首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon-13 NMR spectra of the deoxyribonucleotide d(TpA), 3',5'-cyclic AMP and 3',5'-cyclic dAMP were measured. It is shown that the different substitution of C2' in deoxyribonucleotides versus ribonucleotides does not affect the vicinal C2'-C3'-O3'-P coupling to a measurable extent. Therefore, the same set of Karplus parameters may be used for the C2'-C3-O3'-P couplings in ribonucleotides and in deoxyribonucleotides. Vicinal carbon-phosphorus and proton-phosphorus coupling constants are used to calculate the magnitude of the torsion angle epsilon (C4'-C3'-O3'-P), which amounts to 195(0) in the trans conformer and to 261(0) in the gauche(-) conformer.  相似文献   

2.
The 3'-5' circular trinucleotide cr(GpGpGp) was studied by means of 1D and 2D high resolution NMR techniques and molecular mechanics calculations. Analysis of the J-couplings, obtained from the 1H and 13C-NMR spectra, allowed the determination of the conformation of the sugar rings and of the 'circular' phosphate backbone. In the course of the investigations it was found that the Karplus-equation most recently parametrized for the CCOP J-coupling constants could not account for the measured J(C4'P) of 11.1 Hz and a new parametrization for both HCOP and CCOP coupling constants is therefore presented. Subsequent analysis of the coupling constants yielded 'fixed' values for the torsion angles beta and delta (with beta = 178 degrees and delta = 139 degrees). The value of the latter angle corresponds to an S-type sugar conformation. The torsion angles gamma and epsilon are involved in a rapid equilibrium in which they are converted between the gauche(+) and trans and between the trans and gauche(-) domain respectively. We show that the occurrence of epsilon in the gauche(-) domain necessitates S-type sugar conformations. Given the aforementioned values for beta, gamma, delta and epsilon the ring closure constraints for the ring, formed by the phosphate backbone can only be fulfilled if alpha and zeta adopt some special values. After energy minimization with the CHARMm force field only two combinations of alpha and zeta result in energetically favourable structures, i.e. the combination alpha (t)/zeta(g-) in case gamma is in a gauche(+) and epsilon is in a trans conformation, and the combination alpha (t)/zeta (g+) for the combination gamma (t)/epsilon (g-). The results are discussed in relation to earlier findings obtained for cd(ApAp) and cr(GpGp), the latter molecule being a regulator of the synthesis of cellulose in Acetobacter xylinum.  相似文献   

3.
The conformational properties of the cyclic dinucleotide d less than pApA greater than were studied by means of molecular mechanics calculations in which a multiconformation analysis was combined with minimum energy calculations. In this approach models of possible conformers are built by varying the torsion angles of the molecule systematically. These models are then subjected to energy minimization; in the present investigation use was made of the AMBER Force field. It followed that the lowest energy conformer has a pseudo-two-fold axis of symmetry. In this conformer the deoxyribose sugars adopt a N-type conformation. The conformation of the sugar-phosphate backbone is determined by the following torsion angles: alpha +, beta t, gamma +, epsilon t and zeta +. The conformation of this ringsystem corresponds to the structure derived earlier by means of NMR spectroscopy and X-ray diffraction. The observation of a preference for N-type sugar conformations in this molecule can be explained by the steric hindrance induced between opposite H3' atoms when one sugar is switched from N- to S-type puckers. The sugars can in principle switch from N- to S-type conformations, but this requires at least the transition of gamma + to gamma -. In this process the molecule obtains an extended shape in which the bases switch from a pseudo-axial to a pseudo-equatorial position. The calculations demonstrate that, apart from the results obtained for the lowest energy conformation, the 180 degrees change in the propagation direction of the phosphate backbone can be achieved by several different combinations of the backbone torsion angles. It appeared that in the low energy conformers five higher order correlations are found. The combination of torsion angles which are involved in changes in the propagation direction of the sugar-phosphate backbone in DNA-hairpin loops and in tRNA, are found in the dataset obtained for cyclic d less than pApA greater than. It turns out, that in the available examples, 180 degrees changes in the backbone direction are localized between two adjacent nucleotides.  相似文献   

