首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exploiting the biolistic process we have generated stable transgenic bean (Phaseolus vulgaris L.) plants with unlinked and linked foreign genes. Co-transformation was conducted using plasmid constructions containing a fusion of the gus and neo genes, which were co-introduced with the methionine-rich 2S albumin gene isolated from the Brazil nut and the antisense sequence of AC1, AC2, AC3 and BC1 genes from the bean golden mosaic geminivirus. The results revealed a co-transformation frequency ranging from 40% to 50% when using unlinked genes and 100% for linked genes. The introduced foreign genes were inherited in a Mendelian fashion in most of the transgenic bean lines. PCR and Southern blot hybridization confirmed the integration of the foreign genes in the plant genome.  相似文献   

2.
Inheritance of gusA and neo genes in transgenic rice   总被引:21,自引:0,他引:21  
Inheritance of foreign genes neo and gusA in rice (Oryza sativa L. cv. IR54 and Radon) has been investigated in three different primary (T0) transformants and their progeny plants. T0 plants were obtained by co-transforming protoplasts from two different rice suspension cultures with the neomycin phosphotransferase II gene [neo or aph (3) II] and the -glucuronidase gene (uidA or gusA) residing on separate chimeric plasmid constructs. The suspension cultures were derived from callus of immature embryos of indica variety IR54 and japonica variety Radon. One transgenic line of Radon (AR2) contained neo driven by the CaMV 35S promoter and gusA driven by the rice actin promoter. A second Radon line (R3) contained neo driven by the CaMV 35S promoter and gusA driven by a promoter of the rice tungro bacilliform virus. The third transgenic line, IR54-1, contained neo driven by the CaMV 35S promoter and gusA driven by the CaMV 35S.Inheritance of the transgenes in progeny of the transgenic rice was investigated by Southern blot analysis and enzyme assays. Southern blot analysis of genomic DNA showed that, regardless of copy numbers of the transgenes in the plant genome and the fact that the two transgenes resided on two different plasmids before transformation, the introduced gusA and neo genes were stably transmitted from one generation to another and co-inherited together in transgenic rice progeny plants derived from self-pollination. Analysis of GUS and NPT II activities in T1 to T2 plants provided evidence that inheritance of the gusA and neo genes was in a Mendelian fashion in one plant line (AR2), and in an irregular fashion in the two other plant lines (R3 and IR54-1). Homozygous progeny plants expressing the gusA and neo genes were obtained in the T2 generation of AR2, but the homozygous state was not found in the other two lines of transgenic rice.  相似文献   

3.
Transgenic cereal plants expressing the β-glucuronidase (uidA) and neomycin phosphotransferase (neo) genes were obtained via microprojectile bombardment of immature inflorescence tissue of tritordeum (the fertile Hordeum x Triticum amphiploid, HchHchAABB). A total of 17 independent transgenic plants were recovered from 32 bombardments (on average four inflorescences per shot). Of the bombardment and culture parameters tested, explant preculture had the most influence on stable transformation frequency. The uidA and neo genes were supplied on two separate plasmids (co-transformation) and 88% of the transgenic plants recovered expressed both genes. Southern analysis confirmed the results of histochemical GUS and NPT II assays. Transgenic plants were grown to maturity and flowered and set seed. Pollen from four T0 GUS+ plants analysed showed GUS activity and T1 seedlings derived from one of the transgenic plants showed a segregation of 2.75:1 (GUS+:GUS) for uidA gene activity.  相似文献   

4.
5.
Stable co-transformation of maize protoplasts with gusA and neo genes   总被引:10,自引:0,他引:10  
An efficient co-transformation protocol using polyethylene glycol was developed for Zea mays L. (cv. A188 × BMS) protoplasts isolated from suspension culture cells. Co-transformation was accomplished by using plasmid constructions containing -glucuronidase (gusA) or neomycin phosphotransferase (neo) gene coding sequences; both were under control of the CaMV 35S promoter. Protoplast culture and transformation conditions were optimized to assure efficient recovery of transformed cells. The overall efficiency of transformation was 1 × 10–4 (calculated per viable protoplast plated). Among kanamycin-resistant lines, 50% showed a high level of GUS activity (above one unit). Southern blot hybridization confirmed the presence of numerous gusA and neo coding sequences in the maize genome. In two analyzed lines, integrated sequences appeared to be organized in tandem head-to-tail repeats. Results also indicated that the integrated sequences were partially methylated.  相似文献   

