共查询到20条相似文献,搜索用时 0 毫秒
1.
Jang J. H. Kim S. -H. Khaine I. Kwak M. J. Lee H. K. Lee T. Y. Lee W. Y. Woo S. Y. 《Photosynthetica》2018,56(4):1188-1203
Photosynthetica - This study aimed to determine the effects of plant growth-promoting rhizobacteria Bacillus subtilis JS on the growth and physiological changes of Populus euramericana and Populus... 相似文献
2.
Plant growth results from interaction of roots and shoots with the environment. The environment for roots is the soil or planting medium which provide structural support as well as water and nutrients to the plant. Roots also support the growth and functions of a complex of microorganisms that can have a profound effect on the growth anti survival of plants. These microorganisms constitute rhizosphere microflora and can be categorized as deleterious, beneficial, or neutral with respect to root/plant health. Beneficial interactions between roots and microbes do occur in rhizosphere and can be enhanced. Increased plant growth and crop yield can be obtained upon inoculating seeds or roots with certain specific root-colonizing bacteria- 'plant growth promoting rhizobacteria'. In this review, we discuss the mechanisms by which plant growth promoting rhizobacteria may stimulate plant growth. 相似文献
3.
Combination of different PGPR strains with complementary characteristics as a mixture to reduce possible instability under fluctuating environment has been considered practical. However, PGPR mixtures do not always play synergistic roles in growth promotion or biological control as reflected in our previous findings and other publications. In this work, we accidentally discovered that a mixture containing two well compatible PGPR strains, Bacillus pumilus WP8 and Erwinia persicinus RA2, did not synergize in growth promotion or biological control of tomato bacterial wilt under field conditions. Considering the importance of PGPR biofilm formation in growth promotion and biocontrol activities, we hypothesized that this phenomenon may be related to inhibition of biofilm formation. In vitro experiments showed that biofilm-formation ability of WP8 was inhibited by both RA2 cells and filtered supernatants collected from RA2 cultures at 12 h (RA2-12) rather than 48 h (RA2-48), even at high-temperatures (within 100°C). An in vivo experiment derived from crystal violet staining yielded similar results. Using liquid chromatography-mass spectrometry (LC-MS), we compared primary and secondary metabolites of RA2 (namely RA2-12 and RA2-48) and found D-glutamine, abundant in RA2-12, as the putative inhibitory factor. Trace amounts of jasmonic acid together with viscous extracellular polysaccharides in RA2-48 likely promoted the rescue of robust biofilm formation. This work suggests that inhibition of biofilm formation should be considered in PGPR mixture development. 相似文献
4.
5.
Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria 总被引:3,自引:0,他引:3
Geoffrey W. Zehnder Changbin Yao John F. Murphy Edward R. Sikora Joseph W. Kloepper 《BioControl》2000,45(1):127-137
Studies were done to evaluate specific strains of plant growth promoting rhizobacteria (PGPR) for induced resistance against
cucumber mosaic cucumovirus(CMV) in tomato. In greenhouse experiments where plants were challenged by mechanical inoculation
of CMV, the percentage of symptomatic plants in the most effective PGPR treatments ranged from 32 to 58%,compared with 88
to 98% in the nonbacterized, challenged disease control treatment. Field experiments were conducted in 1996 and 1997 to evaluate
4 PGPR strain treatments based on superior performance in the greenhouse studies. In the 1996field experiment, tomato plants
treated with 3 PGPR strains exhibited a significantly lower incidence of CMV infection and significantly higher yields, compared
with nonbacterized, CMV-challenged controls. In 1997, the overall percentages of plants infected with CMV in the control and
PGPR treatments was higher than in 1996. CMV symptom development was significantly reduced on PGPR-treated plants in 1997compared
with the control, but the percentage of infected plants and tomato yields were not significantly different among treatments.
These results suggest that PGPR-mediated induced resistance against CMV infection following mechanical inoculation onto tomato
can be maintained under field conditions.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
6.