4.
We have previously suggested that variations in the 31P chemical shifts of individual phosphates in duplex oligonucleotides are attributable to torsional angle changes in the deoxyribose phosphate backbone. This hypothesis is not directly supported by analysis of the 1H/31P two-dimensional J-resolved spectra of a number of mismatch dodecamer oligonucleotide duplexes including the following sequences: d-(CGTGAATTCGCG), d(CGUGAATTCGCG), d(CGGGAATTCGCG), d(CGAGAATTCGCG), and d(CGCGAATTCACG). The 31P NMR signals of the dodecamer mismatch duplexes were assigned by 2D 1H/31P pure absorption phase constant time (PAC) heteronuclear correlation spectra. From the assigned H3' and H4' signals, the 31P signals of the base-pair mismatch dodecamers were identified. JH3'-P coupling constants for each of the phosphates of the dodecamers were obtained from 1H/31P J-resolved selective proton flip 2D spectra. By use of a modified Karplus relationship, the C4'-C3'-O3'-P torsional angles (epsilon) were obtained. JH3'-P coupling constants were measured for many of the oligonucleotides as a function of temperature. There exists a good linear correlation between 31P chemical shifts and the epsilon torsional angle. This correlation can be further extended to the C3'-O3'-P-O5' torsional angle (zeta) by using a linear relationship between epsilon and zeta obtained from crystal structure studies. The 31P chemical shifts follow the general observation that the more internally the phosphate is located within the oligonucleotide sequence, the more upfield the 31P resonance occurs. In addition, 31P chemical shifts show sequence- and site-specific variations. Analysis of the backbone torsional angle variations from the coupling constant analysis has provided additional information regarding the origin of these variations in 31P chemical shifts.  相似文献   

5.
Assignment of the 31P resonances of a series of six sequenced-related tetradecamer DNA duplexes, d(TGTGAGCGCTCACA)2, d(TATGAGCGCTCATA)2, d(TCTGAGCGCTCAGA)2, d(TGTGTGCGCACACA)2, d(TGTGACGCGTCACA)2 and d(CACAGTATACTGTG)2, related to the lac operator DNA sequence was determined either by site-specific 17O labeling of the phosphoryl groups or by two-dimensional 1H-31P pure absorption phase constant time (PAC) heteronuclear correlation spectroscopy. J(H3'-P) coupling constants for each of the phosphates of the tetradecamers were obtained from 1H-31P J-resolved selective proton flip 2D spectra. By use of a modified Karplus relationship the C4'-C3'-O3'-P torsional angles (epsilon) were obtained. Comparison of the 31P chemical shifts and J(H3'-P) coupling constants of these sequences has allowed greater insight into those various factors responsible for 31P chemical shift variations in oligonucleotides and provided an important probe of the sequence-dependent structural variation of the deoxyribose phosphate backbone of DNA in solution. These sequence-specific variations in the conformation of the DNA sugar phosphate backbone of various lac operator DNA sequences can possibly explain the sequence-specific recognition of DNA by DNA binding proteins, as mediated through direct contacts between the phosphates and the protein.  相似文献   

6.
S G Kim  L J Lin  B R Reid 《Biochemistry》1992,31(14):3564-3574
In DNA or RNA duplexes, the six-bond C3'-O3'-P-O5'-C5'-C4'-C3' backbone linkage connecting adjacent residues contains six torsion angles (epsilon, zeta, alpha, beta, gamma, delta) but only four protons. This seriously limits the ability to define the backbone conformation by NMR using purely 1H-1H distance geometry (DG) methods. The problem is further compounded by the inability to assign two of the four backbone protons, namely the poorly resolved H5' and H5' protons, and invariably leads to DG structures with poorly defined backbone conformations. We have developed and tested a reliable method to constrain the beta, gamma, and epsilon (and indirectly alpha and zeta) backbone torsion angles by lower-bound NOE distances to unassigned H5'/H5' resonances combined with either 1H line widths or the conservative use of sigma J measurements; the method relies only on 1H 2-D NMR data, does not involve any structural assumptions, and leads to much improved backbone convergence among DG structures. The C4'-C5' torsion angle gamma is constrained by lower-bound NOE distances from H2' and from H6/H8 to any H5'/H5', as well as by sigma JH4, coupling measurements in the 3.9-4.4 ppm region; delta is constrained by H1'-H4' NOE distances and by H3'-H4' and H3'-H2' J couplings in COSY data; epsilon is partially constrained by H3' line width and/or further constrained by subtracting the minimum possible sigma JH3'-H from the observed sigma JH3' (COSY) to arrive at the maximum possible JH3'-P, which is then converted to H3'-P distance bounds. The angle beta is partially constrained via H5'-P and H5'-P distance bounds consistent with the maximum H5'-P and H5'-P J couplings derived from the observed H5' and H5' line widths, while alpha and zeta are indirectly constrained by lower distance bounds on the observed (n)H1' to (n + 1)H5'/H5' NOEs combined with the prior partial constraints on beta, gamma, delta, and epsilon. The combined effects of these additional constraints in determining distance geometry structures have been demonstrated using a 12-base duplex, [d(GCCGTTAACGGC)]2. Coordinate RMSDs per atom between structures refined with these constraints from random-embedded DG structures, from ideal A-DNA, and from B-DNA starting structures were less than 0.4 A for the central 8 base pairs indicating good convergence. All backbone angles for the central 8 base pairs are very well constrained with less than 10 degrees variation in any of the 48 torsion angles.  相似文献   

