首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compared to acoustically unspecialized mammals (soricids and murids), the middle ear of subterranean insectivores and rodents (twelve species of six families examined) was clearly distinguished and characterized by many common features: rather round and relatively larger eardrum without a pars flaccida; reduced gonial; loose or no connection between the malleus and the tympanic bone; reduced and straightened transversal part of the malleus; enlarged incus; increased and rather flat incudo-mallear joint; rather parallel position of the mallear manubrium and incudal crus longum in some species (and their fusion in bathyergids); reduced or even missing middle ear muscles. Convergent occurrence of these structural features in taxa of different origin and their generally derived character suggest that they cannot be categorized as degenerative. The form of the stapes can be considered as a non-adaptive trait; it was taxon specific yet remarkably polymorphous in some species and exhibited no convergent features among subterranean mammals. Structural retrogression resulting in a columella-like stapes was observed in some species lacking the stapedial artery. The stapedial base was relatively larger than in unspecialized mammals. The subterranean mammals did not exhibit conspicuously enlarged eardrums as would be required for sensitive tuning to low frequencies. It is, however, argued that while selective pressures in the subterranean ecotope promoted hearing of low frequencies, hearing sensitivity did not have to be enhanced.  相似文献   

2.

Background  

The middle ear of mammals is composed of three endochondrial ossicles, the stapes, incus and malleus. Joints link the malleus to the incus and the incus to the stapes. In the mouse the first arch derived malleus and incus are formed from a single Sox9 and Type II collagen expressing condensation that later subdivides to give rise to two separate ossicles. In contrast the stapes forms from a separate condensation derived from the second branchial arch. Fusion of the malleus and incus is observed in a number of human syndromes and results in conductive hearing loss. Understanding how this joint forms during normal development is thus an important step in furthering our understanding of such defects.  相似文献   

3.
In terrestrial mammals, hearing starts with the perception of acoustic pressure by the tympanic membrane. Vibrations in this membrane are then transduced into the inner ear by the ossicle chain of the middle ear, composed of the malleus, incus and stapes. The proper connection of the ossicle chain with the tympanic membrane, provided by the insertion of the manubrium of the malleus into the eardrum, is essential for the functionality of the hearing apparatus. We describe here the mechanisms regulating the development of the manubrium and its integration into the tympanic membrane. We show that the external acoustic meatus (EAM), which eventually forms the outer epithelium of the tympanic membrane, plays an essential role in this developmental process. Histological and expression analyses indicate that the manubrium develops close to the EAM with a similar temporal sequence. In addition, when the middle ear ossicles are allowed to develop in vitro under conditions that do not support further EAM development, the manubrium develops only up to the stage of its induction at the time of explantation. Moreover, genetically or teratogenically derived alterations in the EAM also have an effect on manubrial development. Finally, we show that the EAM is the source of two quite opposite activities, one that induces chondrogenesis and another that represses it. The combination of these two activities results in the proper positioning of the manubrium.  相似文献   

4.
Cetacean middle ears are unique among mammals in that they have an elongated tympanic membrane, a greatly reduced manubrium mallei, and an incudal crus longum that is shorter than the crus breve. Elongation of the tympanic membrane and reduction of the manubrium is thought to be related to an evolutionary rotation of the incus and malleus out of the plane of the tympanic membrane. We examined if rotation also occurs during ontogeny by comparing the middle ears of two species of dolphins (Delphinus delphis, Stenella attenuata) at different stages of development. We observed that: the incus has the body and crural proportions as in terrestrial mammals early in development; the incudomallear complex rotates approximately 90 degrees following ossification; the tympanic membrane is not elongated until relatively late in development. Therefore, some of the unique characteristics of the cetacean middle ear develop as modifications of an initially terrestrial-like morphology.  相似文献   

