首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The similar geographic distributions of an extinct (Dasypus bellus) and an extant (D. novemcinctus) armadillo species have long been of interest to scholars because of the unresolved phylogeny. The relationship between the two species has been investigated through morphological and phylogenetic studies, whereas the ecological perspective has been overlooked, the importance of which is more and more acknowledged in speciation events. Here, we used ecological niche models to study the climatic niche similarity of three species of Dasypus (D. bellus, D. novemcinctus, and D. kappleri) and provide new insights on the relationship among them. The climatic niche similarity was compared in two ways: hindcast of ecological niche models based on occurrences and climatic layers, and direct niche boundary comparison along bioclimatic axes. The fossil records of D. bellus were not predicted suitable by the ecological niche models of the two extant armadillos. The direct comparison of niche boundary showed that D. bellus lived in colder and relative dryer climates, with high temperature variation and low precipitation variation. Our results did not support the previously assumed ecological similarity of D. bellus and D. novemcinctus based on their geographic distributions and emphasized the possibility of a cold adapted characteristic of the life history of D. bellus.  相似文献   

2.
The nine-banded armadillo, Dasypus novemcinctus, is a member of the family Dasypodidae, which contains all extant species of armadillos and represents the most diverse group of xenarthran mammals by their speciation, form, and range of scratch-digging ability. This study aims to identify muscle traits that reflect specialization for fossorial habit by observing forelimb structure in D. novemcinctus and comparing it among armadillos using available myological data. A number of informative traits were observed in D. novemcinctus and among Dasypodidae, including the absence of m. rhomboideus profundus, the variable presence of a m. articularis humeri and m. coracobrachialis, two heads of m. triceps brachii with scapular origin, and a lack of muscle mass devoted to antebrachial supination. Muscle mass and myosin heavy chain (MHC) isoform content were also quantified from our forelimb dissections. New osteological indices are additionally calculated and reported for D. novemcinctus. Collectively, the findings emphasize muscle mass and power output for limb retraction and specialization of the distal limb for sustained purchase of soil by strong pronation and carpal/digital flexion. Moreover, the myological traits assessed here provide a valuable resource for interpretation of muscle architecture specializations among digging mammals and future reassessment of armadillo phylogeny.  相似文献   

3.
Finite element analyses (FEA) were applied to assess the lower jaw biomechanics of cingulate xenarthrans: 14 species of armadillos as well as one Pleistocene pampathere (11 extant taxa and the extinct forms Vassallia, Eutatus and Macroeuphractus). The principal goal of this work is to comparatively assess the biomechanical capabilities of the mandible based on FEA and to relate the obtained stress patterns with diet preferences and variability, in extant and extinct species through an ecomorphology approach. The results of FEA showed that omnivorous species have stronger mandibles than insectivorous species. Moreover, this latter group of species showed high variability, including some similar biomechanical features of the insectivorous Tolypeutes matacus and Chlamyphorus truncatus to those of omnivorous species, in agreement with reported diets that include items other than insects. It remains unclear the reasons behind the stronger than expected lower jaw of Dasypus kappleri. On the other hand, the very strong mandible of the fossil taxon Vassallia maxima agrees well with the proposed herbivorous diet. Moreover, Eutatus seguini yielded a stress pattern similar to Vassalia in the posterior part of the lower jaw, but resembling that of the stoutly built Macroeuphractus outesi in the anterior part. The results highlight the need for more detailed studies on the natural history of extant armadillos. FEA proved a powerful tool for biomechanical studies in a comparative framework.  相似文献   

4.
Without doubt, the possession of an armored carapace represents one of the most conspicuous morphological features of all cingulates. Here, we review some of the many ways in which the carapace may have influenced the evolution of other features of extant armadillos (Xenarthra: Cingulata). Effects range from physiological impacts on respiration and thermoregulation, to mechanical and other constraints on reproduction. Additionally, in mammals, armor has been linked with relatively slow plantigrade locomotion, which in turn may have promoted the low metabolic rate and exploitation of a low quality diet typically observed in armadillos. Finally, this network of relationships may help to explain the lack of any obvious kin-selected altruism in the polyembryonic armadillos, such as the nine-banded armadillo (Dasypus novemcinctus), because of time and energy constraints associated with a short active period devoted almost exclusively to feeding. In mammals, there has been growing interest in describing an ecological “lifestyle” as the particular way in which each species makes its living, and how this lifestyle constrains the evolution of other phenotypic traits. Based on our review, it appears the carapace has been a major determinant of the lifestyle of armadillos and has played a central role in shaping the evolution of many other features of these animals.  相似文献   

