首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The critically endangered Madagascar fish-eagle ( Haliaeetus vociferoides ) is considered to be one of the rarest birds of prey globally and at significant risk of extinction. In the most recent census, only 222 adult individuals were recorded with an estimated total breeding population of no more than 100–120 pairs. Here, levels of Madagascar fish-eagle population genetic diversity based on 47 microsatellite loci were compared with its sister species, the African fish-eagle ( Haliaeetus vocifer ), and 16 of these loci were also characterized in the white-tailed eagle ( Haliaeetus albicilla ) and the bald eagle ( Haliaeetus leucocephalus ). Overall, extremely low genetic diversity was observed in the Madagascar fish-eagle compared to other surveyed Haliaeetus species. Determining whether this low diversity is the result of a recent bottleneck or a more historic event has important implications for their conservation. Using a Bayesian coalescent-based method, we show that Madagascar fish-eagles have maintained a small effective population size for hundreds to thousands of years and that its low level of neutral genetic diversity is not the result of a recent bottleneck. Therefore, efforts made to prevent Madagascar fish-eagle extinction should place high priority on maintenance of habitat requirements and reducing direct and indirect human persecution. Given the current rate of deforestation in Madagascar, we further recommend that the population be expanded to occupy a larger geographical distribution. This will help the population persist when exposed to stochastic factors (e.g. climate and disease) that may threaten a species consisting of only 200 adult individuals while inhabiting a rapidly changing landscape.  相似文献   

2.
The Canary Islands are an Atlantic volcanic archipelago with a rich flora of ~570 endemic species. The endemics represent ~40% of the native flora of the islands, and ~20% of the endemics are in the E (endangered) category of the International Union for Conservation of Nature. A review of allozyme variation in 69 endemic species belonging to 18 genera and eight families is presented. The average species-level genetic diversity (H(T)) at allozyme loci is 0.186, which is twice as high as the mean reported for endemics of Pacific archipelagos. Possible factors contributing to this higher diversity are discussed, but the reasons remain obscure. An average of 28% of the allozyme diversity within species resides among populations, indicating a high level of interpopulational differentiation. Studies of reproductive biology indicate that many of the endemic species are outcrossers. The high total diversity within species, the relatively high differentiation among populations, and the outcrossing breeding systems have implications for species conservation. Decreased population sizes in outcrossing species would promote biparental inbreeding and increase inbreeding depression. The relatively high proportion of allozyme diversity among populations indicates that the most effective strategy for preserving genetic variation in species is to conserve as many populations as possible. The genetic diversity in many Canary Island endemics is endangered by: (1) overgrazing by introduced animals, such as barbary sheep, goats, mouflons, rabbits, and sheep; (2) interspecific hybridization following habitat disturbance or planting of endemics along roadsides or in public gardens; (3) competition with alien plant species; and (4) decline of population size because of urban development and farming.  相似文献   

3.
濒危物种裂叶沙参及其近缘广布种泡沙参的遗传多样性研究   总被引:33,自引:2,他引:33  
葛颂  洪德元 《遗传学报》1999,26(4):410-417
根据对12个形态性状的统计分析和10个基因位点的等位酶检测,探讨了濒危植物裂叶沙参及其近缘广布种泡沙参的遗传多样性水平,对3个裂叶沙参和6个泡沙参天然群体的遗传分析表明,两种沙参属植物均具有很高的遗传变异水平,这种变异性既体现在形态学水平上,也体现在酶位点水平上,在2个茎叶形状以及10个花果和种子形状上,濒危种裂叶沙参的变异性均与广布种相当,同样,根据7个酶系统10个等位酶位点的度量,裂叶沙参群体  相似文献   