5.
The middle ear bones of Mesozoic mammals are rarely preserved as fossils and the morphology of these ossicles in the earliest mammals remains poorly known. Here, we report the stapes and incus of the euharamiyidan Arboroharamiya from the lower Upper Jurassic (~160 Ma) of northern China, which represent the earliest known mammalian middle ear ossicles. Both bones are miniscule in relation to those in non‐mammalian cynodonts. The skull length/stapedial footplate diameter ratio is estimated as 51.74 and the stapes length as the percentage of the skull length is 4%; both numbers fall into the stapes size ranges of mammals. The stapes is “rod‐like” and has a large stapedial foramen. It is unique among mammaliaforms in having a distinct posterior process that is interpreted as for insertion of the stapedius muscle and homologized to the ossified proximal (stapedial) end of the interhyal, on which the stapedius muscle attached. The incus differs from the quadrate of non‐mammalian cynodonts such as morganucodontids in having small size and a slim short process. Along with lack of the postdentary trough and Meckelian groove on the medial surface of the dentary, the ossicles suggest development of the definitive mammalian middle ear (DMME) in Arboroharamiya. Among various higher‐level phylogenetic hypotheses of mammals, the one we preferred places “haramiyidans” within Mammalia. Given this phylogeny, development of the DMME took place once in the allotherian clade containing euharamiyidans and multituberculates, probably independent to those of monotremes and therians. Thus, the DMME has evolved at least three times independently in mammals. Alternative hypothesis that placed “haramiyidans” outside of Mammalia would require independent acquisition of the DMME in multituberculates and euharamiyidans as well as parallel evolution of numerous derived similarities in the dentition, occlusion pattern, mandibles, cranium, and postcranium between the two groups and between “haramiyidans” and other mammals. J. Morphol. 279:441–457, 2018. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
The middle ear apparatus is composed of three endochondrial ossicles (the stapes, incus and malleus) and two membranous bones, the tympanic ring and the gonium, which act as structural components to anchor the ossicles to the skull. Except for the stapes, these skeletal elements are unique to mammals and are derived from the first and second branchial arches. We show that, in combination with goosecoid (Gsc), the Bapx1 gene defines the structural components of the murine middle ear. During embryogenesis, Bapx1 is expressed in a discrete domain within the mandibular component of the first branchial arch and later in the primordia of middle ear-associated bones, the gonium and tympanic ring. Consistent with the expression pattern of Bapx1, mouse embryos deficient for Bapx1 lack a gonium and display hypoplasia of the anterior end of the tympanic ring. At E10.5, expression of Bapx1 partially overlaps that of Gsc and although Gsc is required for development of the entire tympanic ring, the role of Bapx1 is restricted to the specification of the gonium and the anterior tympanic ring. Thus, simple overlapping expression of these two genes appears to account for the patterning of the elements that compose the structural components of the middle ear and suggests that they act in concert. In addition, Bapx1 is expressed both within and surrounding the incus and the malleus. Examination of the malleus shows that the width, but not the length, of this ossicle is decreased in the mutant mice. In non-mammalian jawed vertebrates, the bones homologous to the mammalian middle ear ossicles compose the proximal jaw bones that form the jaw articulation (primary jaw joint). In fish, Bapx1 is responsible for the formation of the joint between the quadrate and articular (homologues of the malleus and incus, respectively) enabling an evolutionary comparison of the role of a regulatory gene in the transition of the proximal jawbones to middle ear ossicles. Contrary to expectations, murine Bapx1 does not affect the articulation of the malleus and incus. We show that this change in role of Bapx1 following the transition to the mammalian ossicle configuration is not due to a change in expression pattern but results from an inability to regulate Gdf5 and Gdf6, two genes predicted to be essential in joint formation.  相似文献   

7.
The middle ear apparatus realized a multiplicatory function during the transfer of the vibrational energy, depending on the area ratio of pars tensa of tympanic membrane and of stapes footplate as well as the lever ratio of long arms of manubrium and of incus. These structures exhibit a size increase during the postnatal development, but the sequel on the multiplicatory function in rabbits is unknown. The middle ear structures of 46 rabbits, 1 to 30 d old, were prepared and measured. The area of pars tensa and the levers of malleus and incus increase with age. After the 10th d of life, no statistical significant growth were measurable. But the calculated multiplicatory factor of single animals indicate the end of the development at the 15th postnatal d. In contrast, the cochlear function attains the adult values not till the 26th d of life. It is 10 d longer than the middle ear growth.  相似文献   

