首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of preincubation of preparations of the outer segments of optic rods with the nonhydrolyzed analog GTP-guanilyl-5'-imidodiphosphate (Gpp(NH)p) and NaF, the combined effect of these agents as well as the action of (NH4)2SO4 (10-800 mM), MgSO4 (2-50 mM) and induction of peroxide oxidation of lipids are studied as applied to the catalytic activity of phosphodiesterase of cyclic nucleotides. Gpp(NH)p and NaF are shown to be tightly bound to GTP-binding proteins (G-proteins) of outer segments of optic rods, additional activation of phosphodiesterase in the presence of Gpp(NH)p being observed after preincubation with NaF and subsequent washing of the membrane. A problem on different binding sites of the ion F and Gpp(NH)p on G-proteins is discussed. It is found that (NH4)2SO4 does not affect the basal activity of phosphodiesterase but inhibits the activating effect of Gpp(NH)p and NaF on the enzyme. Induction of peroxide oxidation of lipids prevented by the addition of ionol (antioxidant) in a dose of 5.10(-4) M has the same effect. Changes in the concentration of Mg2+ in the medium influence insignificantly the basal activity of phosphodiesterase but are necessary for manifestation of the activating effect of Gpp(NH)p and NaF.  相似文献   

2.
This study presents the results of a kinetic investigation of adenylate cyclase in human polymorphonuclear leukocytes. In the presence of a saturating concentration of substrate (1 mM), the basal activity was increased severalfold by increasing Mg2+ from 1 to 25 mM. A Hill coefficient of 1.9 was obtained for Mg2+ or ATP. The data suggest cooperative interactions between the substrate binding sites in the neutrophil adenylate cyclase complex. It has been observed that guanyl-5'-yl imidodiphosphate (Gpp(NH)p) (S0.5 = 10 MUM) significantly increased and Ca2+ (S0.5 = 0.5 MM) significantly decreased only the Vmax without affecting the Hill coefficient or S0.5 for ATP. The Hill coefficients for Ca2+ or Gpp(NH)p were 0.9 and 0.8, respectively. The Hill coefficient for Ca2+ was not changed by the increased Gpp(NH)p concentrations. It appears that neutrophil adenylate cyclase has distinct binding sites for Gpp(NH)p and Ca2+, one for each compond. The binding of ligands is not changed by the other effectors and the action is directed only toward the Vmax of the enzyme. The stimulatory action of positive effectors (prostaglandin E1, isoproterenol, histamine) was enhanced by Gpp(NH)p and depressed by Ca2+. No preferential stimulation by Gpp(NH)p nor inhibition by Ca2+ of the action of the positive effectors has been found. The data suggests that only one type of catalytic subunit responds to the action of several positive effectors. Extracellular Gpp(NH)p or Ca2+ do not affect the cyclic adenosine 3':5'-monophosphate (cAMP) level in whole neutrophils and the effect of positive effectors on cAMP production is also not significantly changed by 5 mM Ca2+ or 0.1 mM Gpp(NH)p. Ionophore A23187 in the presence of 5 mM Ca2+ enhances Ca2+ entry into cells and decreases the basal cAMP formation. It appears that Gpp(NH)p or Ca2+ act only at the intracellular site of the adenylate cyclase complex.  相似文献   

