首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 942 毫秒
1.
It has been suggested that the human red cell anion transport protein, band 3, is the site not only of the cation leak induced in human red cells by treatment with the sulfhydryl reagent pCMBS (p-chloromercuribenzene sulfonate) but is also the site for the inhibition of water flux induced by the same reagent. Our experiments indicate that N-ethylmaleimide, a sulfhydryl reagent that does not inhibit water transport, also does not induce a cation leak. We have found that the profile of inhibition of water transport by mercurial sulfhydryl reagents is closely mirrored by the effect of these same reagents on the induction of the cation leak. In order to determine whether these effects are caused by band 3 we have reconstituted phosphatidylcholine vesicles containing only purified band 3. Control experiments indicate that these band 3 vesicles do not contain (Na+ + K+)-ATPase as measured by ATP dephosphorylation. pCMBS treatment caused a significant increase in the cation leak in this preparation, consistent with the view that the pCMBS-induced cation leak in whole red cells is mediated by band 3.  相似文献   

2.
Four different amino-reactive reagents, 4-acetamido-4'-isothiocyano-stilbene-2,2'-disulfonic acid (SITS),1 1-fluoro-2,4-dinitrobenzene (FDNB), 2,4,6-trinitrobenzene sulfonic acid (TNBS), and 2-methoxy-5-nitrotropone (MNT) decrease the anion permeability of the human red blood cell, as measured by sulfate fluxes, whereas the sulfhydryl agent, parachloromercuriphenyl sulfonic acid (PCMBS), does not. In contrast, PCMBS increases the cation permeability as measured by K+ leakage, whereas SITS does not. Of the other agents, FDNB increases the cation permeability to the same extent as PCMBS but MNT and TNBS produce smaller increases. PCMBS does not protect against FDNB as it does against other sulfhydryl agents (X-irradiation) and the FDNB effect on cations is attributed to amino groups. Studies of the binding of SITS indicate that it does not penetrate into the membrane and its failure to influence cation permeability is attributed to its inability to reach an internal population of amino groups. It is concluded that two ion permeability barriers, both involving proteins, are present in the red blood cell. The more superficial barrier contains amino groups and controls anion flow; the more internal barrier contains sulfhydryl and amino groups and controls cation flow. The amino groups contribute to the control of permeability by virtue of their positive charges, but the role of sulfhydryl groups is not clear. Only a small fraction of the membrane protein amino and sulfhydryl is involved in the barriers.  相似文献   

3.
The effect of some thiol alkylating agents (N-substituted maleimide derivatives) on the permeability of the mitochondrial inner membrane was investigated. Several experimental approaches were used to study the modifications of the permeability properties. Alkylation of sulfhydryl groups led to an increase in the nonspecific permeability as judged by (i) the augmentation of the rate of osmotic shrinkage of mitochondria induced by polyethylene glycol, (ii) the sensitization of succinate dehydrogenase toward oxaloacetate, (iii) the enhancement of the oxidation rate of exogenous NADH, and (iv) the increase of the sucrose permeable space. The sulfhydryl groups involved in the maintenance of the selective permeability were shown to be located in the hydrophobic core of the membrane. Energization of mitochondria provoked an unmasking of these sulfhydryl groups. When magnesium ions were present in the incubation medium, N-substituted maleimide derivatives promoted gross modifications of the intramitochondrial ionic contents. Effluxes of endogenous calcium ions, inorganic phosphate, adenine nucleotides, and NAD(P)H were established. It was concluded that sulfhydryl groups probably play a crucial role in the maintenance of the membrane integrity and thus control the mitochondrial inner membrane permeability.  相似文献   

4.
The reflection coefficient (sigma) and permeability (P) of urea and ethylene glycol were determined by fitting the equations of Kedem and Katchalsky (1958) to the change in light scattering produced by adding a permeable solute to a red cell suspension. The measurements incorporated three important modifications: (a) the injection artifact was eliminated by using echinocyte cells; (b) the use of an additional adjustable parameter (Km), the effective dissociation constant at the inner side of the membrane; (c) the light scattering is not directly proportional to cell volume (as is usually assumed) because refractive index and scattering properties of the cell depend on the intracellular permeable solute concentration. This necessitates calibrating for known changes in refractive index (by the addition of dextran) and cell volume (by varying the NaCl concentration). The best fit was for sigma = 0.95, Po = 8.3 X 10(-4) cm/s, and Km = 100 mM for urea and sigma = 1.0, Po = 3.9 X 10(-4) cm/s, and Km = 30 mM for ethylene glycol. The effects of the inhibitors copper, phloretin, p- chloromercuriphenylsulfonate, and 5,5'-dithiobis (2-nitro) benzoic acid on the urea, ethylene glycol, and water permeability were determined. The results suggest that there are three separate, independent transport systems: one for water, one for urea and related compounds, and one for ethylene glycol and glycerol.  相似文献   