8.
Carpal bones have experienced numerous changes during marsupial evolution, even though their diversity and development remain poorly studied. The aim of this work was to document adult form and the pattern of mesenchymal tissue condensation and formation of chondrification and ossification centers in the hand of two marsupials. Two fundamental questions were asked: whether the loss of embryonic precursors was associated with the loss of adult elements, or whether there were developmental signs of ancestral mammalian elements that have been fused or lost in marsupial taxa. We were also interested to find out whether there is sexual dimorphismus in the carpals, as has been reported for some didelphids. Histological sections, cleared and stained specimens and macerated skeletons representing an ontogenetic series of Monodelphis domestica were used to document carpal development. Comparisons were made with perinatal stages of Caluromys philander and with adult specimens of other marsupials. A prenatal M. domestica in the 13th day after conception has a cell condensation that because of its position is homologized with a centrale, which is at birth already lost or fused. Neonatal M. domestica and C. philander have the number and arrangement of their adult carpal anatomy. Trapezium and trapezoid start ossification later than most other carpals, while pisiform and prepollex are the last to do so. Adult males of M. domestica have relatively larger and more robust pisiforms, compared to other carpals, than females. This sexual dimorphism develops relatively late as it was not recorded in male specimens around 160 days old. An extra sesamoid bone located just distal to the radius and proximo-palmar to the scaphoid was recorded in specimens of C. philander, C. derbianus and Didelphis virginiana.  相似文献   

9.
The present study describes and analyzes new Neandertal and early modern human auditory ossicles from the sites of Qafzeh and Amud in southwest Asia. Some methodological issues in the measurement of these bones are considered, and a set of standardized measurement protocols is proposed. Evidence of erosive pathological processes, most likely attributed to otitis media, is present on the ossicles of Qafzeh 12 and Amud 7 but none can be detected in the other Qafzeh specimens. Qafzeh 12 and 15 extend the known range of variation in the fossil H. sapiens sample in some metric variables, but morphologically, the new specimens do not differ in any meaningful way from living humans. In most metric dimensions, the Amud 7 incus falls within our modern human range of variation, but the more closed angle between the short and long processes stands out. Morphologically, all the Neandertal incudi described to date show a very straight long process. Several tentative hypotheses can be suggested regarding the evolution of the ear ossicles in the genus Homo. First, the degree of metric and morphological variation seems greater among the fossil H. sapiens sample than in Neandertals. Second, there is a real difference in the size of the malleus between Neandertals and fossil H. sapiens, with Neandertals showing larger values in most dimensions. Third, the wider malleus head implies a larger articular facet in the Neandertals, and this also appears to be reflected in the larger (taller) incus articular facet. Fourth, there is limited evidence for a potential temporal trend toward reduction of the long process within the Neandertal lineage. Fifth, a combination of features in the malleus, incus, and stapes may indicate a slightly different relative positioning of either the tip of the incus long process or stapes footplate within the tympanic cavity in the Neandertal lineage.  相似文献   

10.
Middle ear ontogeny in Monodelphis domestica is investigated to understand better both the immediate consequences for suckling in a neonate marsupial and the epigenetic factors that constrain morphogenesis. Neonates of Monodelphis possess neither mammalian (dentarysquamosal) nor reptilian (quadrate-articular) jaw articulations, nor does the contact between the incus and crista parotica offer a joint surface ( contra Maier, 1987). Elasticity in Meckel's cartilage allows minimal deflection of the lower jaw. Observation of the developmental rate of the individual elements reveals that mandibular arch derivatives (malleus, incus and tensor tympani) are on a slightly faster ontogenetic schedule than hyoid arch derivatives (stapes and m. stapedius).  相似文献   

11.
Abstract

Osteoporosis (OP) is common with advancing age. Several studies have shown a strong correlation between OP and otosclerosis. However, no studies have investigated OP of the malleus, incus or stapes in the human middle ear, its effect on middle ear transfer function. Here, we investigate whether these three ossicles develop OP, and how this affects middle ear transfer function. The effect of OP on middle ear transfer function was investigated in simulations based on a finite element (FE) method. First, the FE model used in our previous study was refined, and optimized by introducing viscoelastic properties to selected soft tissues of the middle ear. Then, the FE model was used to simulate OP of the three ossicles and assess its influence on middle ear transfer function. Other possible age-related changes, such as stiffness of the joints or ligaments in the middle ear, were also investigated. The results indicated that OP of the ossicles could increase the high frequency displacement of both the umbo and stapes footplate (FP). However, the stiffness of the middle ear soft tissue can lead to the decrease of middle ear gain at lower frequencies. Furthermore, loosening of these joints or ligaments could increase displacement of the umbo and stapes FP. In conclusion, although age-related hearing loss is most commonly conceived of as sensorineural hearing loss (SNHL), we found that age-related changes may also include OP and changes in joint stiffness, but these will have little effect on middle ear transfer function in elderly people.  相似文献   