7.
Proton NMR studies at 500 MHz in aqueous solution were carried out on the G-G chelated deoxytrinucleosidediphosphate platinum complex cis-Pt(NH3)2[d(GpCpG], on the uncoordinated trinucleotide d(GpCpG) and on the constituent monomers cis-Pt(NH3)2[d(Gp)]2, cis-Pt(NH3)2[d(pG)]2, d(Gp), d(pCp) and d(pG). Complete NMR spectral assignments are given and chemical shifts and coupling constants are analysed to obtain an impression of the detailed structure of d(GpCpG) and the distortion of the structure due to chelation with [cis-Pt(NH3)2]2+. Platination of the guanosine monophosphates affects the sugar conformational equilibrium to favour the N conformation of the deoxyribose ring. This feature is also apparent in ribose mononucleotides and is possibly caused by an increased anomeric effect. In cis-Pt(NH3)2[d(pG)]2 the phase angle of pseudorotation of the S-type sugar ring is 20 degrees higher than in 'free' d(pG) which might be an indication for an ionic interaction between the positive platinum and the negatively charged phosphate. It appears that d(GpCpG) reverts from a predominantly random coil to a normal right-handed B-DNA-like single-helical structure at lower temperatures, whereas the conformational features of cis-Pt(NH3)2[d(GpCpG)] are largely temperature-independent. In the latter compound much conformational freedom along the backbone angles is seen. The cytosine protons and deoxyribose protons exhibit almost no shielding effect as should normally be exerted by the guanine bases in stacking positions. This is interpreted in terms of a 'turning away' of the cytosine residue from both chelating guanines. Conformational features of cis-Pt(NH3)2[d(GpCpG)[ are compared with the 'bulge-out' of the ribose-trinucleotide m6(2)ApUpm6(2)A.  相似文献   

8.
Solution conformation of self-complementary DNA duplex d-CGATCG, containing 5' d-CpG 3' site for intercalation of anticancer drug, daunomycin and adriamycin, has been investigated by nuclear magnetic resonance (NMR) spectroscopy. Complete resonance assignments of all the protons (except some H5'/H5" protons) have been obtained following standard procedures based on double quantum filtered correlation spectroscopy (dQF COSY) and two-dimensional nuclear Overhauser effect (NOE) spectra. Analysis of sums of coupling constants in one-dimensional NMR spectra, cross peak patterns in dQF COSY spectra and inter proton distances shows that the DNA sequence assumes a conformation close to the B-DNA family. The deoxyribose sugar conformation is in dynamic equilibrium with predominantly S-type conformer and a minor N-type conformer with N<-->S equilibrium varying with temperature. At 325 K, the mole fraction of the N-conformer increases for some of the residues by approximately 9%. Using a total of 10 spin-spin coupling constants and 112 NOE intensities, structural refinement has been carried out using Restrained Molecular Dynamics (rMD) with different starting structures, potential functions and rMD protocols. It is observed that pseudorotation phase angle of deoxyribose sugar for A3 and T4 residues is approximately 180 degrees and approximately 120 degrees, respectively while all other residues are close to C2'endo-conformation. A large propeller twist (approximately -18 degrees) and smallest twist angle (approximately 31 degrees) at A3pT4 step, in the middle of the sequence, a wider (12 A) and shallower (3.0 A) major groove with glycosidic bond rotation as high anti at both the ends of hexanucleotide are observed. The structure shows base-sequence dependent variations and hence strong local structural heterogeneity, which may have implications in ligand binding.  相似文献   