Plant-growth-promoting rhizobacteria (PGPRs) are used as inoculants for biofertilization, phytostimulation and biocontrol. The interactions of PGPRs with their biotic environment, for example with plants and microorganisms, are often complex. Substantial advances in elucidating the genetic basis of the beneficial effects of PGPRs on plants have been made, some from whole-genome sequencing projects. This progress will lead to a more efficient use of these strains and possibly to their improvement by genetic modification. 相似文献
7.
Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat 总被引:13,自引:0,他引:13
AIMS: Plant growth promoting rhizobacteria (PGPR) are commonly used as inoculants for improving the growth and yield of agricultural crops, however screening for the selection of effective PGPR strains is very critical. This study focuses on the screening of effective PGPR strains on the basis of their potential for in vitro auxin production and plant growth promoting activity under gnotobiotic conditions. METHODS AND RESULTS: A large number of bacteria were isolated from the rhizosphere soil of wheat plants grown at different sites. Thirty isolates showing prolific growth on agar medium were selected and evaluated for their potential to produce auxins in vitro. Colorimetric analysis showed variable amount of auxins (ranging from 1.1 to 12.1 mg l-1) produced by the rhizobacteria in vitro and amendment of the culture media with l-tryptophan (l-TRP), further stimulated auxin biosynthesis (ranging from 1.8 to 24.8 mg l-1). HPLC analysis confirmed the presence of indole acetic acid (IAA) and indole acetamide (IAM) as the major auxins in the culture filtrates of these rhizobacteria. A series of laboratory experiments conducted on two cv. of wheat under gnotobiotic (axenic) conditions demonstrated increases in root elongation (up to 17.3%), root dry weight (up to 13.5%), shoot elongation (up to 37.7%) and shoot dry weight (up to 36.3%) of inoculated wheat seedlings. Linear positive correlation (r = 0.99) between in vitro auxin production and increase in growth parameters of inoculated seeds was found. Based upon auxin biosynthesis and growth-promoting activity, four isolates were selected and designated as plant growth-promoting rhizobacteria (PGPR). Auxin biosynthesis in sterilized vs nonsterilized soil inoculated with selected PGPR was also monitored that revealed superiority of the selected PGPR over indigenous microflora. Peat-based seed inoculation with selected PGPR isolates exhibited stimulatory effects on grain yields of tested wheat cv. in pot (up to 14.7% increase over control) and field experiments (up to 27.5% increase over control); however, the response varied with cv. and PGPR strains. CONCLUSIONS: It was concluded that the strain, which produced the highest amount of auxins in nonsterilized soil, also caused maximum increase in growth and yield of both the wheat cv. SIGNIFICANCE AND IMPACT OF STUDY: This study suggested that potential for auxin biosynthesis by rhizobacteria could be used as a tool for the screening of effective PGPR strains. 相似文献
8.
Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases 总被引:1,自引:0,他引:1
Studies of induced systemic resistance using strains of plant growth-promoting rhizobacteria (PGPR) have concentrated on the use of individual PGPR as inducers against multiple diseases of a single crop. To date, few reports have examined the potential of PGPR strain mixtures to induce systemic resistance against diseases of several different plant hosts. The objective of this study was to select mixtures of compatible PGPR strains with the capacity to elicit induced systemic resistance in four hosts. The specific diseases and hosts tested in this study included: bacterial wilt of tomato (Lycopersicon esculentum) caused by Ralstonia solanacearum, anthracnose of long cayenne pepper (Capsicum annuum var. acuminatum) caused by Colletotrichum gloeosporioides, damping off of green kuang futsoi (Brassica chinensis var. parachinensis) caused by Rhizoctonia solani, and cucumber mosaic virus (CMV) on cucumber (Cucumis sativus). To examine compatibility, seven selected PGPR strains were individually tested for in vitro antibiosis against all other PGPR strains and against three of the tested pathogens (R. solanacearum, C. gloeosporioides, and R. solani). No in vitro antibiosis was observed among PGPR strains or against pathogens. Twenty-one combinations of PGPR and seven individual PGPR were tested in the greenhouse for induced resistance activity. Results indicated that four mixtures of PGPR and one individual strain treatment significantly reduced the severity of all four diseases compared to the nonbacterized control: 11 mixtures reduced CMV of cucumber, 16 mixtures reduced bacterial wilt of tomato, 18 mixtures reduced anthracnose of long cayenne pepper, and 7 mixtures reduced damping off of green kuang futsoi. Most mixtures of PGPR provided a greater disease suppression than individual PGPR strains. These results suggest that mixtures of PGPR can elicit induced systemic resistance to fungal, bacterial, and viral diseases in the four hosts tested. 相似文献
9.
