首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The expression of selected nitrogen fixation (nif) genes from Klebsiella pneumoniae in foreign hosts provides an approach to determine the pathway, minimal genetic requirements, and host dependence of nitrogenase assembly. In this study, we investigated the assembly of the alpha 2 beta 2 MoFe protein, responsible for substrate binding and reduction, by introducing nifD and nifK (encoding respectively, the alpha and beta subunits) into Escherichia coli and the yeast Saccharomyces cerevisiae. In E. coli, both genes were expressed from the nifHDKY operon; in yeast, the genes, separately fused to the yeast ADH1 promoter, were introduced on two different plasmids. Denaturing immunoblot analyses demonstrated the presence of significant amounts of NifD and NifK in both hosts. In E. coli, the level or perhaps modification of NifD depended on the growth medium of the bacteria. Nondenaturing, anaerobic immunoblot assays revealed in E. coli, nif-specific antigens of lower electrophoretic mobility than Kp1, which may represent assembly intermediates. In yeast, no putative assembled products were evident, and the predominant antigens corresponded to the monomeric forms of the polypeptides. These results indicate that, unlike NifH, the Fe protein subunit (Berman, J., Gershoni, J. M., and Zamir, A. (1985) J. Biol. Chem. 260, 5240-5243), NifD and NifK are insufficient for the assembly of an electrophoretically Kp1-like structure. Homodimerization of nifK and probably of nifD primary gene products does not appear to occur spontaneously and hence is unlikely to represent the initial step in the assembly. The difference between the two hosts suggests that the cellular environment or mode of expression could affect the interaction between the two subunits.  相似文献   

2.
Compared to free living diazotrophs, the nitrogenase system of symbiotic microorganisms, like Rhizobium (Synorhizobium) meliloti, was poorly studied. The aim of our research was to investigate whether (by analogy with Klebsiella pneumoniae) the NifM product is required and sufficient to obtain active R. meliloti Fe-protein. We cloned nifH gene of R. meliloti and nifM gene of K. pneumoniae in suitable yeast vectors. When introduced into Saccharomyces cerevisiae cells, both genes were effectively expressed to proteins similar to the native products in its immunoreactivity and apparent molecular mass. The association of R. meliloti NifH protein into dimer structure required co-expression of NifM that also conferred stability of NifH polypeptide. However, the NifH protein synthesized in yeast did not show enzyme activity, suggesting that the NifM of K. pneumoniae is incapable of activating the NifH protein of R. meliloti.  相似文献   

3.
The in vitro reconstitution of molybdenum nitrogenase was manipulated to generate a chimeric enzyme in which the active site iron-molybdenum cofactor (FeMo-co) is replaced by NifB-co. The NifDK/NifB-co enzyme was unable to reduce N2 to NH3, while exhibiting residual C2H4 and considerable H2 production activities. Production of H2 by NifDK/NifB-co was stimulated by N2 and was dependent on NifH and ATP hydrolysis. Thus, NifDK/NifB-co is a useful tool to gain insights into the catalytic mechanism of nitrogenase. Furthermore, phylogenetic analysis of D and K homologs indicates that several early emerging lineages, which contain NifB, NifH and NifDK encoding genes but which lack other genes required for processing NifB-co into FeMo-co, might encode an enzyme with similar catalytic properties to NifDK/NifB-co.  相似文献   