9.
The conformation and dynamics of the deoxyribose rings of a (nogalamycin)2-d(5'-GCATGC)2 complex have been determined from an analysis of 1H-1H vicinal coupling constants and sums of coupling constants (J1'-2',J1'-2",epsilon 1', epsilon 2' and epsilon 2") measured from one-dimensional n.m.r. spectra and from H-1'-H-2' and H-1'-H-2" cross-peaks in high-resolution phase-sensitive two-dimensional correlation spectroscopy (COSY) and double-quantum-filtered correlation spectroscopy (DQF-COSY) experiments. The value of J3'-4' has also been estimated from the magnitude of H-3'-H-4' cross-peaks in DQF-COSY spectra and H-1'-H-4' coherence transfer cross-peaks in two-dimensional homonuclear Hartman-Hahn spectroscopy (HOHAHA) spectra. The data were analysed, in terms of a dynamic equilibrium between North (C-3'-endo) and South (C-2'-endo) conformers, by using the graphical-analysis methods described by Rinkel & Altona [(1987) J. Biomol. Struct. Dyn. 4,621-649]. The data reveal that the sugars of the 2C-5G and 3A-4T base-pairs, which form the drug-intercalation site, have strikingly different properties. The deoxyribose rings of the 2C-5G base-pair are best described in terms of an equilibrium heavily weighted in favour of the C-2'-endo geometry (greater than 95% 'S'), with a phase angle, P, lying in the range 170-175 degrees and amplitude of pucker between 35 and 40 degrees, as typically found for B-DNA. For the deoxyribose rings of the 3A-4T base-pair, however, the analysis shows that, for 3A, the C-2'-endo and C3'-endo conformers are equally populated, whereas a more limited data set for the 4T nucleotide restricts the equilibrium to within 65-75% C-2'-endo. The deoxyribose rings of the 1G-6C base-pair have populations of 70-80% C-2'-endo, typical of nucleotides at the ends of a duplex. Although drug-base-pair stacking interactions are an important determinant of the enhanced duplex stability of the complex [Searle, Hall, Denny, & Wakelin (1988) Biochemistry 27, 4340-4349], the current findings make it clear that the same interactions can be associated with considerable variations in the degree of local structural dynamics at the level of the sugar puckers.  相似文献   

10.
K Weisz  R H Shafer  W Egan  T L James 《Biochemistry》1992,31(33):7477-7487
Phase-sensitive two-dimensional nuclear Overhauser enhancement (2D NOE) and double-quantum-filtered correlated (2QF-COSY) spectra were recorded at 500 MHz for the DNA duplex d(CATTTGCATC).d(GATGCAAATG), which contains the octamer element of immunoglobulin genes. Exchangeable and nonexchangeable proton resonances including those of the H5' and H5" protons were assigned. Overall, the decamer duplex adopts a B-type DNA conformation. Scalar coupling constants for the sugar protons were determined by quantitative simulations of 2QF-COSY cross-peaks. These couplings are consistent with a two-state dynamic equilibrium between a minor N- and a major S-type conformer for all residues. The pseudorotation phase angle P of the major conformer is in the range 117-135 degrees for nonterminal pyrimidine nucleotides and 153-162 degrees for nonterminal purine nucleotides. Except for the terminal residues, the minor conformer comprises less than 25% of the population. Distance constraints obtained by a complete relaxation matrix analysis of the 2D NOE intensities with the MARDIGRAS algorithm confirm the dependence of the sugar pucker on pyrimidine and purine bases. Averaging by fast local motions has at most small effects on the NOE-derived interproton distances.  相似文献   

