 3.5, ammonium nitrate concentration of 2.5 g/l, and potassium phosphate concentration of 2.5 g/l during the fermentation process of date wastes syrup did increase the citric acid production to 98.42 ± 1.41 g/l. For the production of α-amylase, the obtained result shows that the presence of starch strongly induces the production of α-amylase with a maximum at 5.0 g/l. Among the various nitrogen sources tested, urea at 5.0 g/l gave the maximum biomass and α-amylase estimated at 5.76 ± 0.56 g/l and 2,304.19 ± 31.08 μmol/l/min, respectively after 72 h incubation at 30°C, with an initial pH of 6.0 and potassium phosphate concentration of 6.0 g/l.  相似文献   

12.
The primary accumulation of oxalate in the early seedling stagesaccompanies the synthesis of both protein and reserve carbohydrate.A further accumulation accompanies the normal growth of theyoung expanding leaf. Free oxalic acid accounts for most ofthe total oxalate content at the various stages. The form in which nitrogen is supplied to the young seedling(ammonium nitrogen or nitrate nitrogen) markedly affects bothgrowth and the amount of oxalate formed. More oxalate and poorergrowth is found in plants grown on ammonium as a sole sourceof nitrogen. In the mature leaf the oxalate content remains constant undera wide variety of different conditions. No enzyme systems could be detected which might be active inthe formation of oxalate. It is concluded that oxalic acid is only formed during rapidgrowth in Begonia, and that once formed it takes little furtherpart in metabolism.  相似文献   

13.
14.
Stanley Miller’s 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the α-, β-, and γ-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspartic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.  相似文献   

15.
It has been proposed that metal cyanide complexes would have acted as effective prebiotic catalysts. Insoluble metal cyanide complexes could have concentrated biomonomers from the dilute prebiotic soup, facilitating certain prebiotic reactions. In the light of the above hypothesis, interaction of four ribonucleotides, namely 5′-AMP, 5′-GMP, 5′-CMP, and 5′-UMP with copper(II)- and cadmium(II) hexacyanocobaltate(III) has been studied. The interaction was found to be maximum at neutral pH. 5′-GMP showed greater interaction with both the metal hexacyanocobaltate(III) while copper(II) hexacyanocobaltate(III) showed greater uptake than cadmium(II) hexacyanocobaltate(III) for all the four ribonucleotides studied. Infrared spectral studies of ribonucleotides, metal hexacyanocobaltate(III) and ribonucleotide – metal hexacyanocobaltate(III) adducts indicated that the nitrogen base and phosphate moiety of ribonucleotides interact with outer divalent metal ion present in the lattice of metal hexacyanocobaltate(III).  相似文献   

16.
To investigate the nutritional value of the diatom Cyclotella cryptica Reimann, Lewin, and Guillard as an alternative feed for the use in the aquaculture industry, the heterotrophic growth characteristics, total fatty acids, and the resultant fatty acid profile of the microalga were studied when cultivated with sodium nitrate, ammonium chloride, or urea. All three nitrogen sources supported growth under heterotrophic conditions, and their uptake affected the pH of the cultivation medium, even when buffered. The use of sodium nitrate or urea resulted in a significant increase in the pH of the cultivation media, whereas the use of ammonium chloride caused a minor decrease in the pH of the cultivation media. The maximum specific growth rate was highest when urea and ammonium chloride were supplied at a low concentration; however, the total fatty acid content was not significantly affected (P = 0.101) by the nitrogen source when supplied at 10.7 mM nitrogen. The total fatty acid content and fatty acid profile of C. cryptica was more affected by the growth phase (predominately influenced by the initial nitrogen concentration) than by the source of nitrogen.  相似文献   

17.
Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of Pi and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added 14CO2 was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this was oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle.  相似文献   

18.
Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of Pi and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added 14CO2 was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this was oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle.  相似文献   

19.
A theoretical mechanism resulting in the prebiotic appearance of enantiopure ribose, which would be needed for the origin of RNA and the “RNA world” is proposed. The mechanism simultaneously explains the emergence of biological homochirality and could answer the question of why nucleic acids are based on ribose rather than another sugar. Cleavage of certain non-chiral mineral crystals is known to lead to formation of chiral surfaces. In a chromatography-like process a mixture of racemic carbohydrates originating from the formose reaction is proposed to have been separated on such a chiral surface. Monosaccharides interact with surfaces through their hydroxyl groups, either by hydrogen bond formation or complex formation with metal ions. α-Ribopyranose, which has all hydroxyl groups on one side of the ring, is known to interact more strongly than other sugars with surfaces, as corroborated by certain chromatographic and electrophoresis data. A similar scenario leading to enantiopure ribose is separation on a flat, but not necessarily chiral surface in the presence of a strong electric field capable of orienting highly polar derivatives of sugars. Portions of this work were presented to Mid-Atlantic Regional Meeting of ACS, Hershey, PA, USA, June 05, 2006.  相似文献   

20.
In this work, the heterotrophic cultivation of bacterium Paracoccus denitrificans has been studied in a horizontal rotating tubular bioreactor (HRTB). After development of a microbial biofilm on the inner surface of the HRTB, conditions for one-step removal of acetate and ammonium ion were created. The effect of bioreactor process parameters [medium inflow rate (F) and bioreactor rotation speed (n)] on the bioprocess dynamics in the HRTB was studied. Nitrite and nitrogen oxides (NO and N2O) were detected as intermediates of ammonium ion degradation. The biofilm thickness and the nitrite concentration were gradually reduced with increase of bioreactor rotation speed when the medium inflow rate was in the range of 0.5–1.5 l h−1. Further increase of inflow rate (2.0–2.5 l h−1) did not have a significant effect on the biofilm thickness and nitrite concentration along the HRTB. Complete acetate consumption was observed when the inflow rate was in the range of 0.5–1.5 l h−1 at all bioreactor rotation speeds. Significant pH gradient (cca 1 pH unit) along the HRTB was only observed at the highest inflow rate (2.5 l h−1). The results have clearly shown that acetate and ammonium ion removal by P. denitificans can be successfully conducted in a HRTB as a one-step process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号