5.
Reconstruction of limb posture is a challenging task in assessing functional morphology and biomechanics of extinct tetrapods, mainly because of the wide range of motions possible at each limb joint and because of our poor knowledge of the relationship between posture and musculoskeletal structure, even in the extant taxa. This is especially true for extinct mammals such as the desmostylian taxa Desmostylus and Paleoparadoxia. This study presents a procedure that how the elbow joint angles of extinct quadruped mammals can be inferred from osteological characteristics. A survey of 67 dried skeletons and 113 step cycles of 32 extant genera, representing 25 families and 13 orders, showed that the olecranon of the ulna and the shaft of the humerus were oriented approximately perpendicular to each other during the stance phase. At this angle, the major extensor muscles maximize their torque at the elbow joint. Based on this survey, I suggest that olecranon orientation can be used for inferring the elbow joint angles of quadruped mammals with prominent olecranons, regardless of taxon, body size, and locomotor guild. By estimating the elbow joint angle, it is inferred that Desmostylus would have had more upright forelimbs than Paleoparadoxia, because their elbow joint angles during the stance phase were approximately 165° and 130°, respectively. Difference in elbow joint angles between these two genera suggests possible differences in stance and gait of these two mammals. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
The integument of extant armadillos (Xenarthra, Cingulata) is a unique organ in which complex glandular systems are associated with pilose follicles, dermal ossifications, and cornified scales. Up to date, papers have focused on neither comparative morphology of the skin (dorsal and ventral) nor chronology of the development of interspecific homolog structures. In order to clarify the way in which events occur during development of the integument structures, maturity of other tissues (e.g. skeletal tissues) should be considered. Therefore, we will be able to identify events that have been pre- or post-displaced during ontogenetic development. The aim of this paper is to describe in a developmental and comparative framework the integumentary system of neonates of Dasypus hybridus and Chaetophractus vellerosus. In order to understand the morphology of the different integumentary structures serial histological sections were prepared. Staining techniques included H–E, Masson Trichrome, PAS, orcein and reticulin. To study ossification of postcranial elements, the specimens were cleared and double-stained with alcian blue and alizarin red. Determinations of ossification centers and their progress were recorded through the early uptake of alizarin. The dorsal dermis of neonates from D. hybridus is clearly differentiated into a superficial and deep layer, as in fetuses of Dasypus novemcinctus. In C. vellerosus, however, these layers could not be identified. This suggests a less connective tissue differentiation in the latter species at this stage. Osteoderms in D. hybridus are well differentiated unlike C. vellerosus where no condensations of osteoprogenitory cells are observed. Conversely, pilose follicles and glandular tissues are less developed in D. hybridus. Regarding postcranial elements, ossification centers are less advanced in C. vellerosus than D. hybridus, this is particularly notorious for the vertebral column, sternal, and pelvic girdle elements. Asynchronies between neonates of both species observed on integumentary and postcranial skeletal tissues could match with specific adaptive strategies related to distribution in different environments, and/or different postnatal care.  相似文献   

8.
The femoral microanatomy of 155 species of extant amniotes (57 species of mammals, 15 species of turtles, 56 species of lepidosaurs, and 27 species of birds) of known lifestyle is studied to demonstrate a possible link between some basic parameters of bone structure and specific lifestyles, as well as phylogenetic relationships between taxa. Squared change parsimony with random taxon reshuffling and pairwise comparisons reveal that most compactness and size parameters exhibit both phylogenetic and ecological signals. A discriminant analysis produces several inference models, including a ternary model (aquatic, amphibious, terrestrial) that yield the correct lifestyle in 88% of the cases. These models are used to infer the lifestyle of three extinct Permian temnospondyls: Eryops megacephalus, Acheloma dunni, and Trimerorhachis insignis. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 644–655.  相似文献   