4.
The natural history of nitrogen fixation   总被引:1,自引:0,他引:1  
In recent years, our understanding of biological nitrogen fixation has been bolstered by a diverse array of scientific techniques. Still, the origin and extant distribution of nitrogen fixation has been perplexing from a phylogenetic perspective, largely because of factors that confound molecular phylogeny such as sequence divergence, paralogy, and horizontal gene transfer. Here, we make use of 110 publicly available complete genome sequences to understand how the core components of nitrogenase, including NifH, NifD, NifK, NifE, and NifN proteins, have evolved. These genes are universal in nitrogen fixing organisms-typically found within highly conserved operons-and, overall, have remarkably congruent phylogenetic histories. Additional clues to the early origins of this system are available from two distinct clades of nitrogenase paralogs: a group composed of genes essential to photosynthetic pigment biosynthesis and a group of uncharacterized genes present in methanogens and in some photosynthetic bacteria. We explore the complex genetic history of the nitrogenase family, which is replete with gene duplication, recruitment, fusion, and horizontal gene transfer and discuss these events in light of the hypothesized presence of nitrogenase in the last common ancestor of modern organisms, as well as the additional possibility that nitrogen fixation might have evolved later, perhaps in methanogenic archaea, and was subsequently transferred into the bacterial domain.  相似文献   

5.
6.
A number of nitrogen-fixing bacteria were screened using PCR for genes (vnfG and anfG) unique to the V-containing nitrogenase (vnf) and the Fe-only nitrogenase (anf) systems. Products with sequences similar to that of vnfG were obtained from Azotobacter paspali and Azotobacter salinestris genomic DNAs, and products with sequences similar to that of anfG were obtained from Azomonas macrocytogenes, Rhodospirillum rubrum, and Azotobacter paspali DNAs. Phylogenetic analysis of the deduced amino acid sequences of anfG and vnfG genes shows that each gene product forms a distinct cluster. Furthermore, amplification of an internal 839-bp region in anfD and vnfD yielded a product similar to anfD from Heliobacterium gestii and a product similar to vnfD from Azotobacter paspali and Azotobacter salinestris. Phylogenetic analysis of NifD, VnfD, and AnfD amino acid sequences indicates that AnfD and VnfD sequences are more closely related to each other than either is to NifD. The results of this study suggest that Azotobacter salinestris possesses the potential to express the vanadium (V)-containing nitrogenase (nitrogenase 2) and that R. rubrum, Azomonas macrocytogenes, and H. gestii possess the potential to express the Fe-only nitrogenase (nitrogenase 3). Like Azotobacter vinelandii, Azotobacter paspali appears to have the potential to express both the V-containing nitrogenase and the Fe-only nitrogenase.  相似文献   

7.
The generation of nitrogen fixing crops is considered a challenge that could lead to a new agricultural ‘green’ revolution. Here, we report the use of synthetic biology tools to achieve and optimize the production of active nitrogenase Fe protein (NifH) in the chloroplasts of tobacco plants. Azotobacter vinelandii nitrogen fixation genes, nifH, M, U and S, were re‐designed for protein accumulation in tobacco cells. Targeting to the chloroplast was optimized by screening and identifying minimal length transit peptides performing properly for each specific Nif protein. Putative peptidyl‐prolyl cis‐trans isomerase NifM proved necessary for NifH solubility in the stroma. Purified NifU, a protein involved in the biogenesis of NifH [4Fe‐4S] cluster, was found functional in NifH reconstitution assays. Importantly, NifH purified from tobacco chloroplasts was active in the reduction of acetylene to ethylene, with the requirement of nifU and nifS co‐expression. These results support the suitability of chloroplasts to host functional nitrogenase proteins, paving the way for future studies in the engineering of nitrogen fixation in higher plant plastids and describing an optimization pipeline that could also be used in other organisms and in the engineering of new metabolic pathways in plastids.  相似文献   