11.
Y Guan  G J Thomas  Jr 《Biophysical journal》1996,71(5):2802-2814
A generalized valence force field is derived for the diethyl phosphate anion [(CH3CH2O)2PO2-] and its deuterium [(CH3CD2O)2PO2-, (CD3CH2O)2PO2- and (CD3CD2O)2PO2-] and carbon-13 [(CH3 13CH2O)2PO2-] derivatives in the stable trans-gauche-gauche-trans conformation. Normal coordinate analysis of the trans-gauche-gauche-trans conformer, which serves as a structural analog of the nucleic acid phosphodiester group, is based on comprehensive infrared and Raman spectroscopic data and vibrational assignments obtained for the diethyl phosphate anion. The generalized valence force field is in good agreement with the scaled ab initio force field of diethyl phosphate and represents significant improvement over earlier modeling of the phosphodiester moiety with dimethyl phosphate. The conformational dependence of skeletal C-C-O-P(O2-)-O-C-C stretching vibrations is also explored. Starting with the trans-gauche-gauche-trans conformation, the frequency dependence of skeletal stretching modes has been obtained by stepwise rotation of the torsion angles of the P-O and C-O bonds corresponding to nucleic acid torsions alpha (P-O5'), beta (O5'-C5'), epsilon (C3'-O3'), and zeta (O3'-P). Both symmetric and antisymmetric phosphoester stretching modes are highly sensitive to P-O and C-O torsions, whereas symmetric and antisymmetric phosphodioxy (PO2-) stretching modes are less sensitive. The present results provide an improved structural basis for understanding previously developed empirical correlations between vibrational marker bands and nucleic acid backbone conformation.  相似文献   

12.
Assignment of the 1H and 31P NMR spectra of an extrahelical adenosine tridecamer oligodeoxyribonucleotide duplex, d(CGCAGAATTCGCG)2, has been made by two-dimensional 1H-1H and heteronuclear 31P-1H correlated spectroscopy. The downfield 31P resonance previously noted by Patel et al. (1982) has been assigned by both 17O labeling of the phosphate as well as a pure absorption phase constant-time heteronuclear 31P-1H correlated spectrum and has been associated with the phosphate on the 3' side of the extrahelical adenosine. JH3'-P coupling constants for each of the phosphates of the tridecamer were obtained from the 1H-31P J-resolved selective proton-flip 2D spectrum. By use of a modified Karplus relationship the C4-C3'-O3-P torsional angles (epsilon) were obtained. There exists a good linear correlation between 31P chemical shifts and the epsilon torsional angle. The 31P chemical shifts and epsilon torsional angles follow the general observation that the more internal the phosphate is located within the oligonucleotide sequence, the more upfield the 31P resonance occurs. Because the extrahelical adenosine significantly distorts the deoxyribose phosphate backbone conformation even several bases distant from the extrahelical adenosine, 31P chemical shifts show complex site- and sequence-specific variations. Modeling and NOESY distance-restrained energy minimization and restrained molecular dynamics suggest that the extrahelical adenosine stacks into the duplex. However, a minor conformation is also observed in the 1H NMR, which could be associated with a structure in which the extrahelical adenosine loops out into solution.  相似文献   

13.
T C Williams  V Mani 《Biochemistry》1991,30(11):2976-2988
In order to generate potential chemical cross-links for studying the chromophore binding site of bacteriorhodopsin and related helix-bundle proteins, MnO2 was used to oxidize all-trans-retinal's ring moiety. The structures and solution conformations of three ring-oxidized retinal analogues have been determined by using UV-visible absorption and 1H and 13C NMR spectroscopies, primarily with regard to (i) the introduction of a functional group at the ring end of the chromophore, (ii) the retention of the all-trans geometry of the polyenal side chain, and (iii) the torsional angle of the ring-polyenal bond. Analyses of their UV-visible absorption spectral parameters (lambda max, epsilon max, and vibrational fine structure) and NMR spectral parameters (1H-1H coupling constants, 1H and 13C NMR chemical shifts, and 1H homonuclear Overhauser effects) indicated the 4-oxo and the 2,3-dehydro-4-oxo derivatives both possess the twisted 6-s-cis conformation adopted by most six-membered ring analogues of retinal in solution or crystal. However, the alpha-dioxocyclopentenyl analogue exists in solution predominantly (70-80%) as the planar 6-s-trans conformer, similar to violerythrine chromophore analogues. In order to identify the minor solution forms, molecular modeling and geometry optimizations using the semiempirical molecular orbital method AM1 defined two additional symmetry-related minima at +/- 30-40 degrees in its C6-C7 torsional energy profile. Because the chromophores of bacterio- and halorhodopsins and sensory rhodopsins are bound as the 6-s-trans conformer [Harbison, G.S., Smith, S.O., Pardoen, J.A., Courtin, J.M.L., Lugtenburg, J., Herzfeld, J., Mathies, R.A., & Griffin, R.G. (1985) Biochemistry 24, 6955-6962; Baselt, D.R., Fodor, S.P.A., van der Steen, R., Lugtenburg, J., Bogomolni, R.A., & Mathies, R.A. (1989) Biophys. J. 55, 193-196], we suggest that the cyclopentenyl analogue's alpha-diketo function may be favorably positioned within the binding pocket and sufficiently reactive toward nucleophilic attack to cross-link an arginine located in or near the ring end of the chromophore cavity: Arg134 according to the current model of bacteriorhodopsin's tertiary structure [Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E., & Downing, K.H. (1990) J. Mol. Biol. 213, 899-929] or Arg82 as postulated from an alternate model constructed primarily to accommodate the external point charge contribution to bacteriorhodopsin's opsin shift.  相似文献   