9.
10.
Specialized acrobatic leaping has been recognized as a key adaptive trait tied to the origin and subsequent radiation of euprimates based on its observed frequency in extant primates and inferred frequency in extinct early euprimates. Hypothesized skeletal correlates include elongated tarsal elements, which would be expected to aid leaping by allowing for increased rates and durations of propulsive acceleration at takeoff. Alternatively, authors of a recent study argued that pronounced distal calcaneal elongation of euprimates (compared to other mammalian taxa) was related primarily to specialized pedal grasping. Testing for correlations between calcaneal elongation and leaping versus grasping is complicated by body size differences and associated allometric affects. We re-assess allometric constraints on, and the functional significance of, calcaneal elongation using phylogenetic comparative methods, and present an evolutionary hypothesis for the evolution of calcaneal elongation in primates using a Bayesian approach to ancestral state reconstruction (ASR). Results show that among all primates, logged ratios of distal calcaneal length to total calcaneal length are inversely correlated with logged body mass proxies derived from the area of the calcaneal facet for the cuboid. Results from phylogenetic ANOVA on residuals from this allometric line suggest that deviations are explained by degree of leaping specialization in prosimians, but not anthropoids. Results from ASR suggest that non-allometric increases in calcaneal elongation began in the primate stem lineage and continued independently in haplorhines and strepsirrhines. Anthropoid and lorisid lineages show stasis and decreasing elongation, respectively. Initial increases in calcaneal elongation in primate evolution may be related to either development of hallucal-grasping or a combination of grasping and more specialized leaping behaviors. As has been previously suggested, subsequent increases in calcaneal elongation are likely adaptations for more effective acrobatic leaping, highlighting the importance of this behavior in early euprimate evolution.  相似文献   

11.
The presence of osteoderms within the integument, forming a carapace, is one of the most distinctive features of armadillos with the external morphology of these elements forming the basis of most systematic schemes. This is especially true for fossil taxa, where these elements are most frequent in the palaeontological record. A detailed study of osteoderms from the cephalic shield and different regions of the dorsal armour of Chaetophractus villosus (Euphractinae, Xenarthra) was made and compared to those of the extant genus Dasypus (Dasypodinae, Xenarthra), and the extinct genus ?Eutatus. Three distinct histological zones were recognized: outer and inner zones are thin, formed by regular compact bone, the middle zone is thicker, with large cavities that contain mainly adipose tissue, hair follicles, and sweat and sebaceous glands. The internal structure of ?Eutatus (also a member of Euphractinae) osteoderms is close to that of C. villosus, consistent with the notion that these taxa are phylogenetically closely related. In contrast, Dasypus shows marked differences. Dasypus shows hair follicles associated with both gland types (sweat and sebaceous) and connected to foramina on the external surface. Although not observed in adult C. villosus, it has been documented during embryonic development, only to atrophy later in ontogeny. Furthermore, the presence of red bone marrow is rare in C. villosus, but widespread in Dasypus novemcinctus osteoderms. These results suggest an early split of both subfamilies and support the hypothesis that the Euphractinae are more derived than the Dasypodinae.  相似文献   

12.
Gerald Mayr 《Geobios》2006,39(6):865
A postcranial skeleton of a small bird from the early Oligocene locality Pichovet in Southern France is described and identified as Eocuculus cf. cherpinae Chandler, 1999. It is the second fossil record of Eocuculus which was hitherto known from a postcranial skeleton from the late Eocene of North America only. Although Eocuculus shares some derived similarities with Cuculidae (cuckoos), it distinctly differs in a number of osteological features from crown group members of this taxon. If future, more complete skeletons prove its cuculiform affinities, Eocuculus is a stem lineage representative of this taxon and not within the crown group. Recognition of Eocuculus in the early Oligocene of France provides evidence for the presence of an extinct late Eocene/early Oligocene avian taxon with an intercontinental Northern Hemisphere distribution.  相似文献   

13.
《Comptes Rendus Palevol》2008,7(8):607-627
This study compares fossil femora attributed to extinct African bunodont lutrines with extant mustelids and ursids to reconstruct locomotor behavior. Due to the immense size differences among taxa, shape data were used to compare morphology. Based on morphological differences, the fossil femora are suggested to belong to different taxa with different locomotor abilities and habitat preferences. The Langebaanweg femur is the oldest and has a typical mustelid morphology suggesting that it was a locomotor generalist like most mustelids. The West Turkana form is more like extant nonbunodont otters, but much larger, and may have belonged to a semiaquatic taxon. The enormous Omo femur shares some features with truly aquatic taxa (e.g., Enhydra) and is the most likely to have been fully aquatic. The same may hold true for the Hadar species as it is most similar to that from the Omo. If these femora truly belong to bunodont lutrines, then they are more diverse in postcranial morphology than in dental morphology.  相似文献   