8.
Rhizobium meliloti bacteroids carrying mutations in either fdxNor fixX isolated from alfalfa root nodules were shown to containthe nitrogenase proteins NifH, NifD and NifK. In contrast toan in vitro system of N2-fixation based on R. meliloti wild-typebacteroids, nitrogenase activity could not be restored in crudeextracts of these mutant bacteroids by the addition of an artificialelectron donor, indicating that the nitrogenase proteins werepresent but not functional. ESR-studies revealed that both mutantslacked the FeMo-cofactor of nitrogenase. To analyse the roleof free O2 on the damage of the nitrogenase components and theFeMo-cofactor in these mutant bacteroids, microelectrode studiesof O2 concentrations and gradients within alfalfa root noduleswere carried out. R. meliloti mutants defective in other genesnecessary for symbiotic N2-fixation were also included in thisstudy. Four distinct types of O2 gradients were defined by theapparent presence or absence of an O2 diffusion barrier andby the minimum internal O2 concentration. These data clearlydemonstrated the influence of the microsymbiont on the O2 gradientswithin the nodules. Nodules induced by Rm0540, an R. melilotimutant with altered exopolysaccharide production, which is notable to infect plant cells, did not contain an O2 diffusionbarrier. In contrast, nodules containing a mutant defectivein dicarboxylate transport (dctA-), produced an O2 gradientsimilar to the wild-type. Microelectrode measurements revealedH2 concentrations in alfalfa wild-type nodules comparable tosoyabean, whereas no hydrogen could be detected in nodules harbouringthe dctA mutant or any other mutant strain. Key words: Nitrogen fixation, Rhizobium meliloti bacteroids, ferredoxin-like proteins, microelectrode studies  相似文献   

9.
10.
Paenibacillus sabinae T27 (CCBAU 10202=DSM 17841) is a gram-positive, spore-forming diazotroph with high nitrogenase activities. Three nifH clusters were cloned from P. sabinae T27. Phylogenetic analysis revealed that NifH1, NifH2 and NifH3 cluster with Cyanobacterium. Each of the coding regions of nifH1, nifH2 and nifH3 from P. sabinae T27 under the control of the nifH promoter of Klebsiella pneumoniae could partially restore nitrogenase activity of K. pneumoniae nifH? mutant strain 1795, which has no nitrogenase activity. This suggests that the three nifH genes from P. sabinae T27 have some function in nitrogen fixation. RT-PCR showed that all three nifH genes were expressed under nitrogen-fixing growth conditions. Using promoter vectors which have promoterless lacZ gene, three putative promoter regions of nifH genes were identified.  相似文献   

11.
The structural genes for nitrogenase, nifK, nifD, and nifH, are crucial for nitrogen fixation. Previous phylogenetic analysis of the amino acid sequence of nifH suggested that this gene had been horizontally transferred from a proteobacterium to the gram-positive/cyanobacterial clade, although the confounding effects of paralogous comparisons made interpretation of the data difficult. An additional test of nif gene horizontal transfer using nifD was made, but the NifD phylogeny lacked resolution. Here nif gene phylogeny is addressed with a phylogenetic analysis of a third and longer nif gene, nifK. As part of the study, the nifK gene of the key taxon Frankia was sequenced. Parsimony and some distance analyses of the nifK amino acid sequences provide support for vertical descent of nifK, but other distance trees provide support for the lateral transfer of the gene. Bootstrap support was found for both hypotheses in all trees; the nifK data do not definitively favor one or the other hypothesis. A parsimony analysis of NifH provides support for horizontal transfer in accord with previous reports, although bootstrap analysis also shows some support for vertical descent of the orthologous nifH genes. A wider sampling of taxa and more sophisticated methods of phylogenetic inference are needed to understand the evolution of nif genes. The nif genes may also be powerful phylogenetic tools. If nifK evolved by vertical descent, it provides strong evidence that the cyanobacteria and proteobacteria are sister groups to the exclusion of the firmicutes, whereas 16S rRNA sequences are unable to resolve the relationships of these three major eubacterial lineages.   相似文献   

