首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used a method for the two-dimensional crystallization of retroviral structural proteins to obtain a three-dimensional structure of negatively stained, membrane-bound, histidine-tagged Moloney murine leukemia virus (M-MuLV) capsid protein (his-MoCA) arrays. Tilted and untilted micrographs from crystals formed by purified his-MoCA proteins incubated beneath lipid monolayers containing nickel-chelating lipids were used in 3D reconstructions. The 2D crystals had unit cell dimensions of a=72.6 A, b=72.5 A and gamma=119.5 degrees, but appeared to have no intrinsic symmetry (p1) in 3D, in contrast to the trigonal or hexagonal appearance of their 2D projections. Membrane-bound his-MoCA proteins showed a strand-like organization, apparently with dimer building blocks. Membrane-proximal regions, or putative N-terminal domains (NTDs), dimerized with different partners than the membrane-distal putative C-terminal domains (CTDs). Evidence also suggests that CTDs can adopt alternate orientations relative to their NTDs, forming interstrand connections. Our results are consistent with helical-spiral models for retrovirus particle assembly, but are not easily reconcilable with icosahedral models.  相似文献   

2.
Structural analysis of membrane-bound retrovirus capsid proteins.   总被引:5,自引:1,他引:4  
We have developed a system for analysis of histidine-tagged (His-tagged) retrovirus core (Gag) proteins, assembled in vitro on lipid monolayers consisting of egg phosphatidylcholine (PC) plus the novel lipid DHGN. DHGN was shown to chelate nickel by atomic absorption spectrometry, and DHGN-containing monolayers specifically bound gold conjugates of His-tagged proteins. Using PC + DHGN monolayers, we examined membrane-bound arrays of an N-terminal His-tagged Moloney murine leukemia virus (M-MuLV) capsid (CA) protein, His-MoCA, and in vivo studies suggest that in vitro-derived His-MoCA arrays reflect some of the Gag protein interactions which occur in assembling virus particles. The His-MoCA proteins formed extensive two-dimensional (2D) protein crystals, with reflections out to 9.5 A resolution. The image-analyzed 2D projection of His-MoCA arrays revealed a distinct cage-like network. The asymmetry of the individual building blocks of the network led to the formation of two types of hexamer rings, surrounding protein-free cage holes. These results predict that Gag hexamers constitute a retrovirus core substructure, and that cage hole sizes define an exclusion limit for entry of retrovirus envelope proteins, or other plasma membrane proteins, into virus particles. We believe that the 2D crystallization method will permit the detailed analysis of retroviral Gag proteins and other His-tagged proteins.  相似文献   

3.
Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near‐native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23 of human aquaporin 4 (AQP4‐M23) was expressed in the X. laevis oocytes following their injection with AQP4‐M23 cRNA. AQP4‐M23 expression and incorporation in the plasma membrane were confirmed by the changes in oocyte volume in response to applied osmotic gradients. Oocyte plasma membranes were then purified by ultracentrifugation on a discontinuous sucrose gradient, and the presence of AQP4‐M23 proteins in the purified membranes was established by Western blotting analysis. Compared with membranes without over‐expressed AQP4‐M23, the membranes from AQP4‐M23 cRNA injected oocytes showed clusters of structures with lateral size of about 10 nm in the AFM topography images, with a tendency to a fourfold symmetry as may be expected for higher‐order arrays of AQP4‐M23. In addition, but only infrequently, AQP4‐M23 tetramers could be resolved in 2D arrays on top of the plasma membrane, in good quantitative agreement with transmission electron microscopy analysis and the current model of AQP4. Our results show the potential and the difficulties of AFM studies on cloned membrane proteins in native eukaryotic membranes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Müller DJ  Engel A 《Nature protocols》2007,2(9):2191-2197
Membrane proteins comprise 30% of the proteome of higher organisms. They mediate energy conversion, signal transduction, solute transport and secretion. Their native environment is a bilayer in a physiological buffer solution, hence their structure and function are preferably assessed in this environment. The surface structure of single membrane proteins can be determined in buffer solutions by atomic force microscopy (AFM) at a lateral resolution of less than 1 nm and a vertical resolution of 0.1-0.2 nm. Moreover, single proteins can be directly addressed, stuck to the AFM stylus and subsequently unfolded, revealing the molecular interactions of the protein studied. The examples discussed here illustrate the power of AFM in the structural analysis of membrane proteins in a native environment.  相似文献   