12.
Morphology of the middle ear of golden moles (Chrysochloridae)   总被引:4,自引:0,他引:4  
The middle ear structures of nine species of golden moles (family Chrysochloridae) were examined under the light microscope. Auditory structures of several of these species are described here for the first time in detail, the emphasis being on the ossicular apparatus. Confirming previous observations, some golden moles (e.g. Amblysomus species) have ossicles of a morphology typical of mammals, whereas others ( Chrysospalax , Chrysochloris , Cryptochloris and Eremitalpa species) have enormously hypertrophied mallei. Golden moles differ in the nature and extent of the interbullar connection, the shape of the tympanic membrane and that of the manubrium. The stapes has an unusual orientation, projecting dorsomedially from the incus. It has been proposed that hypertrophied ossicles in golden moles are adapted towards the detection of seismic vibrations. The functional morphology of the middle ear apparatus is reconsidered in this light, and it is proposed that adaptations towards low-frequency airborne hearing might have predisposed golden moles towards the evolution of seismic sensitivity through inertial bone conduction. The morphology of the middle ear apparatus sheds little light on the disputed ordinal position of the Chrysochloridae.  相似文献   

13.
The human ear is a complex biomechanical system and is divided into three parts: outer, middle and inner ear. The middle ear is formed by ossicles (malleus, incus and stapes), ligaments, muscles and tendons, which transfers sound vibrations from the eardrum to the inner ear, linking with mastoid and Eustachian tube. In this work, a finite element modelling of the tympano-ossicular system of the middle ear was developed. A dynamic study based on a structural response to harmonic vibrations, for a sound pressure level (SPL) of 110, 120 and 130 dB SPL applied in the eardrum, is presented. The connection between the ossicles is made using a contact formulation. The model includes the different ligaments considering its hyperelastic behaviour. The activation of the muscles is based on the constitutive model proposed by previous work. The harmonic responses of displacement and pressure obtained on the stapes footplate, for a frequency range between 100 Hz and 10 kHz, are obtained simulating the muscle activation. The results are compared considering the passive and active states. The results are discussed and they are in accordance with audiological data published with reference to the effects of the middle ear muscles contraction.  相似文献   

14.
The development of the scapula was studied in embryonic and postnatal specimens of Monodelphis domestica and perinatal specimens of Philander opossum, Caluromys philander, and Sminthopsis virginiae using histological sections and 3D reconstructions. Additionally, macerated skeletons of postnatal M. domestica were examined. This study focused on the detachment of the scapulocoracoid from the sternum and on the acquisition of a supraspinous fossa, a supraspinatus muscle, and a scapular spine, all these events associated with the origin of the therian shoulder girdle. In none of the specimens is there a continuity of the cartilaginous scapulocoracoid with the sternum, even though the structures are in close proximity, especially in S. virginiae. At birth, the first rib laterally presents a pronounced boss that probably contacts the humerus during certain movements. Only the acromial portion of the scapular spine, which originates from the anterior margin of the scapular blade, is preformed in cartilage. The other portion is formed by appositional bone ("Zuwachsknochen"), which expands from the perichondral ossification of the scapula into an intermuscular aponeurosis between the supra- and infraspinous muscles. This intermuscular aponeurosis inserts more or less in the middle of the lateral surface of the developing scapula. Thus, the floor of the supraspinous fossa is present from the beginning of scapular development, simultaneously with the infraspinous fossa. The homology of the therian spine with the anterior border of the sauropsid and monotreme scapula is questioned. We consider the dorsal portion (as opposed to the ventral or acromial portion) of the scapular spine a neomorphic structure of therian mammals.  相似文献   