3.
Magnesium (Mg2+) increases binding of follicle-stimulating hormone (FSH) to membrane-bound receptors and increases adenylyl cyclase activity. We examined the effects of divalent and monovalent cations on FSH binding to receptors in granulosa cells from immature porcine follicles. Divalent and monovalent cations increased binding of [125I]iodo-porcine FSH (125I-pFSH). The divalent cations Mg2+, calcium (Ca2+) and manganese, (Mn2+) increased specific binding a maximum of 4- to 5-fold at added concentrations of 10 mM. Mg2+ caused a half-maximal enhancement of binding at 0.6 mM, whereas Ca2+ and Mn2+ had half-maximal effects at 0.7 mM and 0.8 mM, respectively. The monovalent cation potassium (K+) increased binding a maximum of 1.5-fold at an added concentration of 50 mM, whereas the monovalent cation (Na+) did not increase binding at any concentration tested. The difference between K+ and Na+ suggested that either enhancement of binding was not a simple ionic effect or Na+ has a negative effect that suppresses its positive effect. Ethylenediamine tetraacetic acid, a chelator of Mg2+, prevented binding of 125I-pFSH only in the presence of Mg2+, whereas pregnant mare's serum gonadotropin, a competitor with FSH for the receptor, prevented binding in both the absence and the presence of Mg2+. Guanyl-5-ylimidodiphosphate (Gpp[NH]p) inhibited binding of 125I-pFSH in the absence or presence of Mg2+, but only at Gpp(NH)p concentrations greater than 1 mM. We used Mg2+ to determine if divalent cations enhanced FSH binding by increasing receptor affinity or by increasing the apparent number of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A novel adenylate cyclase activity was found in crude homogenates of Neurospora crassa. The adenylate cyclase had substantial activity with ATP-Mg2+ as substrate differing significantly from the strictly ATP-Mn2+-dependent enzyme characterized previously. Additionally, the ATP-Mg2+-dependent activity was stimulated two- to fourfold by GTP or guanyl-5'-yl-imido-diphosphate (Gpp(NH)p). We propose that the ATP-Mg2+-dependent, guanine nucleotide-stimulated activity is due to a labile regulatory component (G component) of the adenylate cyclase which was present in carefully prepared extracts. The adenylate cyclase had a pH optimum of 5.8 and both the catalytic and G component were particulate. The Km for ATP-Mg2+ was 2.2 mM in the presence of 4.5 mM excess Mg2+. Low Mn2+ concentrations had no effect on adenylate cyclase activity whereas high concentrations of Mn2+ or Mg2+ stimulated the enzyme. Maximal Gpp(NH)p stimulation required preincubation of the enzyme in the presence of the guanine nucleotide and the K1/2 for Gpp(NH)p stimulation was 110 nM. Neither fluoride nor any of a variety of glycolytic intermediates or hormones, including glucagon, epinephrine, and dopamine, had an effect on ATP-Mg2+-dependent adenylate cyclase activity. However, the enzymatic activity was stimulated not only by GTP but also by 5'-AMP and was inhibited by NADH.  相似文献   

5.
A study of the onset of cation and guanine nucleotide regulation of delta, mu, and kappa rat brain opioid receptors during postnatal development was undertaken. Site-specific binding assays were utilized for each receptor type and the effects of 0.5 mM MnCl2, 100 mM NaCl, and/or 50 microM guanosine-5'-(beta, gamma-imido) triphosphate [Gpp(NH)p] were assessed. The most pronounced changes of opioid binding were seen in the presence of Mn2+. In adults, agonist binding to delta sites was stimulated by Mn2+, whereas that to mu sites was not affected and kappa binding was inhibited. The postnatal development of Mn2+ regulation for the three receptor subtypes was distinctly different. The largest effects were seen on delta sites detected in the early neonatal period, Mn2+ eliciting a 68% stimulation of binding over controls at day 1. Significant inhibition of kappa site binding by Mn2+ was detected only after the third postnatal week. Mn2+ caused a significant reversal of Gpp(NH)p inhibition of delta binding in the early neonatal period, exceeding that in the absence of regulators. Inhibition of mu and delta receptor binding by Na+ was greater, and the Mn2+ reversal of this effect was smaller, in the first 2 postnatal weeks than in adults. Gpp(NH)p + Na+ regulation did not change appreciably during the postnatal period. However, Mn2+ reversal of the considerable inhibition elicited by the combination of Na+ and Gpp(HN)p was developmental time-dependent. The data are discussed in terms of multiple sites of interaction for guanine nucleotides and cations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The mechanism of action of forskolin stimulation of adenylate cyclase was investigated by examining its effects on the enzyme's Mg2+ activated catalytic unit (C) from bovine sperm, both preceding and following complementation with human erythrocyte membranes as a source of guanine nucleotide regulatory protein (N). Prior to complementation, sperm C was not activated by either NaF (10 mM) or 5'-guanylyl-beta-gamma-imidodiphosphate (Gpp(NH)p, 10 microM), suggesting that functional N was not present in this preparation. Forskolin (100 microM) was also without effect on C. Following complementation of the sperm membranes with those of erythrocytes, Mg2+-dependent sensitivity to forskolin, NaF, and Gpp(NH)p was imparted to C. Our findings are incompatible with the current hypothesis that forskolin stimulates adenylate cyclase by direct activation of C. Rather, the data suggest that the activation process occurs through an effect on N or by augmentation of the interaction between the components of the adenylate cyclase complex.  相似文献   