5.
Various techniques of electron microscopy (EM) such as ultrathin sectioning, freeze-fracturing, freeze-etching, negative staining and (cryo-)electron crystallography of two-dimensional crystals have been employed, since now, to obtain much of the structural information of the Photosystem II (PS II) pigment–protein complex at both low and high resolution. This review summarizes information about the structure of this membrane complex as well as its arrangement and interactions with the antenna proteins in thylakoid membranes of higher plants and cyanobacteria obtained by means of EM. Results on subunit organization, with the emphasis on the proteins of the oxygen-evolving complex (OEC), are compared with the data obtained by X-ray crystallography of cyanobacterial PS II. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Using a new scheme based on atomic force microscopy (AFM), we investigate mechanical properties of clathrin-coated vesicles (CCVs). CCVs are multicomponent protein and lipid complexes of approximately 100 nm diameter that are implicated in many essential cell-trafficking processes. Our AFM imaging resolves clathrin lattice polygons and provides height deformation in quantitative response to AFM-substrate compression force. We model CCVs as multilayered elastic spherical shells and, from AFM measurements, estimate their bending rigidity to be 285 +/- 30 k(B)T, i.e., approximately 20 times that of either the outer clathrin cage or inner vesicle membrane. Further analysis reveals a flexible coupling between the clathrin coat and the membrane, a structural property whose modulation may affect vesicle biogenesis and cellular function.  相似文献   

7.
This review briefly introduces the principles of atomic force microscopy (AFM) applied to protein samples. AFM provides three-dimensional surface images of the proteins with high resolution. The advantage of AFM for protein studies is that AFM can visualize directly the molecule under physiological conditions without previous treatment. AFM operated in the force-spectroscopy mode is now a widespread technique, often used to investigate ligand receptor interactions with the goal of measuring forces at the individual molecule level.  相似文献   

8.
Recent topographs of the intracytoplasmic membrane (ICM) of purple bacteria obtained by atomic force microscopy (AFM) have provided the first surface views of the native architecture of a multicomponent biological membrane at submolecular resolution, representing an important landmark in structural biology. A variety of species-dependent, closely packed arrangements of light-harvesting (LH) complexes was revealed: the most highly organized was found in Rhodobacter sphaeroides in which the peripheral LH2 antenna was seen either in large clusters or in fixed rows interspersed among ordered arrays of dimeric LH1-reaction center (RC) core complexes. A more random organization was observed in other species containing both the LH1 and LH2 complexes, as typified by Rhododspirillum photometricum with randomly packed monomeric LH1-RC core complexes intermingled with large, paracrystalline domains of LH2 antenna. Surprisingly, no structures that could be identified as the ATP synthase or cytochrome bc 1 complexes were observed, which may reflect their localization at ICM vesicle poles or in curved membrane areas, out of view from the flat regions imaged by AFM. This possible arrangement of energy transducing complexes has required a reassessment of energy tranduction mechanisms which place the cytochrome bc 1 complex in close association with the RC. Instead, more plausible proposals must account for the movement of quinone redox species over considerable membrane distances on appropriate time scales. AFM, together with atomic resolution structures are also providing the basis for molecular modeling of the ICM that is leading to an improved picture of the supramolecular organization of photosynthetic complexes, as well as the forces that drive their segregation into distinct domains.  相似文献   

9.
Membrane proteins perform many essential cellular functions. Over the last years, substantial advances have been made in our understanding of the structure and function of isolated membrane proteins. However, like soluble proteins, many membrane proteins assemble into supramolecular complexes that perform specific functions in specialized membrane domains. Since supramolecular complexes of membrane proteins are difficult to study by conventional approaches, little is known about their composition, organization and assembly. The high signal-to-noise ratio of the images that can be obtained with an atomic force microscope (AFM) makes this instrument a powerful tool to image membrane protein complexes within native membranes. Recently, we have reported high-resolution topographs of junctional microdomains in native eye lens membranes containing two-dimensional (2D) arrays of aquaporin-0 (AQP0) surrounded by connexons. While both proteins are involved in cell adhesion, AQP0 is a specific water channel whereas connexons form cell–cell communication channels with broad substrate specificity. Here, we have performed a detailed analysis of the supramolecular organization of AQP0 tetramers and connexon hexamers in junctional microdomains in the native lens membrane. We present first structural models of these junctional microdomains, which we generated by docking atomic models of AQP0 and connexons into the AFM topographs. The AQP0 2D arrays in the native membrane show the same molecular packing of tetramers seen in highly ordered double-layered 2D crystals obtained through reconstitution of purified AQP0. In contrast, the connexons that surround the AQP0 arrays are only loosely packed. Based on our AFM observations, we propose a mechanism that may explain the supramolecular organization of AQP0 and connexons in junctional domains in native lens membranes.  相似文献   