植物根际促生菌的筛选及鉴定 总被引:15,自引:0,他引:15
【目的】植物根际促生菌(PGPR)和植物的互作关系往往不稳定,PGPR菌群有可能提高菌株对野外环境的适应性。为此,本文根据PGPR促生机制的多样性,从不同植物根际土壤进行了PGPR的筛选及鉴定。【方法】首先,按照固氮、解磷、解钾、拮抗6种常见病原真菌,同时能在植物根际定殖为基本初筛标准,然后在实验室条件下测定初筛菌株的多项促生能力(PGP),最后通过生理生化试验和16SrRNA基因序列分析对所筛菌株进行鉴定。【结果】从江苏扬州、盐城等地土壤样品筛选出14株PGPR,具有体外抑菌、产NH3、产IAA、产HCN、产嗜铁素、解磷、溶钾、固氮以及产抗生素等促生能力。分类鉴定结果显示:7株属于假单胞菌属(Pseudomonas)、3株属于类芽孢杆菌属(Paenibacillus)、2株为芽孢杆菌属(Bacillus)、1株为布克霍尔德氏菌属(Burkholderia)、1株为欧文氏菌属(Erwinia)。【结论】所筛细菌具有多种促生能力,且能在根际定殖,为进一步构建多功能PGPR广适菌群提供菌株资源。 相似文献
10.
Radwan SS Dashti N El-Nemr I Khanafer M 《International journal of phytoremediation》2007,9(6):475-486
Standard and locally isolated nodule bacteria and plant growth-promoting rhizobacteria (PGPR) were grown on crude oil and individual pure hydrocarbons as sole sources of carbon and energy. The nodule bacteria included two standard Rhizobium leguminosarum strains, two standard Bradyrhizobium japonicum strains, and one unknown nodule bacterial strain that was locally isolated from Vicia faba nodules. The PGPR included one standard Serratia liquefaciens strain and two locally isolated strains of Pseudomonas aeruginosa and Flavobacterium sp. The pure hydrocarbons tested included n-alkanes with chain lengths from C9 to C40 and the aromatic hydrocarbons benzene, biphenyle, naphthalene, phenanthrene, and toluene. Quantitative gas liquid chromatographic analyses confirmed that pure cultures of representative nodule bacteria and PGPR could attenuate n-octadecane and phenanthrene in the surrounding nutrient medium. Further, intact nodules of V. faba containing bacteria immobilized on and within those nodules reduced hydrocarbon levels in a medium in which those nodules were shaken. It was concluded that legume crops are suitable phytoremediation tools for oily soil, since they enrich such soils not only with fixed nitrogen, but also with hydrocarbon-utilizing microorganisms. Further, legume nodules may have biotechnological value as materials for cleaning oily liquid wastes. 相似文献
11.
Applications of free living plant growth-promoting rhizobacteria 总被引:2,自引:0,他引:2
Free-living plant growth-promoting rhizobacteria (PGPR) can be used in a variety of ways when plant growth enhancements are required. The most intensively researched use of PGPR has been in agriculture and horticulture. Several PGPR formulations are currently available as commercial products for agricultural production. Recently developing areas of PGPR usage include forest regeneration and phytoremediation of contaminated soils. As the mechanisms of plant growth promotion by these bacteria are unravelled, the possibility of more efficient plant-bacteria pairings for novel and practical uses will follow. The progress to date in using PGPR in a variety of applications with different plants is summarized and discussed here. 相似文献
12.
Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria 总被引:1,自引:0,他引:1
Although plant growth-promoting rhizobacteria (PGPR) have been reported to influence plant growth, yield and nutrient uptake by an array of mechanisms, the specific traits by which PGPR promote plant growth, yield and nutrient uptake were limited to the expression of one or more of the traits expressed at a given environment of plant–microbe interaction. We selected nine different isolates of PGPR from a pool of 233 rhizobacterial isolates obtained from the peanut rhizosphere on the basis of ACC-deaminase activity. The nine isolates were selected, initially, on the basis of germinating seed bioassay in which the root length of the seedling was enhanced significantly over the untreated control. All the nine isolates were identified as Pseudomonas spp. Four of these isolates, viz. PGPR1, PGPR2, PGPR4 and PGPR7 (all fluorescent pseudomonads), were the best in producing siderophore and indole acetic acid (IAA). In addition to IAA and siderophore-producing attributes, Pseudomonas fluorescens PGPR1 also possessed the characters like tri-calcium phosphate solubilization, ammonification and inhibited Aspergillus niger and A. flavus in vitro. P. fluorescens PGPR2 differed from PGPR1 in the sense that it did not show ammonification. In addition to the traits exhibited by PGPR1, PGPR4 showed strong in vitro inhibition to Sclerotium rolfsii. The performances of these selected plant growth-promoting rhizobacterial isolates were repeatedly evaluated for 3 years in pot and field trials. Seed inoculation of these three isolates, viz. PGPR1, PGPR2 and PGPR4, resulted in a significantly higher pod yield than the control, in pots, during rainy and post-rainy seasons. The contents of nitrogen and phosphorus in soil, shoot and kernel were also enhanced significantly in treatments inoculated with these rhizobacterial isolates in pots during both the seasons. In the field trials, however, there was wide variation in the performance of the PGPR isolates in enhancing the growth and yield of peanut in different years. Plant growth-promoting fluorescent pseudomonad isolates, viz. PGPR1, PGPR2 and PGPR4, significantly enhanced pod yield (23–26%, 24–28% and 18–24%, respectively), haulm yield and nodule dry weight over the control in 3 years. Other attributes like root length, pod number, 100-kernel mass, shelling out-turn and nodule number were also enhanced. Seed bacterization with plant growth-promoting P. fluorescens isolates, viz. PGPR1, PGPR2 and PGPR4, suppressed the soil-borne fungal diseases like collar rot of peanut caused by A. niger and PGPR4 also suppressed stem rot caused by S. rolfsii. Studies on the growth patterns of PGPR isolates utilizing the seed leachate as the sole source of C and N indicated that PGPR4 isolate was the best in utilizing the seed leachate of peanut, cultivar JL24. Studies on the rhizosphere competence of the PGPR isolates, evaluated on the basis of spontaneous rifampicin resistance, indicated that PGPR7 was the best rhizoplane colonizer and PGPR1 was the best rhizosphere colonizer. Although the presence of growth-promoting traits in vitro does not guarantee that an isolate will be plant growth promoting in nature, results suggested that besides ACC-deaminase activity of the PGPR isolates, expression of one or more of the traits like suppression of phytopathogens, solubilization of tri-calcium phosphate, production of siderophore and/or nodulation promotion might have contributed to the enhancement of growth, yield and nutrient uptake of peanut. 相似文献
13.
Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana 总被引:1,自引:0,他引:1
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and exert beneficial effects on plant health and development. We are investigating the mechanisms by which PGPR elicit plant growth promotion from the viewpoint of signal transduction pathways within plants. We report here our first study to determine if well-characterized PGPR strains, which previously demonstrated growth promotion of various other plants, also enhance plant growth in Arabidopsis thaliana. Eight different PGPR strains, including Bacillus subtilis GB03, B. amyloliquefaciens IN937a, B. pumilus SE-34, B. pumilus T4, B. pasteurii C9, Paenibacillus polymyxa E681, Pseudomonas fluorescens 89B-61, and Serratia marcescens 90-166, were evaluated for elicitation of growth promotion of wild-type and mutant Arabidopsis in vitro and in vivo. In vitro testing on MS medium indicated that all eight PGPR strains increased foliar fresh weight of Arabidopsis at distances of 2, 4, and 6 cm from the site of bacterial inoculation. Among the eight strains, IN937a and GB03 inhibited growth of Arabidopsis plants when the bacteria were inoculated 2 cm from the plants, while they significantly increased plant growth when inoculated 6 cm from the plants, suggesting that a bacterial metabolite that diffused into the agar accounted for growth promotion with this strain. In vivo, eight PGPR strains promoted foliar fresh weight under greenhouse conditions 4 weeks after sowing. To define signal transduction pathways associated with growth promotion elicited by PGPR, various plant-hormone mutants of Arabidopsis were evaluated in vitro and in vivo. Elicitation of growth promotion by PGPR strains in vitro involved signaling of brassinosteroid, IAA, salicylic acid, and gibberellins. In vivo testing indicated that ethylene signaling was involved in growth promotion. Results suggest that elicitation of growth promotion by PGPR in Arabidopsis is associated with several different signal transduction pathways and that such signaling may be different for plants grown in vitro vs. in vivo. 相似文献
14.
The potential of a plant growth-promoting rhizobacterium, Pseudomonas sp. (strain PsJN), to stimulate the growth and enhancement of the resistance of grapevine (Vitis vinifera L.) transplants to gray mould caused by Botrytis cinerea has been investigated. In vitro inoculation of grapevine plantlets induced a significant plant growth promotion which made them more hardy and vigorous when compared to non-inoculated plantlets. This ability increased upon transplanting. When grown together with B. cinerea, the causal agent of gray mould, significant differences of aggressiveness were observed between the inoculated and non-inoculated plants. The presence of bacteria was accompanied by an induction of plant resistance to the pathogen. The beneficial effect from this plant-microbe association is being postulated. 相似文献
15.
M. Govindappa V. Ravishankar Rai S. Lokesh 《Archives Of Phytopathology And Plant Protection》2013,46(20):2479-2492
Out of seven isolates of rhizobacteria, four strains including GBO-3, INR937a, INR937b and IPC-11 were selected as inducers of systemic resistance against Cercospora carthami and tested individually for biological control of different important seed-borne fungal pathogens. The level of control achieved by each rhizobacterium varied with the pathosystem studied. The isolates GBO-3, INR937a, INR937b and IPC-11 exhibited reduced disease intensity in terms of average number of leaf lesions as compared to untreated control in protection experiments against C. carthami. Micromobilised with rhizobacterium GBO-3, INR937a, INR937b and IPC-11 safflower seeds were grown under greenhouse and challenge inoculated with C. carthami were selected for estimation of lipoxygenase, polyphenylalanine ammonia-lyase, peroxidase, polyphenol oxidase and β-1,3 glucanase activities were estimated spectrophotometrically. Increase in all enzymes was detected in foliar extracts from plants at different stages after challenge inoculation. 相似文献
16.
Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon 总被引:1,自引:0,他引:1
Laura García-Gutiérrez Diego Romero Houda Zeriouh Francisco M. Cazorla Juan A. Torés Antonio de Vicente Alejandro Pérez-García 《Plant and Soil》2012,358(1-2):201-212
Backgroud and aims
Powdery mildew elicited by Podosphaera fusca is an important threat to cucurbits. In order to find alternatives to the current use of chemicals, we examined the potential use of plant growth-promoting rhizobacteria (PGPR) for controlling the disease by induction of systemic resistance in the host plant.Methods
A collection of Bacillus and Pseudomonas strains from different origins was studied, including strains isolated from roots of disease-free melon plants obtained from a greenhouse plagued by powdery mildew. The selection of best candidates was based on the evaluation of different traits commonly associated with PGPR, such as antifungal and siderophore production, swimming and swarming motilities, biofilm formation, auxin production and promotion of root development.Results
Three Bacillus strains, B. subtilis UMAF6614 and UMAF6639 and B. cereus UMAF8564, and two Pseudomonas fluorescens strains, UMAF6031 and UMAF6033, were selected after ranking the strains using a nonparametric statistics test. Applied to melon seedlings, the selected strains were able to promote plant growth, increasing fresh weight up to 30%. Furthermore, these strains provided protection against powdery mildew and also against angular leaf spot caused by Pseudomonas syringae pv. lachrymans, with disease reductions of up to 60%.Conclusions
These results suggest that the use of ISR-promoting PGPR could be a promising strategy for the integrated control of cucurbit powdery mildew and other cucurbit diseases. 相似文献17.