7.
Forskolin activated adenylate cyclase of purified rat adipocyte membranes in the absence of exogenous guanine nucleotides. Guanyl-5'-yl imidodiphosphate (Gpp(NH)p) inhibited the forskolin-activated cyclase immediately upon addition of the nucleotide at concentrations too low to activate adenylate cyclase (10(-9) to 10(-7) M). Inhibition seen with a very high concentration of Gpp(NH)p (10(-4) M) lasted for 3-4 min and was followed by an increase in the synthetic rate which remained constant for at least 15 min. The length of the transient inhibition did not vary with forskolin concentrations above 0.05 microM but low Gpp(NH)p (10(-8) M) exhibited a lengthened (6-7 min) inhibitory phase. The transient inhibitory effects of Gpp(NH)p were eliminated by 10(-7) M isoproterenol, high (40 mM) Mg2+, or preincubation with Gpp(NH)p in the absence of forskolin. While forskolin stimulated fat cell cyclase in the presence of Mn2+, this ion blocked the inhibitory effects of Gpp(NH)p. The well documented inhibitory effects of GTP on the fat cell adenylate cyclase system were also observed in the presence of forskolin. However, the inhibition by GTP is not transitory. These findings indicate that Gpp(NH)p regulation of forskolin-stimulated cyclase has at least two components: 1) an inhibitory component which acts through an undetermined mechanism and which acts immediately to decrease cyclase activity; and 2) an activating component which modulates the inhibited cyclase activity through the guanine nucleotide regulatory protein.  相似文献   

8.
Stimulation by prostaglandinE2 (PGE2) or luteinizing hormone (LH) of cyclic AMP (cAMP) production by rat Graafian follicles was reduced when the follicles were cultured for 3-6 hours in PGE2 or 12-24 hours in cAMP. The follicles regained adenylcyclase response to PGE2 when held in a PG-free medium, but refractoriness to LH remained even after culture without LH for 8 hours or in anti-LH antiserum. Follicle desensitization to LH was not associated by a decrease in total number of LH-binding sites, nor by an altered activity of cAMP phosphodiesterase. Desensitized follicles responded fully to NaF, quanosine triphosphate (GTP), or guanylimidodiphosphate (Gpp(NH)p). Actinomycin D or cycloheximide prevented the development of refractoriness to PGE2 when added with PGE2. Actinomycin D also prevented desentization to LH. Therefore desensitization may involve synthesis of a protein that couples hormone reception to adenyl cyclase.  相似文献   

9.
We have examined the influence of extracellular pH and calcium concentration on the action of glucagon on isolated rat hepatocytes, perfused liver or plasma membrane preparations. Incubation of rat hepatocytes with 10 nM glucagon at pH 7.4 caused an immediate increase in cAMP concentrations (8-fold), and this rise was almost 50% lower at acidic extracellular pH (6.9). This effect of pH could not be explained by an alteration of the hormone binding to its receptor for glucagon concentrations higher than 1 nM. The effect of acidosis on cAMP production was still present with non-hormonal effectors, such as 10 microM Gpp[NH]p, 30 microM forskolin or 10 mM NaF. This suggests a direct action of acidosis on the regulatory component Ns and/or on the catalytic subunit of adenylate cyclase. Acidic pH also depressed mitochondrial processes responsive to glucagon (NAD(P)H fluorescence, glutamine breakdown). Whatever the experimental model, calcium appeared to be required for maximal stimulation of cAMP production by glucagon. On perfused rat liver, glycogenolysis was depressed in the absence of extracellular calcium in the perfusate. In isolated hepatocytes, the stimulation of phosphorylase alpha activity by glucagon was modulated by extracellular calcium concentrations lower than 0.2 mM. This suggests that, although glucagon action is chiefly cAMP-mediated, its effect on calcium mobilization (affecting various cellular process, including cAMP production itself) should also be taken into account. This work also confirmed the importance of calcium in the stimulation of mitochondrial metabolism of glutamine by glucagon.  相似文献   