4.
The Wollemi pine, Wollemia nobilis (Araucariaceae), was discovered in 1994 as the only extant member of the genus, previously known only from the fossil record. With fewer than 100 trees known from an inaccessible canyon in southeastern Australia, it is one of the most endangered tree species in the world. We conducted a comparative population genetic survey at allozyme, amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) loci in W. nobilis, Araucaria cunninghamii and Agathis robusta - representatives of the two sister genera. No polymorphism was detected at 13 allozyme loci, more than 800 AFLP loci or the 20 SSR loci screened in W. nobilis. In Ag. robusta only one of 12 allozyme loci, five of 800 AFLP loci and none of the 15 SSR loci were variable. For A. cunninghamii, 10 of > 800 AFLP loci and five of 20 SSR loci were variable. Thus low genetic diversity characterizes all three species. While not ruling out the existence of genetic variation, we conclude that genetic diversity is exceptionally low in the Wollemi pine. To our knowledge this is the most extreme case known in plants. We conclude that the combination of small population effects, clonality and below-average genetic variation in the family are probable contributing factors to the low diversity. The exceptionally low genetic diversity of the Wollemi pine, combined with its known susceptibility to exotic fungal pathogens, reinforces current management policies of strict control of access to the pines and secrecy of the pine locations.  相似文献   

5.
川金丝猴遗传多样性的蛋白电泳及其保护生物学意义   总被引:2,自引:0,他引:2  
利用同功酶粉凝胶电泳技术检测了严自甘肃摩天岭和陕西秦岭两个地区的19只川金丝猴(Rhinopithecusroxellanae)的44个遗传座位,没有发现多态座位。其平均遗传杂合度为0。这与滇金丝猴的平均遗传杂合度处于同一水平。  相似文献   

6.
The Chinese crested ibis, Nipponia nippon, is a critically endangered bird. The current population of this species has developed from four wild individuals rediscovered in 1981. Given its conservation status, there is considerable interest in assessing the genetic diversity and individual relatedness in this species. For this purpose, a set of eight polymorphic di‐ or trinucleotide microsatellite loci was developed for the crested ibis. The expected heterozygosity at these loci ranges from 0.01 to 0.50, with less than four alleles being observed at individual loci, a reflection of the serious population bottleneck experienced by this species.  相似文献   

7.
Natural selection has been invoked to explain the observed geographic distribution of allozyme allele frequencies for a number of teleost species. The effects of selection on allozyme loci in three species of Pacific salmon were tested. A simulation-based approach to estimate the null distribution of population differentiation (F ST) and test for F ST outliers was used. This approach showed that a majority of allozyme loci conform to neutral expectations predicted by the simulation model, with relatively few F ST outliers found. No consistent F ST outlier loci were found across species. Analysis of population sub-groups based on geography and genetic identity reduced the number of outlier loci for some species, indicating that large geographic groups may include genetically divergent populations and/or that there is geographic heterogeneity in selection pressure upon allozyme loci. Two outlier allozyme loci found in this analysis, lactate dehydrogenase-B and malic enzyme, have been shown to be influenced by selection in other teleost species. This approach is also useful in identifying allozyme loci (or other genetic markers) that meet assumptions for population genetic study.  相似文献   

8.
The Mascarene Petrel Pseudobulweria aterrima is a critically endangered seabird endemic to Reunion Island, with an extremely small population suffering several threats. Fifteen polymorphic microsatellite loci were isolated from this species to analyse genetic diversity, estimate contemporary effective population size, search for evidence of a population bottleneck and see whether results support the hypothesis that life history traits could preserve allelic diversity in small populations. Results from 22 individuals found grounded as a consequence of light pollution highlight a surprisingly high genetic diversity, an absence of inbreeding, a contemporary effective population size estimated at approximately 1211 individuals and a probable bottleneck around 10 000 generations ago. Additional studies on genetic diversity and structure from a larger number of samples are thus required to evaluate the evolutionary potential of this critically endangered species.  相似文献   