12.
The entire coding region of chlL, an essential chloroplast gene required for chlorophyll biosynthesis in the dark in Chlamydomonas reinhardtii, was precisely replaced by either the Klebsiella pneumoniae nifH (encoding the structural component of nitrogenase Fe protein) or the Escherichia coli uidA reporter gene encoding beta-glucuronidase. Homoplasmic nifH or uidA transformants were identified by Southern blots after selection on minimal medium plates for several generations. All the uidA transformants had the "yellow-in-the-dark" phenotype characteristic of chlL mutants, whereas homoplasmic nifH transformants exhibited a partial "green-in-the-dark" phenotype. NifH protein was detected in the nifH transformants but not in the wild-type strain by Western blotting. Fluorescence emission measurements also showed the existence of chlorophyll in the dark-grown nifH transformants, but not in the dark-grown uidA transformants. The nifH transplastomic form of C. reinhardtii that lacks the chlL gene can still produce chlorophyll in the dark, suggesting that the nifH product can at least partially substitute for the function of the putative "chlorophyll iron protein" encoded by chlL. Thus, introducing nitrogen fixation gene directly into a chloroplast genome is likely to be feasible and providing a possible way of engineering chloroplasts with functional nitrogenase. Notably, to introduce foreign genes without also introducing selective marker genes, a novel two-step chloroplast transformation strategy has been developed.  相似文献   

13.
Biological nitrogen fixation is catalyzed by nitrogenase, a two-component enzyme consisting of the MoFe protein and the Fe protein. Two genes are involved in the formation of active Fe protein: nifH encodes the structural polypeptide, while nifM specifies a stabilizing and activation function by yet unknown mechanisms. Our studies were directed to clarify whether the NifM exerts its function through physical protein-protein interaction with NifH. To accomplish this, we used the yeast two-hybrid system. The simultaneous expression of the GAL4 binding domain-nifH fusion and GAL4 activation domain-nifM fusion resulted in the successful activation of GAL4-responsive HIS3, ADE2, and lacZ reporter genes in the two-hybrid system used. The system was also used to evidence the potential for in vivo NifH and NifM self-association. The results obtained suggest that NifH and NifM form homomers and also associate in between to form higher order complexes, which may be needed to exert the effect of NifM on Fe protein stability and activity.  相似文献   

14.
Peptidyl-prolyl cis/trans isomerases (PPIases) play a pivotal role in catalyzing the correct folding of many prokaryotic and eukaryotic proteins that are implicated in a variety of biological functions, ranging from cell cycle regulation to bacterial infection. The nif accessory protein NifM, which is essential for the biogenesis of a functional NifH component of nitrogenase, is a PPIase. To understand the nature of the molecular signature that defines the NifM dependence of NifH, we screened a library of nifH mutants in the nitrogen-fixing bacterium Azotobacter vinelandii for mutants that acquired NifM independence. Here, we report that NifH can acquire NifM independence when the conserved Pro258 located in the C-terminal region of NifH, which wraps around the other subunit in the NifH dimer, is replaced by serine.  相似文献   

15.
16.
Besides serving as the obligate electron donor to dinitrogenase during nitrogenase turnover, dinitrogenase reductase (NifH) is required for the biosynthesis of the iron-molybdenum cofactor (FeMo-co) and for the maturation of alpha(2)beta(2) apo-dinitrogenase (apo-dinitrogenase maturation). In an attempt to understand the role of NifH in FeMo-co biosynthesis, a site-specific altered form of NifH in which leucine at position 127 has been deleted, L127Delta, was employed in in vitro FeMo-co synthesis assays. This altered form of NifH has been shown to inhibit substrate reduction by the wild-type nitrogenase complex, forming a tight protein complex with dinitrogenase. The L127Delta NifH was found to inhibit in vitro FeMo-co synthesis by wild-type NifH as detected by the gamma gel shift assay. Increasing the concentration of NifNE and NifB-cofactor (NifB-co) relieved the inhibition of FeMo-co synthesis by L127Delta NifH. The formation of a complex of L127Delta NifH with NifNE was investigated by gel filtration chromatography. We herein report the formation of a complex between L127Delta NifH and NifNE in the presence of NifB-co. This work presents evidence for one of the possible roles for NifH in FeMo-co biosynthesis, i.e. the interaction of NifH with a NifNE.NifB-co complex.  相似文献   