10.
Abstract: Stimulation of rat striatal adenylate cyclase by guanyl nucleotides was examined utilizing either MgATP or magnesium 5′-adenylylimidodiphos-phate (MgApp(NH) p) as substrate. GTP and 5′- guanylylimidodiphosphate (Gpp(NH) p) stimulate adenylate cyclase under conditions where the guanyl nucleotide is not degraded. The apparent stimulation of adenylate cyclase by GDP is due to an ATP-dependent transphosphorylase present in the tissue which converts GDP to GTP. We conclude that GTP is the physiological guanyl nucleotide responsible for stimulation of striatal adenylate cyclase. Dopamine lowers the Ka for Gpp(NH) p stimulation twofold, from 2.4 μM to 1.2 μM and increases maximal velocity 60%. The kinetics of Gpp(NH) p stimulation indicate no homotropic interactions between Gpp(NH) p sites and are consistent with one nonessential Gpp(NH) p activator site per catalytic site. Double reciprocal plots of the activation by free Mg2+ were concave downward, indicating either two sets of sites with different affinities or negative cooperativity (Hill coefficient = 0.3, K0.5= 23 mM). The data conform well to a model for two sets of independent sites and dopamine lowers the Ka for free Mg2+ at the high-affinity site threefold, from 0.21 mM to 0.07 mM. The antipsy-chotic drug fluphenazine blocks this shift in Ka due to dopamine. Dopamine does not appreciably affect the affinity of adenylate cyclase for the substrate, MgApp(NH) p. Therefore, dopamine stimulates striatal adenylate cyclase by increasing the affinity for free Mg2+ and guanyl nucleotide and by increasing maximal velocity.  相似文献   

11.
The possible roles of adenosine and the GTP analogue Gpp(NH)p in regulating mouse sperm adenylate cyclase activity were investigated during incubation in vitro under conditions in which after 30 min the spermatozoa are essentially uncapacitated and poorly fertile, whereas after 120 min they are capacitated and highly fertile. Adenylate cyclase activity, assayed in the presence of 1 mM ATP and 2 mM Mn2+, was determined by monitoring cAMP production. When adenosine deaminase (1 U/ml) was included in the assay to deplete endogenous adenosine, enzyme activity was decreased in the 30-min suspensions but increased in the 120-min samples (P < 0.02). This suggests that endogenous adenosine has a stimulatory effect on adenylate cyclase in uncapacitated spermatozoa but is inhibitory in capacitated cells. Since the expression of adenosine effects at low nucleoside concentrations usually requires guanine nucleotides, the effect of adding adenosine in the presence of 5 x 10–5 M Gpp(NH)p was examined. While either endogenous adenosine or adenosine deaminase may have masked low concentration (10?9?10?7 M) effects of exogenous adenosine, a marked inhibition (P < 0.001) of adenylate cyclase activity in both uncapacitated and capacitated suspensions was observed with higher concentrations (>10?5 M) of adenosine. Similar inhibition was also observed in the absence of Gpp(NH)p, suggesting the presence of an inhibitory P site on the enzyme. In further experiments, the effects of Gpp(NH)p in the presence and absence of adenosine deaminase were examined. Activity in 30-min suspensions was stimulated by the guanine nucleotide and in the presence of adenosine deaminase this stimulation was marked, reversing the inhibition seen with adenosine deaminase alone. In capacitated suspensions the opposite profile was observed, with Gpp(NH)p plus adenosine deaminase being inhibitory; again, this was a reversal of the effects obtained in the presence of adenosine deaminase alone, which had stimulated enzyme activity. These results suggest the existence of a stimulatory adenosine receptor site (Ra) on mouse sperm adenylate cyclase that is expressed in uncapacitated spermatozoa and an inhibitory receptor site (Ri) that is expressed in capacitated cells, with guanine nucleotides modifying the final response to adenosine. It is concluded that adenosine and guanine nucleotides may regulate mouse sperm adenylate cyclase activity during capacitation.  相似文献   