14.
The C-1'-dithiolane Delta(8)-tetrahydrocannabinol (Delta(8)-THC) amphiphilic analogue (-)-2-(6a,7,10,10a-tetrahydro-6,6,9-trimethylhydroxy-6H-dibenzo[b,d]pyranyl)-2-hexyl-1,3-dithiolane (AMG3) is considered as one of the most potent synthetic analgesic cannabinoid (CB) ligands. Its structure is characterized by rigid tricyclic and flexible alkyl chain segments. Its conformational properties have not been fully explored. Structure-activity relationship (SAR) studies on classical CBs showed that the alkyl side chain is the most critical structural part for the receptor activation. However, reported low energy conformers of classical CB analogues vary mainly in the conformation of their alkyl side chain segment. Therefore, comparative molecular dynamics (MD) simulations of low energy conformers of AMG3 were performed in order to investigate its structural and dynamical properties in two different systems. System-I includes ligand and amphoteric solvent DMSO, simulating the biological environment and system-II includes ligand at active site of the homology models of CB1 and CB2 receptors in the solvent. The trajectory analysis results are compared for the systems I and II. In system-I, the dihedral angle defined between aromatic ring and dithiolane ring of AMG3 shows more resistance to be transformed into another torsional angle and the dihedral angle adjacent to dithiolane ring belonging in the alkyl chain has flexibility to adopt gauche+/- and trans dihedral angles. The rest of the dihedral angles within the alkyl chain are all trans. These results point out that wrapped conformations are dynamically less favored in solution than linear conformations. Two possible plane angles defined between the rigid and flexible segments are found to be the most favored and adopting values of approximately 90 degrees and approximately 140 degrees. In system-II, these values are approximately 90 degrees and approximately 120 degrees. Conformers of AMG3 at the CB1 receptor favor to establish a cis conformation defined between aromatic and dithiolane ring and a trans conformation in the CB2 receptor. These different orientations of ligand inside the binding pocket of CB1 and CB2 receptors may explain its different binding affinity in the two receptors. The results of this study can be applied to other synthetic classical CB ligands to produce low energy conformations and can be of general use for the molecules possessing flexible alkyl chain(s). In addition, this study can be useful when restraint of the alkyl chain is sought for optimizing drug design.  相似文献   

15.
Utilizing a new method for modeling furanose pseudorotation (D. A. Pearlman and S.-H. Kim, J. Biomol. Struct. Dyn. 3, 85 (1985)) and the empirical multiple correlations between nucleic acid torsion angles we derived in the previous report (D. A. Pearlman and S.-H. Kim, previous paper in this issue), we have made an energetic examination of the entire conformational spaces available to two nucleic acid oligonucleotides: d(ApApApA) and ApApApA. The energies are calculated using a semi-empirical potential function. From the resulting body of data, energy contour map pairs (one for the DNA molecule, one for the RNA structure) have been created for each of the 21 possible torsion angle pairs in a nucleotide repeating unit. Of the 21 pairs, 15 have not been reported previously. The contour plots are different from those made earlier in that for each point in a particular angle-angle plot, the remaining five variable torsion angles are rotated to the values which give a minimum energy at this point. The contour maps are overall quite consistent with the experimental distribution of oligonucleotide data. A number of these maps are of particular interest: delta (C5'-C4'-C3'-O3')-chi (O4'-C1'-N9-C4), where the energetic basis for an approximately linear delta-chi correlation can be seen: zeta (C3'-O3'-P-O5')-delta, in which the experimentally observed linear correlation between zeta and delta in DNA(220 degrees less than zeta less than 280 degrees) is clearly predicted; zeta-epsilon (C4'-C3'-O3'-P), which shows that epsilon increases with decreasing zeta less than 260 degrees; alpha (O3'-P-O5'-C5')-gamma (O5'-C5'-C4'-C3') where a clear linear correlation between these angles is also apparent, consistent with experiment; and several others. For the DNA molecule studied here, the sugar torsion delta is predicted to be the most flexible, while for the RNA molecule, the greatest amount of flexibility is expected to reside in alpha and gamma. Both the DNA and RNA molecules are predicted to be highly polymorphic. Complete energy minimization has been performed on each of the minima found in the energy searches and the results further support this prediction. Possible pathways for B-form to A-form DNA interconversion suggested by the results of this study are discussed. The results of these calculations support use of the new sugar modeling technique and torsion angle correlations in future conformational studies of nucleic acids.  相似文献   