5.
6.
The water diffusional permeability of human red blood cells following exposure to various sulfhydryl group (SH) reagents have been studied using a nuclear magnetic resonance technique. Exposure of red blood cells up to 12 mM N-ethylmaleimide (NEM) or 10 mM 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNE) alone does not affect water diffusion. In contrast, when DTNB treatment follows a preincubation of the cells with NEM, a small (18% at 37 degrees C) but significant inhibition of water permeability occurs. The NEM and DTNB treatment of the cells caused no change of the cell shape and volume or of the cell water volume. Consequently, the inhibition observed after NEM and DTNB treatment has a real significance.  相似文献   

7.
The osmotic permeability coefficient (Pf) was measured with a stopped- flow light-scattering technique. There is an artifactual light- scattering signal produced by the initial mixing that decays with a half-time of approximately 0.2 s. This seriously interferes with the measurement of the osmotically induced change in cell volume, which has a similar half-time. This "injection artifact" is associated with the biconcave shape of the cells. It is negligible for cells that have been made nearly spherical by swelling them in 160 mosmol. The dependence of this artifact on the cell volume may explain the previously observed dependence of Pf on the cell volume. When cells are made echinocytic (and therefore spherically symmetric), this injection artifact becomes negligible at all cell volumes and Pf can be accurately measured. The Pf of echinocytic cells was nearly constant, varying by less than 10% with the direction of flow and the medium osmolarity (160-360 mosmol). The average value of Pf was 2.0 X 10(-2) cm/s (T = 23 degrees C).  相似文献   

8.
Transport of water and urea in red blood cells   总被引:27,自引:0,他引:27  
  相似文献   

9.
10.
The effects of p-chloromercuriphenylsulfonic acid (PCMBS), 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB), phloretin and thiourea on the diffusional permeability of dog erythrocytes to tritiated water and to small 14C-labeled lipophilic and hydrophilic solutes were measured at 37 degrees C by means of the linear diffusion technique. Permeability to 3HHO was significantly decreased by PCMBS but was not affected by the other reagents. The permeability to the small hydrophilic solutes acetamide and urea was decreased by phloretin and thiourea but only the permeability to acetamide was reduced to a statistically significant extent by PCMBS. The permeability to the lipophilic solutes methanol, ethanol and antipyrine was not affected by any of these agents. We interpret these results as an indication that the small lipophilic solutes probably move through lipid areas, that the small hydrophilic solutes probably move through protein associated areas in the erythrocyte membrane and that pathways for the small hydrophilic solutes are distinct from those for water. While the pathways for water may be associated with membrane protein they do not appear to be associated specifically with band 3 protein as has been suggested for human erythrocytes. Diffusional water movement through the dog erythrocyte occurs by two distinct pathways.  相似文献   

11.
Effects of ionizing radiation and of sulfhydryl reagents on the 45Ca binding of red cell membranes were studied. Corresponding effects of these agents on potassium leak from intact red cells were also determined. Essentially all the 45Ca associated with the ghosts appeared to be bound. Calcium binding could be described by assuming two independent groups of binding sites with dissociation constants of about 6 × 10?4 m and 2 × 10?4 m. The total binding capacity was about 2.5 × 10?4 moles/g ghost protein. Membrane calcium was decreased by radiation and by the two sulfhydryl reagents, p-chloromercuribenzoate (PCMB) and N-ethyl maleimide (NEM). The tightly bound calcium fraction appeared to be most affected by these agents. Changes in potassium leak evoked by varying doses of agents appeared to parallel effects on membrane calcium. These investigations suggest that the increased cation permeability observed after exposure or red cells to radiation or sulfhydryl reagents may be related to alterations in the calcium-binding properties of the cell membrane.  相似文献   

12.
13.
Control of nonelectrolyte permeability in red cells   总被引:12,自引:0,他引:12  
  相似文献   

14.
Inhibition of lectin-induced lymphocyte activation by five reagents capable of combining with or oxidizing free sulfhydryl groups was examined. Each of the reagents tested was capable of inhibiting [methyl-3H]thymidine or [14C]uridine incorporation into trichloroacetic acid-insoluble material. Four of these reagents, iodoacetamide and N-ethylmaleimide (alkylating agents) and 5,5′-dithiobis (2-nitrobenzoic acid) and p-hydroxymercuriphenylsulfonic acid (sulfhydryl binding agents), inhibited activation when added to lymphocyte cultures together with lectin or at any time thereafter through 48 hr. In contrast, the sulfhydryl oxidizing agent diazine dicarboxylic acid bis[N,N-dimethylamide] (diamide) was effective only when added within 30–60 min of lectin or when added after 24 hr. This inhibition of lymphocyte activation was not due to decreased intracellular levels of reduced glutathione or to inhibition of binding of lectin to the lymphocyte. These results suggest that maintenance of free sulfhydryl groups is important during the early induction of lymphocyte activation and suggest that an obligatory step or steps in the activation sequence may involve sulfhydryl interactions.  相似文献   