12.
Increasing the free calcium concentration from 10(-8) M to 10(-4) M inhibited cardiac sarcolemmal adenylyl cyclase activated by the addition of 5 X 10(-4) M forskolin or 1 X 10(-4) M GTP or Gpp(NH)p. The calcium inhibition curve in the presence of all three activators was shallow and best fit by a two site model of high affinity (less than 1.0 microM) and low affinity (greater than 0.1 mM). Gpp(NH)p appeared to decrease the sensitivity of adenylyl cyclase to inhibition by calcium at the high affinity site. Similar inhibition constants were obtained with each of the activators. Calmodulin content of native freeze-thaw vesicles was 76.2 +/- 14.2 ng/mg. Treatment of the vesicles with 1 mM EGTA to remove calmodulin significantly reduced calmodulin content to 19.7 +/- 1.35 ng/mg. This treatment had no significant effect on the calcium inhibition profile. Increasing free calcium to 3 X 10(-6) M was shown to have no effect on the EC50 estimated for either Gpp(NH)p or forskolin but did slightly increase the EC50 estimated for Mg2+ in the presence of maximal concentrations of either activator. Nevertheless, maximally stimulating concentrations of Mg2+ were unable to overcome calcium inhibition. Pretreatment of sarcolemmal membranes with pertussis toxin was shown to have no significant effect on calcium inhibition of adenylyl cyclase. The results suggest that the overall inhibitory action of calcium was most likely calmodulin independent and involved a direct interaction with the catalytic subunit at two distinct sites of high and low affinity. At the low affinity site calcium most likely competes with Mg2+ for an allosteric divalent cation binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In this study we seek to elucidate the mechanism of hormone-independent adenylate cyclase stimulation by Gpp(NH)p in chicken erythrocyte membranes, and the inhibition of this stimulation by propranolol. Membrane treatment with isoprenaline + GMP increased Gpp(NH)p stimulation to near maximal levels [obtainable with isoprenaline + Gpp(NH)p], but reduced stimulation by NaF. The stimulation by Gpp(NH)p was stereoselectively inhibited by propranolol, but not by equal concentrations of the local anaesthetic lignocaine. Propranolol's inhibitory action was abolished following membrane treatment with isoprenaline/GMP. In contrast to its inhibition of Gpp(NH)p stimulation, propranolol did not alter Gpp(NH)p-mediated 3H-GDP release from membranes. The polyene antibiotic filipin, which uncouples receptor (R) from Gs, also abolished Gpp(NH)p stimulation and this effect was partly overcome by membrane treatment. These results are consistent with a model in which free R exists in equilibrium with precoupled R.Gs complexes in the absence of hormone. These complexes are activated by Gpp(NH)p and dissociated by antagonists. The existence of such complexes is a prerequisite for Gpp(NH)p stimulatory action.  相似文献   