6.
Organisation of the ribosomal RNA genes in Streptomyces coelicolor A3(2)   总被引:15,自引:0,他引:15  
Summary Using Southern hybridisation of radiolabelled purified ribosomal RNAs to genomic DNA the ribosomal RNA genes of Streptomyces coelicolor A3(2) were shown to be present in six gene sets. Each gene set contains at least one copy of the 5 S, 16 S and 23 S sequences and in at least two cases these are arranged in the order 16 S-23S-5S. Three gene sets, rrnB, rrnD and rrnF, were isolated by screening a library of S. coelicolor A3(2) DNA. The restriction map of one of these, rrnD, was determined and the nucleotide sequences corresponding to the three rRNAs were localised by Southern hybridisation. The gene order in rrnD is 16S-23S-5S.  相似文献   

7.
The 2S albumin from the endosperm of castor seed (Ricinus communis L.) seed was reduced by thioredoxin from either wheat germ or Escherichia coli. The 2S protein is made up of a large (approx. 7 kDa) subunit that contains two intramolecular disulfides and a small (approx. 4 kDa) subunit that lacks intramolecular disulfides. The two subunits are joined by at least one intermolecular disulfide bond. Thioredoxin could be reduced either enzymically with NADPH and NADP-thioredoxin reductase or chemically with dithiothreitol. Reduced glutathione and glutaredoxin (from E. coli) were without effect. The ability of the 2S protein to undergo reduction by thioredoxin was demonstrated by a direct reduction procedure based on the fluorescent probe, monobromobimane, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and by an enzymatic procedure in which reduction is linked to activation of chloroplast NADP-malate dehydrogenase. Analyses indicated that thioredoxin actively reduced the intramolecular disulfides of the 2S large subunit, but was ineffective in reducing the intermolecular disulfide(s) that connect the large to the small subunit. These findings extend the role of thioredoxin to the reduction of a seed protein that is widely distributed in oil producing plants.Abbreviations DDT dithiothreitol - mBBr monobromobimane - NTR NADP-thioredoxin reductase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis This work was supported by a grant from the National Science Foundation.  相似文献   

8.
Protoplasts of the indica rice (Oryza sativa L.) variety, IR54, were transiently transformed with the gusA gene and stably transformed with both the neo and gusA genes. We show that PEG-mediated co-transformation of protoplasts with two genes on separate plasmids coupled with selection on kanamycin is an effective way of transferring foreign gene(s) into the indica rice genome. The efficiency of co-transformation was generally 20–30%, i.e. the frequency of kanamycin-resistant calli having both the neo and gusA active genes. Southern blot analysis using a probe for gusA indicated integration of several copies of the gene, often as head to tail tandem repeats.Abbreviations GUS ß-glucuronidase - PEG polyethlene glycol - PCV packed cell volume  相似文献   

9.
Protocols for efficient co-transformation of potato internodes with genes contained in separate plasmids or gene cassettes (i.e., linear PCR fragments comprising a promoter-gene-terminator) using particle bombardment were established. Twenty-eight out of 62 (45%) and 11 out of 65 (17%) plants transformed with a plasmid containing the selectable marker contained one and two additional non-selected genes, respectively. When gene cassettes were used in transformation, six out of eight plants were co-transformed. Expression analysis showed that 75–80% of the plants transformed with two transgenes expressed both of them, irrespective of the use of plasmids or gene cassettes. Thirty-eight plants containing the gusA reporter-gene and the nptII selectable-marker have been characterised with respect to the molecular organisation of the donor DNAs. Seventeen out of 49 (35%) gusA sites of integration contained one copy of the gene. Only 11 gusA sites (22%) were linked to the site of integration of the selectable marker. When one site of integration contained several copies of the transgene, a predominance of 3–3 inverted re-arrangement repeats was observed.  相似文献   