9.
Genetic diversities were examined using six microsatellite markers amplifiable in three rare and one widespread species of Tricyrtis section Flavae, which are endemic to Japan. Contrary to a general expectation, the three rare species, Tricyrtis flava, Tricyrtis ohsumiensis and Tricyrtis perfoliata, have comparable genetic variation at the species level to that of the widespread Tricyrtis nana. This is probably because T. nana has not sufficiently recovered genetic diversity from the bottleneck at speciation or because recent range contractions have occurred in the three rare species. Genetic diversity at the population level was smaller in the putative selfing species T. nana than in the other three outcrossing species. Compared with a preceding study using allozyme markers, the genetic diversity in microsatellite loci was considerably larger, probably resulting from higher mutation rates at the microsatellite loci. Owing to the high genetic diversity of the microsatellite markers, genetic differentiation among populations could be estimated even in T. nana with little allozyme polymorphism.  相似文献   

10.
Multi-locus monomorphism in microsatellites is practically non-existent, with one notable exception, the island fox (Urocyon littoralis dickeyi) population on San Nicolas island off the coast of southern California, having been called “the most monomorphic sexually reproducing animal population yet reported”. Here, we present the unprecedented long-term monomorphism in relict populations of the highly endangered Parnassius apollo butterfly, which is protected by CITES and classified as “threatened” by the IUCN. The species is disjunctly distributed throughout the western Palaearctic and has occurred in several small remnant populations outside its main distribution area. We screened 78 individuals from 1 such relict area (Mosel valley, Germany) at 16 allozyme and 6 microsatellite loci with the latter known to be polymorphic in this species elsewhere. From the same area, we also genotyped 55 museum specimens sampled from 1895 to 1989 to compare historical and present levels of genetic diversity. However, none of all these temporal populations yielded any polymorphism. Thus, present and historical butterflies were completely monomorphic for the same fixed allele. This is the second study to report multi-locus monomorphism for microsatellites in an animal population and the first one to prove this monomorphism not to be the consequence of recent factors. Possible explanations for our results are a very low long-term effective population size and/or a strong historic bottleneck or founder event. Since the studied population has just recovered from a recent population breakdown (second half of twentieth century) and no signs of inbreeding depression have been detected, natural selection might have purged the population of weakly deleterious alleles, thus rendering it less susceptible to the usual negative corollaries of high levels of homozygosity and low effective population size.  相似文献   

11.
Allozyme variation in the sheep headfly Hydrotaea irritans was studied on two spatial scales. Geographic variation among seven Danish and one Dutch population revealed significant but rather low genetic differentiation with F ST = 0.01 over all loci. The Dutch population was on average not more different from the Danish populations than the Danish populations from each other. Allele frequencies were very skewed with the most common allele always exceeding 0.85 and usually 0.9 in frequency, but with many rare alleles at some loci. Tests for neutrality of the variation at the nine polymorphic loci revealed highly significant deviations from expected homozygosity in this species, which was not found in a comparative analysis of allozyme variation at similar loci of seven other Hydrotaea species. To explain the peculiar observed pattern of allozyme variation in H. irritans , it is suggested that this species has successfully expanded its range and spread through northern and central Europe in the recent past. Alternatively, H. irritans may have recently invaded a new niche, resulting in increased abundance of the species and subsequent dispersal to former areas of the species distribution.  相似文献   

12.
The Finnish population of White-tailed Eagle (Haliaeetus albicilla) has gone through two major demographic bottlenecks during the last two centuries. Strong conservation measures have allowed the population to recover, but despite the rapid population growth during recent years the species is still classified as endangered. We studied the genetic population structure at both individual and population levels in an attempt to recognize the processes shaping it. We used 9 microsatellite loci and 473 base pair fragment of the mitochondrial DNA control region on samples collected between the years 2003 and 2007 (N = 489). We found a clear isolation by distance pattern at fine scale (i.e. individual level) which is most likely a result of species’ philopatric behaviour. Although we did not find signs of the recent bottlenecks, we did find evidence of an ancient bottleneck that has occurred most likely over 21,000 years ago, long before the genetic divergence of the two present Finnish subpopulations (one along the Baltic Sea coast line and another in Lapland and easternmost Finland). We conclude that the present population structure is mainly a consequence of the species philopatric behaviour over a long time period instead of recent population bottlenecks. Based on our results, the Finnish population seems to have ongoing immigration from neighbouring populations. Hence, even though the population has recovered mainly through local growth, our results suggest that gene flow from genetically differentiated populations have had an impact as well.  相似文献   