Vanessa Nessner Kavamura Suikinai Nobre Santos João Luiz da Silva Márcia Maria Parma Luciana Aparecida Ávila Alexandre Visconti Tiago Domingues Zucchi Rodrigo Gouvêa Taketani Fernando Dini Andreote Itamar Soares de Melo 《Microbiological research》2013,168(4):183-191
Drought is one of the major problems worldwide. The search for new and efficient microorganisms, from unexplored environments, to be used in association with plants to alleviate the negative effects imposed by water stress, is an interesting alternative. Thus, cacti-associated bacteria from the Brazilian semi-arid region were isolated based on their ability to grow in medium with reduced water availability. Strains were tested for the production of exopolysaccharides (EPS), as well as in vitro plant growth promotion traits. A great proportion of the isolates belong to the genus Bacillus. From a total of forty-eight bacteria, 65% were able to grow in medium with reduced water availability (0.919Aw), exopolysaccharide production was observed for 65% of the strains. The production of indole acetic acid (IAA) exceeding 51 μg mL?1 was observed for 4% and the high solubilization of Ca–P was verified for 6% of the isolates. No strain was able to produce hydrogen cyanide (HCN), 71% produced ammonia and 79% showed a halo of carboxymethyl cellulose (CMC) degradation. Zea mays L. growth promotion under water stress (30% of field capacity) was achieved by two strains of Bacillus spp. This is the first report to describe cacti-associated bacteria from Brazilian semi-arid with plant growth-promoting abilities. 相似文献
18.
Kim WI Cho WK Kim SN Chu H Ryu KY Yun JC Park CS 《Journal of microbiology and biotechnology》2011,21(8):777-790
To elucidate the biodiversity of plant growth-promoting rhizobacteria (PGPR) in Korea, 7,638 bacteria isolated from the rhizosphere of plant species growing in many different regions were screened. A large number of PGPR were identified by testing the ability of each isolate to promote the growth of cucumber seedlings. After redundant rhizobacteria were removed via amplified rDNA restriction analysis, 90 strains were finally selected as PGPR. On the basis of 16S ribosomal RNA sequences, 68 Gram-positive (76%) and 22 Gram-negative (24%) isolates were assigned to 21 genera and 47 species. Of these genera, Bacillus (32 species) made up the largest complement, followed by Paenibacillus (19) and Pseudomonas (11). Phylogenetic analysis showed that most of the Grampositive PGPR fell into two categories: low- and high- G+C (Actinobacteria) strains. The Gram-negative PGPR were distributed in three categories: alpha-proteobacteria, beta- proteobacteria, and gamma-proteobacteria. To our knowledge, this is the largest screening study designed to isolate diverse PGPR. The enlarged understanding of PGPR genetic diversity provided herein will expand the knowledge base regarding beneficial plant-microbe interactions. The outcome of this research may have a practical effect on crop production methodologies. 相似文献
19.
20.
Ethylene is a key gaseous hormone that controls various physiological processes in plants including growth, senescence, fruit ripening, and responses to abiotic and biotic stresses. In spite of some of these positive effects, the gas usually inhibits plant growth. While chemical fertilizers help plants grow better by providing soil-limited nutrients such as nitrogen and phosphate, over-usage often results in growth inhibition by soil contamination and subsequent stress responses in plants. Therefore, controlling ethylene production in plants becomes one of the attractive challenges to increase crop yields. Some soil bacteria among plant growth-promoting rhizobacteria (PGPRs) can stimulate plant growth even under stressful conditions by reducing ethylene levels in plants, hence the term “stress controllers” for these bacteria. Thus, manipulation of relevant genes or gene products might not only help clear polluted soil of contaminants but contribute to elevating the crop productivity. In this article, the beneficial soil bacteria and the mechanisms of reduced ethylene production in plants by stress controllers are discussed. 相似文献