14.
The adaptation to a particular function could directly influence the morphological evolution of an anatomical structure as well as its rates. The humeral morphology of moles (subfamily Talpinae) is highly modified in response to intense burrowing and fully fossorial lifestyle. However, little is known of the evolutionary pathways that marked its diversification in the two highly fossorial moles tribes Talpini and Scalopini. We used two-dimensional landmark-based geometric morphometrics and comparative methods to understand which factors influenced the rates and patterns of the morphological evolution of the humerus in 53 extant and extinct species of the Talpini (22 extant plus 12 extinct) and Scalopini (six extant plus 13 extinct) tribes, for a total of 623 humeri. We first built a synthetic phylogeny of extinct and extant taxa of the subfamily Talpinae based on all the available information from known phylogenies, molecular data, and age ranges of fossil records. We tested for evolutionary allometry by means of multivariate regression of shape on size variables. Evolutionary allometric trajectories exhibited convergence of humeral shape between the two tribes, even when controlling for phylogeny, though a significant differences in the evolutionary rates was found between the two tribes. Talpini, unlike Scalopini, seem to have reached a robust fossorial morphology early during their evolution, and their shape disparity did not change, if it did not decrease, through time. Furthermore, the basal Geotrypus spp. clearly set apart from the other highly fossorial moles, exhibiting a significant acceleration of evolutionary shifts toward higher degree of fossorial adaptation. Our observations support the hypothesis that the evolution of allometry may reflect a biological demand (in this case functional) that constrains the rates of evolution of anatomical structures.  相似文献   

15.
The ontogeny of extant amphibians often is used as a model for that of extinct early tetrapods, despite evidence for a spectrum of developmental modes in temnospondyls and a paucity of ontogenetic data for lepospondyls. I describe the skeletal morphogenesis of the extinct lepospondyls Microbrachis pelikani and Hyloplesion longicostatum using the largest samples examined for either taxon. Nearly all known specimens were re-examined, allowing for substantial anatomical revisions that affect the scoring of characters commonly used in phylogenetic analyses of early tetrapods. The palate of H. longicostatum is re-interpreted and suggested to be more similar to that of M. pelikani, especially in the nature of the contact between the pterygoids. Both taxa possess lateral lines, and M. pelikani additionally exhibits branchial plates. However, early and rapid ossification of the postcranial skeleton, including a well-developed pubis and ossified epipodials, suggests that neither taxon metamorphosed nor were they neotenic in the sense of branchiosaurids and salamanders. Morphogenetic patterns in the foot suggest that digit 5 was developmentally delayed and the final digit to ossify in M. pelikani and H. longicostatum. Overall patterns of postcranial ossification may indicate postaxial dominance in limb and digit formation, but also more developmental variation in early tetrapods than has been appreciated. The phylogenetic position and developmental patterns of M. pelikani and H. longicostatum are congruent with the hypothesis that early tetrapods lacked metamorphosis ancestrally and that stem-amniotes exhibited derived features of development, such as rapid and complete ossification of the skeleton, potentially prior to the evolution of the amniotic egg.  相似文献   

16.
Myers T 《Zoological science》2007,24(10):1012-1027
Extant and fossil Australian chelonioid turtles were examined for 57 osteological morphometric variables. Data were analysed using principal components analysis and canonical variates analysis, after Burnaby isometric 'size' removal, as well as multivariate allometry. Results indicate that Lepidochelys spp. are proportionately differentiated from other Cheloniidae. The majority of chelonioid osteological variables scale isometrically, with less than a third exhibiting positive or negative allometry. Skull length and width, postero-ventral skull, mandible length, scapular and pubic variables are found to be useful for differentiating between extant and extinct chelonioids. Skull length and width, mandible height, jaw symphysis length, premaxilla height, femoral length, scapular, pelvic, plastral and rib variables are established as useful differentiators of cheloniids. Australian fossil protostegids are morphometrically more similar to cheloniids than dermochelyids, and no cranial morphometric evidence could be found for the presence of more than one protostegid species. Some osteological allometric variables may be valuable for use in determining the relationships of chelonioids; however these should be examined in conjunction with morphology-based cladistic analyses to test established phylogenies.  相似文献   