10.
Summary Germinating seeds of Arabidopsis thaliana were cocultivated with an Agrobacterium tumefaciens strain (C58Clrif) carrying the pGV3850:pAK1003 Ti plasmid. This Ti plasmid contains the neomycin phosphotransferase II gene (NPT II) which confers resistance to kanamycin and G418. Seeds (T1 generation) imbibed for 12 h before a 24 h exposure to Agrobacterium gave rise to the highest number of transformed progeny (T2 generation). Over 200 kanamycin-resistant T2 seedlings were isolated. Some of the T2 seedlings and T3 families were characterized for genetic segregation of functional NPT II gene(s), NPT II activity, and the presence of T-DNA inserts (Southern analysis). Ninety percent of the T2 individuals transmitted the resistance factor to the T3 families in a Mendelian fashion. Of the T3 families segregating in a Mendelian fashion (n=111), 62% segregated for one functional insert, 29% for two unlinked or linked functional inserts, 5% for three unlinked inserts, 1% for four unlinked inserts, whereas 3% appeared to be homozygous for the insert(s). The 13 families that did not exhibit Mendelian segregation ratios fell into 2 classes, both of which had a deficiency of kanamycin-resistant seedlings. In the Group I T3 families (n=6) only 0%–2% of the seedlings were resistant to kanamycin (100 mg/l), whereas in the Group II families (n=7) 8%–63% of the seedlings were resistant. All of the kanamycin-resistant plants that were tested were found to possess NPT II activity. Southern analysis revealed that all of the resistant plants contained at least one copy of the T-DNA and that the majority of the plants had multiple inserts. Explants from kanamycin-resistant plants survived and formed callus when cultured on callus-inducing medium containg G418.  相似文献   

11.
In wild-type Arabidopsis seeds the 2S albumin seed protein gene family members are differentially expressed. In this work it is shown that as predicted by the wild type situation, the at2S2 promoter is much more effective than that of the at2S1 gene in the expression of a transgene. However, unexpectedly high expression levels were obtained using a construct in which the transgene was present as a tandem duplication in the T-DNA. Neither in this case nor in homozygous plants with either construct was epigenetic silencing observed. While transgene mRNA levels were of the same order of magnitude as the endogenous at 2S2 gene, protein levels were much lower.  相似文献   

12.
Summary Hypocotyl explants of threeBrassica napus varieties were infected with two nopaline typeAgrobacterium strains each carrying a distinct disarmed T-DNA containing different selectable markers. Selection was done for only one of the markers, after which the regenerated plants were screened for the presence of the second marker. High co-transformation frequencies of both T-DNA's were obtained (39%–85% of the transformants). Where the two T-DNA's were integrated linked, they were usually present in an inverted orientation relative to each other; in all of the cases observed the two right borders were adjacent. Tandem orientations occurred less frequently. The T-DNA's were mainly integrated as intact copies and deletions did not often occur. The co-transformation system described favors a genetically linked integration of the two T-DNA's (78%), although in a single transformed plant both linked and unlinked copies of both T-DNA's may be present.  相似文献   