17.
In our studies on the regulation of nitrogen metabolism in Gluconacetobacter diazotrophicus, an endophytic diazotroph of sugarcane, three glnB-like genes were identified and their role(s) in the control of nitrogen fixation was studied. Sequence analysis revealed that one P(II) protein-encoding gene, glnB, was adjacent to a glnA gene (encoding glutamine synthetase) and that two other P(II) protein-encoding genes, identified as glnK1 and glnK2, were located upstream of amtB1 and amtB2, respectively, genes which in other organisms encode ammonium (or methylammonium) transporters. Single and double mutants and a triple mutant with respect to the three P(II) protein-encoding genes were constructed, and the effects of the mutations on nitrogenase expression and activity in the presence of either ammonium starvation or ammonium sufficiency were studied. Based on the results presented here, it is suggested that none of the three P(II) homologs is required for nif gene expression, that the GlnK2 protein acts primarily as an inhibitor of nif gene expression, and that GlnB and GlnK1 control the expression of nif genes in response to ammonium availability, both directly and by relieving the inhibition by GlnK2. This model includes novel regulatory features of P(II) proteins.  相似文献   

18.
NifH has three different roles in the nitrogenase enzyme system. Apart from serving as the physiological electron donor to dinitrogenase, NifH is involved in iron-molybdenum cofactor (FeMo-co) biosynthesis and in maturation of the FeMo-co-deficient form of apodinitrogenase to a FeMo-co-activable form (apodinitrogenase maturation). The exact roles of NifH in these processes are not well understood. In the present study, the features of NifH required for the aforementioned processes have been investigated by the use of site-specifically altered forms of the enzyme. The ability of six altered forms of NifH inactive in substrate reduction (K15R, D39N, D43N, L127Delta, D129E, and F135Y) to function in in vitro FeMo-co synthesis and apodinitrogenase maturation reactions was investigated. We report that the ability of NifH to bind and not hydrolyze MgATP is required for it to function in these processes. We also present evidence that the ability of NifH to function in these processes is not dictated by the properties known to be required for its function in electron transfer to dinitrogenase. Evidence toward the existence of separate, overlapping sites on NifH for each of its functions (substrate reduction, FeMo-co biosynthesis, and apodinitrogenase maturation) is presented.  相似文献   

19.
20.
The nifU and nifS genes encode the components of a cellular machinery dedicated to the assembly of [2Fe-2S] and [4Fe-4S] clusters required for growth under nitrogen-fixing conditions. The NifU and NifS proteins are involved in the production of active forms of the nitrogenase component proteins, NifH and NifDK. Although NifH contains a [4Fe-4S] cluster, the NifDK component carries two complex metalloclusters, the iron-molybdenum cofactor (FeMo-co) and the [8Fe-7S] P-cluster. FeMo-co, located at the active site of NifDK, is composed of 7 iron, 9 sulfur, 1 molybdenum, 1 homocitrate, and 1 unidentified light atom. To investigate whether NifUS are required for FeMo-co biosynthesis and to understand at what level(s) they might participate in this process, we analyzed the effect of nifU and nifS mutations on the formation of active NifB protein and on the accumulation of NifB-co, an isolatable intermediate of the FeMo-co biosynthetic pathway synthesized by the product of the nifB gene. The nifU and nifS genes were required to accumulate NifB-co in a nifN mutant background. This result clearly demonstrates the participation of NifUS in NifB-co synthesis and suggests a specific role of NifUS as the major provider of [Fe-S] clusters that serve as metabolic substrates for the biosynthesis of FeMo-co. Surprisingly, although nifB expression was attenuated in nifUS mutants, the assembly of the [Fe-S] clusters of NifB was compensated by other non-nif machinery for the assembly of [Fe-S] clusters, indicating that NifUS are not essential to synthesize active NifB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号