15.
A functional explanation is presented for the shift of the reptilianarticular and quadrate into the mammalian middle ear to becomethe malleus and incus. Modification of the masticatory apparatusof therapsids results in reduction of stresses on the jaw jointand consequently in reduction of posterior elements of the jaw.In the late therapsid, Bienotherium, the quadrate and post-dentaryjaw bones resemble the mammalian malleus and incus which togetherform a lever. The therapsid articular possesses a downturnedretroarticular process (for insertion of M. depressor mandibulae)homologous with the manubrium (force lever arm) of the malleus.About the time of origin of the mammalian (dentarysquamosal)jaw joint and following the origin of the mammalian depressor,the reptilian depressor is lost. This allows the enlarging reptiliantympanum to become attached to the retroarticular process. Thenew lever system thus formed by articular and quadrate increasesthe sensitivity of the ear and the reptilian one-bone systemis replaced. In early mammals the reflected lamina of the angularmigrates posteriorly with the angle of the dentary so that itcontacts and assumes support of the tympanum. Non-homology ofthe monotreme and therian depressors indicates a multiple originof the mammalian middle ear.  相似文献   

16.
In this paper we describe novel and specific roles for the apoptotic regulators Bcl2 and Bim in hearing and stapes development. Bcl2 is anti-apoptotic while Bim is pro-apoptotic. Characterization of the auditory systems of mice deficient for these molecules revealed that Bcl2−/− mice suffered severe hearing loss. This was conductive in nature and did not affect sensory cells of the inner ear, with cochlear hair cells and neurons present and functional. Bcl2−/− mice were found to have a malformed, often monocrural, porous stapes (the small stirrup-shaped bone of the middle ear), but a normally shaped malleus and incus. The deformed stapes was discontinuous with the incus and sometimes fused to the temporal bones. The defect was completely rescued in Bcl2−/−Bim−/− mice and partially rescued in Bcl2−/−Bim+/− mice, which displayed high-frequency hearing loss and thickening of the stapes anterior crus. The Bcl2−/− defect arose in utero before or during the cartilage stage of stapes development. These results implicate Bcl2 and Bim in regulating survival of second pharyngeal arch or neural crest cells that give rise to the stapes during embryonic development.  相似文献   

17.
Novacek and co-workers recognized a monophyletic clade Epitheria, comprising all eutherians except edentates and the extinct palaeoryctoids, on the basis of two synapomorphies: a stirrupshaped stapes and a foramen ovale enclosed within the alisphenoid. To evaluate this phylogenetic hypothesis, we reexamined the distributions of stapedial morphologies and positions of the foramen ovale across Recent and extinct mammals and nonmammalian cynodonts. The states and distributions of the stapes and forament ovale characters used by Novacek and coworkers were modified by recognizing two stapedial characters (one relating to shape of the crura, the other to the nature of the foramen) and a single, multistate foramen ovale character (within, behind, and lateral to the alisphenoid). The taxon-character matrix used by Novacek (1989, 1992b), substituting our amended stapedial and foramen ovale characters and adding several previously unscored extinct taxa and three new characters, was subjected to a series of PAUP manipulations. Identified among the most parsimonious trees were three major topologies for the base of Eutheria: (1) a polytomy including an Edentata/Ungulata clade, (2) a polytomy with Edentata and Ungulata as separate clades, and (3) Edentata and (when included) Palaeoryctoidea as the successive outgroups to a monophyletic Epitheria. We conclude that topology 2 best reflects the current state of knowledge. An edentate/ungulate clade is supported by three characters (from the mastoid region and subarcuate fossa); however, other morphological studies require modification of the distributions of these characters in xenarthrans and bassal ungulates, thereby eliminating support for this clade. In nearly all manipulations, obtaining a monophyletic Epitheria required that one or two steps be added to the most parsimonious trees. When a monophyletic Epitheria was obtained, it was supported by a triangular stapes and, in some trees, the reappearance of a stapedial artery (lost earlier at the level of Recent therians) and a transpromontorial internal carotid artery. In the most parsimonious trees, a foramen ovale within the alisphenoid was an equivocal synapomorphy of Recent therians or cutherians, and a stapes with strongly convex crura (our state closest to the stirrup-shaped state of Novacek and co-workers) appeared independently within various eutherian lineages. The reduction or loss of the stapedial foramen was identified as an independent event in monotremes and within marsupials and various eutherian lineages.To whom correspondence should be addressed.  相似文献   