13.
The coding region of the 2S albumin gene of Brazil nut (Bertholletia excelsa H.B.K.) was completely synthesized, placed under control of the cauliflower mosaic virus (CaMV) 35S promoter and inserted into the binary vector plasmid pGSGLUC1, thus giving rise to pGSGLUC1-2S. This was used for transformation of tobacco (Nicotiana tabacum L. cv. Petit Havanna) and of the grain legume Vicia narbonensis L., mediated by the supervirulent Agrobacterium tumefaciens strain EHA 101. Putative transformants were selected by screening for neomycin phosphotransferase (NPT II) and -glucuronidase (GUS) activities. Transgenic plants were grown until flowering and fruiting occurred. The presence of the foreign gene was confirmed by Southern analysis. GUS activity was found in all organs of the regenerated transgenic tobacco and legume plants, including the seeds. In the legume, the highest expression levels of the CaMV 35S promoter-controlled 2S albumin gene were observed in leaves and roots. 2S albumin was localized in the vacuoles of leaf mesophyll cells of transgenic tobacco. The Brazil nut protein was present in the 2S fraction after gel filtration chromatography of the legume seed proteins and could be clearly identified by immunoblotting. Analysis of seeds from the R2 progenies of the legume and of transgenic tobacco plants revealed Mendelian inheritance of the foreign gene. Agrobacterium rhizogenes strain RifR 15834 harbouring the binary vector pGSGLUCl2S was also used to transform Pisum sativum L. and Vicia faba L. Hairy roots expressed the 2S albumin-specific gene. Several shoots were raised but they never completely rooted and no fertile plants were obtained from these transformants.  相似文献   

14.
15.
The radish Rfo gene restores male fertility in radish or rapeseed plants carrying Ogura cytoplasmic male-sterility. This system was first discovered in radish and was transferred to rapeseed for the production of F1 hybrid seeds. We aimed to identify the region of the Arabidopsis genome syntenic to the Rfo locus and to characterize the radish introgression in restored rapeseed. We used two methods: amplified consensus genetic markers (ACGMs) in restored rapeseed plants and construction of a precise genetic map around the Rfo gene in a segregating radish population. The use of ACGMs made it possible to detect radish orthologs of Arabidopsis genes in the restored rapeseed genome. We identified radish genes, linked to Rfo in rapeseed and whose orthologs in Arabidopsis are carried by chromosomes 1, 4 and 5. This indicates several breaks in colinearity between radish and Arabidopsis genomes in this region. We determined the positions of markers relative to each other and to the Rfo gene, using the progeny of a rapeseed plant with unstable meiotic transmission of the radish introgression. This enabled us to produce a schematic diagram of the radish introgression in rapeseed. Markers which could be mapped both on radish and restored rapeseed indicate that at least 50 cM of the radish genome is integrated in restored rapeseed. Using markers closely linked to the Rfo gene in rapeseed and radish, we identified a contig spanning six bacterial artificial chromosome (BAC) clones on Arabidopsis chromosome 1, which is likely to carry the orthologous Rfo gene.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by H. C. BeckerS. Giancola and S. Marhadour contributed equally to this work  相似文献   

16.
Selectable marker recycling in the chloroplast   总被引:22,自引:0,他引:22  
The bacterial geneaadA is an important and widely used selectable marker for manipulation of the chloroplast genome through biolistic transformation. Because no other such marker is available, two strategies for recycling of theaadA cassette have been developed. One utilizes homologous recombination between two direct repeats flanking theaadA cassette to allow its loss under non-selective growth conditions. A second strategy is to perform co-transformation with a plasmid containing a modified, non-essential chloroplast gene and another plasmid in which theaadA cassette disrupts a chloroplast gene known to be essential for survival. Under selective growth conditions the first mutation can be transferred to all chloroplast DNA copies whereas theaadA insertion remains heteroplasmic. Loss of the selectable marker can be achieved subsequently by growing the cells on non-selective media. In both cases it is possible to reuse theaadA cassette for the stepwise disruption or mutagenesis of any gene in the same strain.  相似文献   

17.
A chimeric gene composed of the coding sequence of theble gene fromStreptoalloteichus hindustanus fused to the 5 and 3 untranslated regions of theChlamydomonas reinhardtii nuclear geneRBCS2 has been constructed. Introduction of this chimeric gene into the nuclear genome ofC. reinhardtii by co-transformation with theARG7 marker yields Arg+ transformants of which approximately 80% possess theble gene. Of these co-transformants, approximately 3% display a phleomycin-resistant (PmR) phenotype. Western blot analysis using antibodies against theble gene product confirms the presence of the protein in the PmR transformants and genetic analysis demonstrates the co-segregation of theble gene with the phenotype in progeny arising from the mating of a PmR transformant to wild-type strains. Direct selection of PmR transformants was achieved by allowing an 18-h period for recovery and growth of transformed cells prior to selection. This work represents the first demonstration of stable expression and inheritance of a foreign gene in the nuclear genome ofC. reinhardtii and provides a useful dominant marker for nuclear transformation.  相似文献   