17.
The phylogenetic position of Cetacea (whales, dolphins and porpoises) is an important exemplar problem for combined data parsimony analyses because the clade is ancient and includes many well‐known and relatively complete fossil species. We combined data for 71 terminal taxa (43 extinct/28 extant) to test where Cetacea fits within Cetartiodactyla, and where various fossil hoofed mammals (e.g., ?entelodonts, “?anthracotheriids” and ?mesonychians) are positioned. We scored 635 phenotypic characters (osteology, dentition, soft tissue, behavior), approximately three times the number of characters in the last major analysis of this clade, and combined these with > 40 000 molecular characters, including new data from 10 genes. The analysis supported a topology consistent with the majority of recently published molecular studies. Cetacea was the extant sister taxon of Hippopotamidae, followed successively by Ruminantia, Suina and Camelidae. Several extinct taxa were phylogenetically unstable, upsetting resolution of the strict consensus and limiting branch support, but the positions of several key fossils were consistently resolved. The wholly extinct ?Mesonychia was more closely related to Cetacea than was any “artiodactylan.”“?Anthracotheriids” were paraphyletic, and, with the exception of one species, were more closely related to Hippopotamidae than to any other living taxon. The total evidence analysis overturned a highly nested position for Moschus supported by molecular data alone. The character partition that could be scored for the fossil taxa (osteological and dental characters) included more informative characters than most molecular partitions in our analysis, and had the fewest missing data. The osteological–dental data alone, however, did not support inclusion of cetaceans within crown “Artiodactyla.” Recently discovered ankle bones from fossil whales reinforced the monophyly of Cetartiodactyla but provided no particular evidence of derived similarities between hippopotamids and fossil cetaceans that were not shared with other “artiodactylans”. © The Willi Hennig Society 2007.  相似文献   

18.
In Canis and Ursus the largest proportion of attachments of muscles of the shoulder and brachium on the scapula and humerus is direct; fewer attachments are aponeurotic or tendinous. In both genera most attachments can be associated with superficial osteological features (scars or delimitable surfaces); attachments that lack such features are direct. Most aponeurotic attachments are associated with rugose scarring whereas tendinous attachments are often associated with smooth surfaces. Although most attachments can be associated with osteological features the areal extent of attachment is often not inferrable from the bone. The inference of muscle size or functional significance from osteological features is problematic. The amount of myological information that can be deciphered from the osteology in Canis and Ursus is greater than that reported for particular members of other vertebrate groups which suggests that there may be differences in the degree to which muscles can be reconstructed from superficial osteology alone. Nonetheless, even in mammals such as the Carnivora, detailed muscular reconstructions in extinct taxa cannot be achieved without reference to the musculature of extant relatives. Such reconstructions rely on assumptions, that often have not been adequately tested, regarding the similarity of musculature in closely related taxa. This testing and well corroborated hypotheses of phylogenetic relationship are essential for the evaluation of the accuracy of reconstructions of the musculature in fossil vertebrates.  相似文献   

19.
20.
A new spleenwort hybrid, Asplenium pinnatifidum×trichomanes, from southern Illinois is nicely intermediate in morphology between the parents, and shows no pairing of its genomes: two sets of chromosomes from A.×pinnatifidum and one from A. trichomanes. Taxonomically the cross is significant for its bearing on the interpretation of the taxon A. stotleri Wherry, previously believed to have originated from the same parents. New studies of A. stotleri based upon materials from the now extinct type colony in West Virginia, and from a newly discovered extant colony in Arkansas, show clearly that this taxon is not the same as A. pinnatifidum×trichomanes. Comparisons with A.×bradleyi D. C. Eaton (the tetraploid of A. montanum×platyneuron) indicate that the taxon A. stotleri is similar in all respects except for its more rounded segments. Asplenium stotleri is therefore reinterpreted as a synonym of A.×bradleyi, of which it is regarded as a slightly differentiated local form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号