16.
All H,H, H,P and several C,P coupling constants, including those between C-4' and the vicinal phosphorus atom, have been determined for NADP+, NADPH coenzymes and for a 4,4-dimer obtained from one-electron electrochemical reduction of NADP+. From these data the preferred conformation of the ribose, that of the 1,4-dihydronicotinamide rings, and the conformation about bonds C(4')-C(5') and C(5')-O(5') were deduced. The preferred form of the 1,4- and 1,6-dihydropyridine rings and the conformation about the ring-ring junction were also obtained for all the other 4,4- and 4,6-dimers formed in the same reduction. All the dimers show a puckered structure, i.e., a boat form for the 1,4- and a twist-boat for the 1,6-dihydronicotinamide ring; both protons at the ring-ring junctions are equatorial and have preferred gauche orientation. On the contrary, the reduced coenzyme NADPH displays a planar or highly flexible conformation, rapidly flipping between two limiting boat structures. The conformation of the ribose rings, already suggested for the NADP coenzymes to be an equilibrium mixture of C(2')-endo (S-type) and C(3')-endo (N-type) puckering modes, has been reexamined by using the Altona procedure and the relative proportion of the two modes has been obtained. The S and N families of conformers have almost equal population for the adenine-ribose, whereas for the nicotinamide-ribose rings the S-type reaches the 90%. The rotation about the ester bond C(5')-O(5') and about C(4')-C(5'), defined by torsion angles beta and gamma respectively, displays a constant high preference for the trans conformer beta t (75-80%), whereas the rotamers gamma are spread out in a range of different populations. The values are distributed between the gauche gamma + (48-69%) and the trans gamma t forms (28-73%). The gamma + conformer reaches a 90% value in the case of NADP+ and NMN+. The conformations of the mononucleotides 5'-AMP, NMN+ and NMNH were also calculated from the experimental coupling constant values of the literature.  相似文献   

17.
A graphical method is presented for the conformational analysis of the sugar ring in DNA fragments by means of proton-proton couplings. The coupling data required for this analysis consist of sums of couplings, which are referred to as sigma 1' (= J1'2' + J1'2'), sigma 2' (= J1'2' + J2'3' + J2'2'), sigma 2' (= J1'2' + J2'3' + J2'2') and sigma 3' (= J2'3' + J2'3' + J3'4'). These sums of couplings correspond to the distance between the outer peaks of the H1', H2', H2' and H3' [31P] resonances, respectively, (except for sigma 2' and sigma 2' in the case of a small chemical shift difference between the H2' and H2' resonances) and can often be obtained from 1H-NMR spectra via first-order measurement, obviating the necessity of a computer-assisted simulation of the fine structure of these resonances. Two different types of graphs for the interpretation of the coupling data are discussed: the first type of graph serves to probe as to whether or not the sugar ring occurs as a single conformer, and if so to analyze the coupling data in terms of the geometry of this sugar ring. In cases where the sugar ring does not occur as a single conformer, but as a blend of N- and S-type sugar puckers, the second type of graph is used to analyze the coupling data in terms of the geometry and population of the most abundant form. It is shown that the latter type of analysis can be carried out on the basis of experimental values for merely sigma 1',sigma 2' and sigma 2', without any assumptions or restrictions concerning a relation between the geometry of the N- and S-type conformer. In addition, the question is discussed as to how insight can be gained into the conformational purity of the sugar ring from the observed fine structure of the H1' resonance. Finally, a comparison is made between experimental coupling data reported for single-stranded and duplex DNA fragments and covalent RNA-DNA hybrids on the one hand and the predicted couplings and sums of couplings presented in this paper on the other hand.  相似文献   