13.
Hunted to near extinction in the late 19th century, the endangered and endemic Hawaiian monk seal (Monachus schauinslandi) exhibits low variation at all molecular markers tested to date. Here we confirm extreme paucity of genetic diversity, finding polymorphisms at only 8 of 154 microsatellite loci tested (143 novel species-specific loci, 10 loci from Antarctic seals, and 1 previously characterized locus). This screening revealed unprecedentedly low levels of allelic diversity and heterozygosity (A = 1.1, H(e) = 0.026). Subsequent analyses of 2409 Hawaiian monk seals at the 8 polymorphic loci provide evidence for a bottleneck (P = 0.002), but simulations indicate low genetic diversity (H(e) < 0.09) prior to recorded human influence. There is little indication of contemporary inbreeding (F(IS) = 0.018) or population structure (K = 1 population). Minimal genetic variation did not prevent partial recovery by the late 1950s and may not be driving the current population decline to approximately 1200 seals. Nonetheless, genotyping nearly every individual living during the past 25 years sets a new benchmark for low genetic diversity in an endangered species.  相似文献   

14.
G. H. Pogson  K. A. Mesa    R. G. Boutilier 《Genetics》1995,139(1):375-385
High levels of gene flow have been implicated in producing uniform patterns of allozyme variation among populations of many marine fish species. We have examined whether gene flow is responsible for the limited population structure in the Atlantic cod, Gadus morhua L., by comparing the previously published patterns of variation at 10 allozyme loci to 17 nuclear restriction fragment length polymorphism (RFLP) loci scored by 11 anonymous cDNA clones. Unlike the allozyme loci, highly significant differences were observed among all populations at the DNA markers in a pattern consistent with an isolation-by-distance model of population structure. The magnitude of allele frequency variation at the nuclear RFLP loci significantly exceeded that observed at the protein loci (χ(2) = 24.6, d.f. = 5, P < 0.001). Estimates of gene flow from the private alleles method were similar for the allozymes and nuclear RFLPs. From the infinite island model, however, estimates of gene flow from the DNA markers were fivefold lower than indicated by the proteins. The discrepancy between gene flow estimates, combined with the observation of a large excess of rare RFLP alleles, suggests that the Atlantic cod has undergone a recent expansion in population size and that populations are significantly displaced from equilibrium. Because gene flow is a process that affects all loci equally, the heterogeneity observed among populations at the DNA level eliminates gene flow as the explanation for the homogeneous allozyme patterns. Our results suggest that a recent origin of cod populations has acted to constrain the extent of population differentiation observed at weakly polymorphic loci and implicate a role for selection in affecting the distribution of protein variation among natural populations in this species.  相似文献   

15.
The Sichuan golden monkey (Rhinopithecus roxellana) is a famous and beautiful endangered primate. Owing to the dearth of samples and technical limitations, previous studies could not adequately assess the levels of genetic polymorphisms in the species. To evaluate the polymorphisms further, we sequenced the entire mitochondrial control regions (D-loop) of 35 individuals from the 3 major habitats: Minshan, Qinglin, and Shennongjia. We observed many polymorphisms and estimated that the effective population size of the current total population is less than ca. 480–2300, and the time to the most recent common ancestor is ca. 4000–62,700 years. Through comparisons, we showed that the population of Rhinopithecus roxellana has a relatively higher polymorphism level than that of other endangered primates.  相似文献   