18.
Inheritance of resistance to herbicide (300 mg/l glufosinate ammonium) up to the third (T3) seed generation was compared in two populations of transgenic lettuce (Lactuca sativa L. cv ’Evola’) harbouring a T-DNA containing the bar gene, linked to either the Cauliflower Mosaic Virus (CaMV) 35S promoter, or a –784-bp plastocyanin promoter from pea (petE). Only 2.5% (4/163) of CaMV 35S-bar plants, selected by their kanamycin resistance(T0 generation), transmitted herbicide resistance at high frequency to their T3 seed generation compared with 97% (29/30) for kanamycin resistant petE-bar plants. In the case of 35S-bar transformants, only 16% (341/2,150) of the first seed generation (T1) plants, 22% (426/1,935) T2 plants and 11% (1,235/10,949) T3 plants were herbicide-resistant. In contrast, 63% (190/300) T1 plants, 83% (2,370/2,845) T2 plants and 99% (122/123) T3 petE-bar transformed plants were resistant to glufosinate ammonium. The T-DNAs carrying the petE-bar and CaMV 35S-bar genes also contained a CaMV 35S-neomycin phosphotransferase (nptII) gene. ELISA showed that NPTII protein was absent in 29% (45/156) of the herbicide-resistant T2 plants from 8/19 herbicide-resistant petE-bar lines. This indicated specific inactivation of the CaMV 35S promoter on the same T-DNA locus as an active petE promoter. The choice of promoter and T-DNA construct are crucial for long-term expression of transgenes in lettuce. Received: 13 November 1998 / Accepted: 20 February 1999  相似文献   

19.
Summary 30000 transgenic petunia plants carrying a single copy of the maize A1 gene, encoding a dihydroflavonol reductase, which confers a salmon red flower colour phenotype on the petunia plant, were grown in a field test. During the growing season plants with flowers deviating from this salmon red colour, such as those showing white or variegated phenotypes and plants with flowers exhibiting only weak pigmentation were observed with varying frequencies. While four white flowering plants were shown at the molecular level to be mutants in which part of the A1 gene had been deleted, other white flowering plants, as well as 13 representative plants tested out of a total of 57 variegated individuals were not mutants but rather showed hypermethylation of the 35S promoter directing A1 gene expression. This was in contrast to the homogeneous fully red flowering plants in which no methylation of the 35S promoter was observed. While blossoms on plants flowering early in the season were predominantly red, later flowers on the same plants showed weaker coloration. Once again the reduction of the A1-specific phenotype correlated with the methylation of the 35S promoter. This variation in coloration seems to be dependent not only on exogenous but also on endogenous factors such as the age of the parental plant from which the seed was derived or the time at which crosses were made.  相似文献   

20.
The tobacco cutworm (Spodoptera litura) is a polyphagous foliage insect and a major pest on peanut (Arachis hypogaea L.). S. litura is susceptible to the chimeric delta-endotoxin Cry1EC reported earlier. De-embryonated cotyledon explants of peanut were transformed using Agrobacterium tumefaciens strain EHA101 harboring a synthetic cry1EC gene driven by the CaMV 35S promoter. Transgenic plants of peanut with a single copy insertion of cry1EC were selected in the T(0) generation by Southern blot hybridization. Real-time PCR, Western blot and ELISA analysis indicated that expression of the cry1EC gene was higher in single copy T(1) plants. Immunoassay showed expression of Cry1EC up to 0.13% of total soluble protein in T(1) plants. Leaf feeding bioassay on highly expressing transgenic lines showed 100% killing of larvae at the 2(nd) instar stage of S. litura. This is the first report of transgenic peanut plants with resistance to S. litura.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号