10.
Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding.  相似文献   

11.
Novel approaches of localization microscopy have opened new insights into the molecular nano-cosmos of cells. We applied a special embodiment called spectral position determination microscopy (SPDM) that has the advantage to run with standard fluorescent dyes or proteins under standard preparation conditions. Pointillist images with a resolution in the order of 10 nm can be obtained by SPDM. Therefore, vector pEYFP-m164, encoding the murine cytomegalovirus glycoprotein gp36.5/m164 fused to enhanced yellow fluorescent protein, was transiently transfected into COS-7 cells. This protein shows exceptional intracellular trafficking dynamics, moving within the endoplasmic reticulum (ER) and outer nuclear membrane. The molecular positions of gp36.5/m164 were visualized and determined by SPDM imaging. From the position point patterns of the protein molecules, their arrangements were quantified by next neighbour distance analyses. Three different structural arrangements were discriminated: (a) a linear distribution along the membrane, (b) a highly structured distribution in the ER, and (c) a homogenous distribution in the cellular cytoplasm. The results indicate that the analysis of next neighbour distances on the nano-scale allows the identification and discrimination of different structural arrangements of molecules within their natural cellular environment.  相似文献   

12.
Imaging biomolecule arrays by atomic force microscopy.   总被引:3,自引:1,他引:2       下载免费PDF全文
We describe here a method for constructing ordered molecular arrays and for detecting binding of biomolecules to these arrays using atomic force microscopy (AFM). These arrays simplify the discrimination of surface-bound biomolecules through the spatial control of ligand presentation. First, photolithography is used to spatially direct the synthesis of a matrix of biological ligands. A high-affinity binding partner is then applied to the matrix, which binds at locations defined by the ligand array. AFM is then used to detect the presence and organization of the high-affinity binding partner. Streptavidin-biotin arrays of 100 x 100 microns and 8 x 8 microns elements were fabricated by this method. Contact and noncontact AFM images reveal a dense lawn of streptavidin specific to the regions of biotin derivatization. These protein regions are characterized by a height profile of approximately 40 A over the base substrate with a 350-nm edge corresponding to the diffraction zone of the photolithography. High resolution scans reveal a granular topography dominated by 300 A diameter features. The ligand-bound protein can then be etched from the substrate using the AFM tip, leaving an 8 A shelf that probably corresponds to the underlying biotin layer.  相似文献   

13.
This study presents molecular recognition method, which is based on specific force measurements between modified AFM (atomic force microscopy) tip and mammalian cell. The presented method allows recognition of specific cell surface proteins and receptor sites by nanometer accuracy level. Here we demonstrate specific recognition of membrane-bound Osteopontin (OPN) sites on preosteogenic cell membrane. By merging specific force detection map of the proteins and topography image of the cell, we create a new image (recognition image), which demonstrates the exact locations of the proteins relative to the cell membrane. The recognition results indicate the strong affinity between the modified tip and the target molecules, therefore, it enables the use of an AFM as a remarkable nanoscale tracking tool on the whole cell level.  相似文献   

14.
Super-resolution light microscopy images of integrin-mediated adhesions have revealed that signaling and cytoskeletal proteins reside at characteristic vertical distances between the plasma membrane and F-actin.  相似文献   

15.
Virus assembly occurs in a complex environment and is dependent upon viral and cellular components being properly correlated in time and space. The simplicity of the flock house virus (FHV) capsid and the extensive structural, biochemical and genetic characterization of the virus make it an excellent system for studying in vivo virus assembly. The tetracysteine motif (CCPGCC), that induces fluorescence in bound biarsenical compounds (FlAsH and ReAsH), was genetically inserted in the coat protein, to visualize this gene product during virus infection. The small size of this modification when compared to those made by traditional fluorescent proteins minimizes disruption of the coat proteins numerous functions. ReAsH not only fluoresces when bound to the tetracysteine motif but also allows correlated electron microscopy (EM) of the same cell following photoconversion and osmium staining. These studies demonstrated that the coat protein was concentrated in discrete patches in the cell. High pressure freezing (HPF) followed by freeze substitution (FS) of infected cells showed that these patches were formed by virus particles in crystalline arrays. EM tomography (EMT) of the HPF/FS prepared samples showed that these arrays were proximal to highly modified mitochondria previously established to be the site of RNA replication. Two features of the mitochondrial modification are 60 nm spherules that line the outer membrane and the large chamber created by the convolution induced in the entire organelle.  相似文献   