16.
Twenty-seven enzyme systems, six random amplified polymorphic DNA (RAPD) primers, and two microsatellite loci were tested to determine intraspecific divergence in the natural population of the endangered Indian featherback fish, Chitala chitala, for the first time. The 262 samples of C. chitala were collected from six riverine locations in India: the Satluj, Ganga (Ghagra, Bhagirathi, and Brahmaputra), Mahanadi, and Narmada river systems. The analysis revealed population subdivisions, with an FST value from 0.1235 (95% confidence 0.0868–0.1621) for RAPD and a combined FST of 0.0344 (95% confidence 0.0340–0.0350) for microsatellite loci. An analysis of 38 allozyme loci did not reveal any polymorphism in the samples from any of the riverine localities; a possible explanation for this could be that the ancestors of Chitala could have faced a population reduction in prehistoric periods, as low allozyme variation is also reported for other species of Chitala from south Asia.  相似文献   

17.
Limonium cavanillesii is an extremely endangered plant species endemic to the east Mediterranean region of Spain. Regarded as extinct for several years, the recent discovery of a small population (only 29 individuals) has prompted the adoption of measures for its conservation by official agencies. As part of this effort, we have analysed genetic variation in this population by means of random amplified polymorphic DNA (RAPDs). The analysis of 29 individuals with 11 different primers produced 131 monomorphic bands. To our knowledge, this is the lowest level of genetic variation detected in plants using RAPD markers. This result could be explained both by the apomictic reproductive system of this species and by the passage through a severe bottleneck in recent times, after which there has been no chance for mutation to restore detectable genetic variation.  相似文献   

18.
DNA sequence data reveal extensive polymorphism in the virulent, human malaria parasite Plasmodium falciparum. The extent of polymorphism at apparently neutral-evolving loci points to a common ancestor for this species that is no more recent than approximately 150,000-200,000 years ago. In addition, there is evidence of balanced polymorphisms at certain antigen-encoding loci, some of which have been maintained for millions of years. Thus, we can reject the hypothesis that this species underwent a recent extreme bottleneck (i.e. one in which the population was reduced to a single haploid genotype). However, it is possible that less-severe bottlenecks have occurred.  相似文献   

19.
The black-footed ferret (Mustela nigripes) is an endangered North American carnivore that underwent a well-documented population bottleneck in the mid-1980s. To better understand the effects of a bottleneck on a free-ranging carnivore population, we used 24 microsatellite loci to compare genetic diversity before versus during the bottleneck, and compare the last wild population to two historical populations. We also compared genetic diversity in black-footed ferrets to that of two sibling species, the steppe polecat (Mustela eversmanni) and the European polecat (Mustela putorius). Black-footed ferrets during the bottleneck had less genetic diversity than steppe polecats. The three black-footed ferret populations were well differentiated (F(ST) = 0.57 +/- 0.15; mean +/- SE). We attributed the decrease in genetic diversity in black-footed ferrets to localized extinction of these genetically distinct subpopulations and to the bottleneck in the surviving subpopulation. Although genetic diversity decreased, female fecundity and juvenile survival were not affected by the population bottleneck.  相似文献   

20.
In endangered species, it is critical to analyse the level at which populations interact (i.e. dispersal) as well as the levels of inbreeding and local adaptation to set up conservation policies. These parameters were investigated in the endangered species Parnassia palustris living in contrasted habitats. We analysed population structure in 14 populations of northern France for isozymes, cpDNA markers and phenotypic traits related to fitness. Within population genetic diversity and inbreeding coefficients were not correlated to population size. Populations seem not to have undergone severe recent bottleneck. Conversely to pollen migration, seed migration seems limited at a regional scale, which could prevent colonization of new sites even if suitable habitats appear. Finally, the habitat type affects neither within-population genetic diversity nor genetic and phenotypic differentiation among populations. Thus, even if unnoticed local adaptation to habitats exists, it does not influence gene flow between populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号