18.
The marsupial middle ear performs an anatomical impedance matching for acoustic energy travelling in air to reach the cochlea. The size of the middle ear sets constraints for the frequencies transmitted. For generalized placental mammals, it has been shown that the limit for high-frequency hearing can be predicted on the basis of middle ear ossicle mass, provided that the ears fulfil requirements of isometry. We studied the interspecific size variation of the middle ear in 23 marsupial species, with the following measurable parameters: skull mass, condylobasal length, ossicular masses for malleus, incus and stapes, tympanic membrane area, oval window area, and lever arm lengths for malleus and incus. Our results show that the middle ear size grows with negative allometry in relation to body size and that the internal proportions of the marsupial middle ear are largely isometric. This resembles the situation in placental mammals and allows us to use their isometric middle ear model to predict the high-frequency hearing limit for marsupials. We found that the isometry model predicts the high-frequency hearing limit for different marsupials well, indicating that marsupials can be used as auditory models for general therian mammalian hearing. At very high frequencies, other factors, such as the inner ear, seem to constrain mammalian hearing.  相似文献   

19.
Functionally relevant features and parameters of the outer, middle, and inner ear were studied morphologically and morphometrically in two species of voles, smaller Microtus arvalis and larger Arvicola terrestris. The findings in these fossorial (i.e., burrowing) rodents with components of surface activity were compared with respective findings reported for taxonomically related muroid rodents representing the same size classes but different eco-morphotypes: obligate subterranean rodents (Ellobius talpinus and Spalax ehrenbergi superspecies) and generalized rodents (Mus domesticus and Rattus norvegicus). The ear in voles was characterized by traits reported for subterranean rodents. The eardrum was round, without a distinct pars flaccida, and had an area of 5.4 mm2 in M. arvalis and 9 mm2 in A. terrestris. The middle ear exhibited reduced goniale, enlarged incus nearly parallel to the manubrium of the malleus. The malleus-incus lever ratio amounted to 2.1 (M. arvalis) and 2.0 (A. terrestris). The malleus-incus complex weighed about 0.8 mg in both vole species. The stapedial footplate had an area of 0.3 mm2 in M. arvalis and 0.4 mm2 in A. terrestris. The cochlea had 2.3 coils in both vole species; the basilar membrane was 8.5 mm and 10.5 mm long in M. arvalis and A. terrestris, respectively. There were on average 1,030 (M. arvalis) and 1,220 (A. terrestris) inner hair cells, and 3,760 (M. arvalis) and 4,250 (A. terrestris) outer hair cells in the organ of Corti. In quantitative terms, all these (as well as some further) traits and parameters were intermediate (related to body size) between those reported for generalized rodents on the one hand and subterranean ones on the other. The sound transmission system of the ear seems to be best tuned to frequencies of about 8-16 kHz with a high-frequency cut-off at about 50-60 kHz. The ear of A. terrestris seems to be tuned to somewhat lower frequencies than that in M. arvalis. In this aspect as well as regarding hearing sensitivity (as judged from the mechanical transmission parameters), voles can be considered intermediate not only in their lifestyle but also in their hearing abilities between the subterranean rodents (mole-vole and blind mole-rat) and the surface dwellers (house mouse and Norway rat).  相似文献   

20.
The basicranial region is examined in detail in didelphids, dasyurids, thylacinids, borhyaenids, myrmecobiids, and comparisons are made with notoryctids and peramelids. Three dasyurid genera ( Sminthopsis, Antechinus and Planigale ) were doubly injected with latex and basicranial foramina identified partly on the basis of the vessels which they transmit. The resulting terminology differs in several significant ways from terminologies currently in use. A basic terminology for sinuses, recesses, foramina and other structures in the basicranial region is developed from this new information combined with existing systems used for eutherian mammals and mammal-like reptiles.
It is concluded that on the basis of basicranial structure didelphids are structurally ancestral to all other marsupicarnivores, directly or indirectly. They are directly ancestral to thylacinids, borhyaenids, dasyurids and peramelids. Myrmecobiids are structural descendents of dasyurids. Notoryctids are not marsupicarnivores and may be diprotodonts. No special relationships exist between thylacinids and dasyurids or between dasyurids and peramelids. All groups except didelphids show unique specializations in some members and several show evidence of convergence in sinus development and structure of the foramen ovale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号