18.
We present the high-resolution solution structures of a self-complementary DNA decamer duplex featuring a single alpha-anomeric nucleotide per strand encompassed by a set of 3'-3' and 5'-5' phosphodiester linkages, d(GCGAAT-3'-3'-alphaT-5'-5'-CGC)2, alphaT, and its unmodified control, d(GCGAATTCGC)2, obtained by restrained molecular dynamics. Interproton distance and deoxyribose ring torsion angle restraints were deduced from homonuclear NOESY and DQF-COSY data, respectively. For both the control and alphaT duplexes, excellent global convergence was observed from two different (A- and B-) starting models. The final average structures of the two duplexes are highly homologous, and overall possess the traits characteristic of right-handed B-DNA duplexes. However, localized differences between the two structures stem from the enhanced conformational exchange in the deoxyribose ring of the cytidine following the 5'-5' linkage, the C3'- exo pseudorotation phase angle of the alpha-nucleotide, and unusual backbone torsions in the 3'-3' and 5'-5' phosphodiester linkages. The structural data reported here are relevant to the design of antisense therapeutics comprised of these modifications.  相似文献   

19.
X-ray, NMR and molecular mechanics studies on pentostatin (C11H16N4O4), a potent inhibitor of the enzyme adenosine deaminase, have been carried out to study the structure and conformation. The crystals belong to the monoclinic space group P21 with the cell dimensions of a = 4.960(1), b = 10.746(3), c = 11.279(4)A, beta = 101.18(2) degrees and Z = 2. The structure was solved by direct methods and difference Fourier methods and refined to an R value of 0.047 for 997 reflections. The trihydrodiazepine ring is nonplanar and adopts a distorted sofa conformation with C(7) deviated from the mean plane by 0.66A. The deoxyribose ring adopts a C3'-endo conformation, different from coformycin where the sugar has a C2'-endo conformation. The observed glycosidic torsion angle (chi = -119.5 degrees) is in the anti range. The conformation about the C(4')-C(5') bond is gauche+. The conformation of the molecule is compared with that of coformycin and 2-azacoformycin. 1 and 2D NMR studies have been carried out and the dihedral angles obtained from coupling constants have been compared with those obtained from the crystal structure. The conformation of deoxyribose in solution is approximately 70% S and 30% N. Molecular mechanics studies were performed to obtain the energy minimized conformation, which is compared with X-ray and NMR results.  相似文献   

20.
The resonance Raman (RR) spectroscopic, conformational, and kinetic properties of six dithioacylpapain intermediates have been examined. Five of the intermediates are of the form N-(methyloxycarbonyl)-X-glycine-C(= S)S-papain, where X is L-phenyl-alanine, D-phenylalanine, glycine, L-phenylglycine, or D-phenylglycine. The sixth intermediate is N-phenylacetyl-glycine-C(= S)S-papain. Throughout the series there is an approximately 50-fold variation in kcat, the rate constant for deacylation, and a 1750-fold variation in kcat/KM. Existing RR spectra structure correlations allow us to define the torsional angles in the NH-CH2-C(= S)-S-CH2-CH fragment of the functioning intermediates. The values of these angles for each bound substrate appear to be very similar, with the substrates assuming a B-type conformer such that the nitrogen atom of the P1 glycine residue is cis to the thiol sulphur atom of cysteine-25. For each intermediate, the C(= S)S-CH2CH torsional angle is approximately -90 degrees, whereas for the SCH2-CH torisonal angle the cysteine-25 thiol sulphur (S) and cysteine-25 C alpha hydrogen (H) atoms are approximately trans. The three acyl-enzymes with the lowest catalytic rate constants, viz. N-(methyloxycarbonyl)-glycine-glycine-, N-(methyloxycarbonyl)-L-phenylglycine-glycine-, or N-(phenylacetyl)-glycine-dithioacylpapains, have atypical RR spectra in that they show a feature of medium intensity in the 1,085-cm-1 region. This band is sensitive to NH to ND exchange of the P1 glycine residues' (-NH-) function and, thus, the corresponding mode involves an excursion of the NH hydrogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号