16.
The heterologous expression and purification of membrane proteins represent major limitations for their functional and structural analysis. Here we describe a new method of incorporation of transmembrane proteins in planar lipid bilayer starting from 1 pmol of solubilized proteins. The principle relies on the direct incorporation of solubilized proteins into a preformed planar lipid bilayer destabilized by dodecyl-beta-maltoside or dodecyl-beta-thiomaltoside, two detergents widely used in membrane biochemistry. Successful incorporations are reported at 20 degrees C and at 4 degrees C with three bacterial photosynthetic multi-subunit membrane proteins. Height measurements by atomic force microscopy (AFM) of the extramembraneous domains protruding from the bilayer demonstrate that proteins are unidirectionally incorporated within the lipid bilayer through their more hydrophobic domains. Proteins are incorporated at high density into the bilayer and on incubation diffuse and segregate into protein close-packing areas. The high protein density allows high-resolution AFM topographs to be recorded and protein subunits organization delineated. This approach provides an alternative experimental platform to the classical methods of two-dimensional crystallization of membrane proteins for the structural analysis by AFM. Furthermore, the versatility and simplicity of the method are important intrinsic properties for the conception of biosensors and nanobiomaterials involving membrane proteins.  相似文献   

17.
Single particle electron microscopy (EM) is an increasingly important tool for the structural analysis of macromolecular complexes. The main advantage of the technique over other methods is that it is not necessary to precede the analysis with the growth of crystals of the sample. This advantage is particularly important for membrane proteins and large protein complexes where generating crystals is often the main barrier to structure determination. Therefore, single particle EM can be employed with great utility in the study of large membrane protein complexes. Although the construction of atomic resolution models by single particle EM is possible in theory, currently the highest resolution maps are still limited to approximately 7-10A resolution and 15-30 A resolution is more typical. However, by combining single particle EM maps with high-resolution models of subunits or subcomplexes from X-ray crystallography and NMR spectroscopy it is possible to build up an atomic model of a macromolecular assembly. Image analysis procedures are almost identical for micrographs of soluble protein complexes and detergent solubilized membrane protein complexes. However, electron microscopists attempting to prepare specimens of a membrane protein complex for imaging may find that these complexes require different handling than soluble protein complexes. This paper seeks to explain how high-quality specimen grids of membrane protein complexes may be prepared to allow for the determination of their structure by EM and image analysis.  相似文献   

18.
Characterizing membrane proteins with single-molecule techniques provides structural and functional insights that cannot be obtained with conventional approaches. Recent studies show that atomic force microscopy (AFM) in the context of a 'lab on a tip' enables the measurement of multiple parameters of membrane proteins. This multifunctional tool can be applied to probe the oligomeric states and conformational changes of membrane protein assemblies in their native environment. The ability to determine diverse properties at high spatial resolution facilitates the mapping of structural flexibilities, electrostatic potentials and electric currents. By using the AFM tip as tweezer, it is possible to characterize unfolding and refolding pathways of single proteins and the location of their molecular interactions. These interactions dictate the stability of the protein and might be modulated by ligands that alter the protein's functional state.  相似文献   

19.
Cryo-electron microscopy single particle analysis shows limited resolution due to poor alignment precision of noisy images taken under low electron exposure. Certain advantages can be obtained by assembling proteins into two-dimensional (2D) arrays since protein particles are locked into repetitive orientation, thus improving alignment precision. We present a labeling method to prepare protein 2D arrays using gold nanoparticles (NPs) interconnecting genetic tag sites on proteins. As an example, mycobacterium tuberculosis 20S proteasomes tagged with 6x-histidine were assembled into 2D arrays using 3.9-nm Au NPs functionalized with nickel-nitrilotriacetic acid. The averaged top-view images from the array particles showed higher resolution (by 6-8A) compared to analysis of single particles. The correct 7-fold symmetry was also evident by using array particles whereas it was not clear by analysis of a comparable number of single particles. The applicability of this labeling method for three-dimensional reconstruction of biological macromolecules is discussed.  相似文献   

20.
BackgroundAtomic Force Microscopy (AFM) is an experimental technique to study structure-function relationship of biomolecules. AFM provides images of biomolecules at nanometer resolution. High-speed AFM experiments produce a series of images following dynamics of biomolecules. To further understand biomolecular functions, information on three-dimensional (3D) structures is beneficial.MethodWe aim to recover 3D information from an AFM image by computational modeling. The AFM image includes only low-resolution representation of a molecule; therefore we represent the structures by a coarse grained model (Gaussian mixture model). Using Monte-Carlo sampling, candidate models are generated to increase similarity between AFM images simulated from the models and target AFM image.ResultsThe algorithm was tested on two proteins to model their conformational transitions. Using a simulated AFM image as reference, the algorithm can produce a low-resolution 3D model of the target molecule. Effect of molecular orientations captured in AFM images on the 3D modeling performance was also examined and it is shown that similar accuracy can be obtained for many orientations.ConclusionsThe proposed algorithm can generate 3D low-resolution protein models, from which conformational transitions observed in AFM images can be interpreted in more detail.General significanceHigh-speed AFM experiments allow us to directly observe biomolecules in action, which provides insights on biomolecular function through dynamics. However, as only partial structural information can be obtained from AFM data, this new AFM based hybrid modeling method would be useful to retrieve 3D information of the entire biomolecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号