15.
16.
An extensive programme of comparative nuclear magnetic resonance measurements of the membrane diffusional permeability for water (Pd) and of the activation energy (Ea,d) of this process in red blood cells (RBCs) from 21 mammalian species was carried out. On the basis of Pd, these species could be divided into three groups. First, the RBC's from humans, cow, sheep and “large” kangaroos (Macropus giganteus and Macropus rufus) had Pd values 5 × 10−3 cm/s at 25°C and 7 × 10−3 cm/s at 37°C. The RBCs from other marsupial species, mouse, rat, guinea pig and rabbit, had Pd values roughly twice higher, whereas echidna RBCs were twice lower than human RBCs. The value of Ea,d was in most cases correlated with the values of Pd. A value of Ea,d -26 kJ/mol was found for the RBCs from humans and the species having similar Pd values. Low values of Ea,d (ranging from 15 to 22 kJ/mol) appeared to be associated with relatively high values of Pd. The highest value of Ea,d (33 kJ/mol) was found in echidna RBCs. This points to specialized channels for water diffusion incorporated in membrane proteins; a relatively high water permeability of the RBC membrane could be due to a greater number of channel proteins. There are, however, situations where a very high water permeability of RBCs is associated with a high value of Ea,d (above 25 kJ/mol) as in the case of RBCs from mouse, rat and tree kangaroo. Moreover, it was found that Pd in different species was positively correlated to the RBC membrane phosphatidylcholine and negatively correlated to the sphingomyelin content. This suggests that in addition to the number of channel proteins, other factors are involved in the water permeability of the RBC membrane.  相似文献   

17.
Secretory phospholipase A(2)s (sPLA(2)s) have been implicated in physiological and pathological events, but the regulatory mechanism(s) of their activities in cells remains to be solved. Previously, we reported that phenylarsine oxide (PAO), a sulfhydryl reagent, stimulated arachidonic acid (AA) release in rat pheochromocytoma PC12 cells. In this study, we examined the effects of thimerosal, another sulfhydryl reagent, to clarify the sulfhydryl modification and activation of sPLA(2) molecules in cells. Like PAO, thimerosal-stimulated AA release in an irreversible manner and the responses were not additive. Dithiol compounds such as dithiothreitol inhibited AA release from both the thimerosal- and the PAO-treated cells, and monothiol compounds (l-Cys and glutathione) decreased the thimerosal response. Both sulfhydryl reagents stimulated AA release from the HEK293T cells expressing human sPLA(2)X, and stimulated the sPLA(2) activities of bee venom sPLA(2) and the soluble fraction of sPLA(2)X-expressing cells. Our results suggest that the sPLA(2)s in cells are inactive and modification of disulfide bonds in the molecules can be a trigger of sPLA(2) activation in cells. Sulfhydryl reagents are useful tools for studying the regulatory mechanism(s) of sPLA(2) activity in cells.  相似文献   

18.
Selective inhibition of f2 RNA translation by sulfhydryl reagents   总被引:1,自引:0,他引:1  
Escherichia coli ribosomes containing bound initiation factors were reacted with N-ethylmaleimide (NEM) under conditions where about 20 NEM molecules bind per ribosome. This treatment results in a large reduction in their ability to translate f2 RNA but not late T4 mRNA or polyuridylate. Iodoacetate produces a similar effect. These results indicate that ribosomal factors responsible for mRNA specificity differ appreciably in their sensitivity to inactivation by alkylation and suggest that translational control, dependent on mRNA selectivity, might operate by modifying the same or similar reactive sites.  相似文献   

19.
Rat liver microsomes exhibit glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene as the second substrate. This activity can be stimulated 8-fold by treatment of the microsomes with N-ethylmaleimide and 4-fold with iodoacetamide. The corresponding glutathione S-transferase activity of the supernatant fraction is not affected by such treatment. These findings suggest that rat liver microsomes contain glutathione S-transferase distinct from those found in the cytoplasmic and that the microsomal transferase can be activated by modification of microsomal sulfhydryl group(s).  相似文献   

20.
Relation between red cell anion exchange and urea transport   总被引:1,自引:0,他引:1  
The new distilbene compound, DCMBT (4,4'-dichloromercuric-2,2,2',2'-bistilbene tetrasulfonic acid) synthesized by Yoon et al. (Biochim. Biophys. Acta 778 (1984) 385-389) was used to study the relation between urea transport and anion exchange in human red cells. DCMBT, which combines properties of both the specific stilbene anion exchange inhibitor, DIDS, and the water and urea transport inhibitor, pCMBS, had previously been shown to inhibit anion transport almost completely and water transport partially. We now report that DCMBT also inhibits urea transport almost completely and that covalent DIDS treatment reverses the inhibition. These observations provide support for the view that a single protein or protein complex modulates the transport of water and urea and the exchange of anions through a common channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号