14.
Adenylate cyclase was solubilized from washed particulate fraction of rabbit cerebral cortex with the nonionic detergent Lubrol 12A9 and subjected to either gel filtration on Ultrogel AcA 34 or chromatography on DEAE Bio-Gel A. By both procedures the enzyme was resolved into two components, one insensitive to guanyl 5'-yl imidodiphosphate [Gpp(NH)p] and NaF but stimulated by Ca2+ and calmodulin, and another that was sensitive to Gpp(NH)p and NaF but relatively insensitive to Ca2+ and calmodulin. The data support the possibility that two independent forms of adenylate cyclase exist in cerebral cortex, one regulated by guanine nucleotide regulatory protein and another by Ca2+-calmodulin. Fractions containing the guanylnucleotide-sensitive activity were found to contain a factor that inhibited basal and Ca2+-stimulated adenylate cyclase in the Ca2+-sensitive fraction. The inhibitor was inactivated by heating at 60 degrees C and by incubation with trypsin. Inhibition was not time-dependent, and it was not due to destruction of cAMP by phosphodiesterase or of ATP by ATPase. Inhibitory action was not reversed by calmodulin and therefore it does not appear to be a calmodulin binding protein. Sucrose density gradient sedimentation indicated a sedimentation coefficient of 4S for the inhibitor; by this technique it co-sedimented with the adenylate cyclase sensitive to Gpp(NH)p and NaF.  相似文献   

15.
The activation of bovine thyroid adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) by Gpp(NH)p has been studied using steady-state kinetic methods. This activation is complex and may be characterized by two Gpp(NH)p binding sites of different affinities with measured constants: Ka1 = 0.1 micro M and Ka2 = 2.9 micro M. GDP beta S does not completely inhibit the Gpp(NH)p activation: analysis of the data is consistent with a single GDP beta S inhibitory site which is competitive with the weaker Gpp(NH)p site. Guanine nucleotide effects upon F- activation of adenylate cyclase have been studied. When App(NH)p is the substrate, 10 micro M GTP along with 10 mM NaF gives higher activity than NaF alone, while GDP together with NaF inhibits the activity by 50% relative to NaF. These features are not observed when the complex is assayed with ATP in the presence of a nucleotide regenerating system or when analogs Gpp)NH)p or GDP beta S are used along with NaF. These effects were studied in three other membrane systems using App(NH)p as substrate: rat liver, rat ovary and turkey erythrocyte. No consistent pattern of guanine nucleotide effects upon fluoride activation could be observed in the different membrane preparations. Previous experiments showed that the size of soluble thyroid adenylate cyclase changed whether membranes were preincubated with Gpp(NH)p or NaF. This size change roughly corresponded to the molecular weight of the nucleotide regulatory protein. This finding, coupled with the present data, suggests that two guanine nucleotide binding sites may be involved in regulating thyroid cyclase and that these sites may be on different protein chains.  相似文献   

16.
An FSH receptor-enriched fraction that responds to exogenous FSH by activation of adenylate cyclase was prepared by ultrafiltration of sucrose density gradient-purified light membranes derived from bovine calf testes homogenates and solubilized with Triton X-100. To further confirm the functional nature of the detergent-solubilized FSH receptor, the extract was incorporated by lipid hydration into large multilamellar vesicles composed of dioleoyl phosphatidylcholine and cholesterol, 2:1 molar ratio. Receptor incorporation was determined by measurement of specific binding of [125I] human FSH ([125I] hFSH). Substitution of dioleoyl phosphatidylcholine with dipalmitoyl phosphatidylcholine or increasing the cholesterol concentration of the vesicles reduced specific binding of [125I]hFSH. Under conditions favoring optimal incorporation of the receptor, specific binding of [125I]hFSH was time and temperature dependent and saturable when increasing concentrations of radioligand were added to a constant amount of proteoliposomes. Reconstituted proteoliposomes bound 1600 fmol FSH/mg protein with an affinity of 3.54 x 10(9) M-1. Inhibition of [125I] hFSH binding by hFSH was comparable to that seen with the membrane-bound receptor (ED50 = 10 ng). Equilibrium binding studies with [3H]Gpp(NH)p indicated that a single class of high affinity GTP binding sites with an association constant (Ka) of 3.33 x 10(7) m-1 which bound 2.19 fmol [3H]Gpp(NH)p/mg protein had also been incorporated into the proteoliposomes. Addition of FSH induced a 2-fold stimulation of [3H]Gpp(NH)p binding, supporting our earlier studies suggesting that the detergent-solubilized FSH receptor is complexed to the G protein. Of particular significance in the present study was the observation that both NaF and FSH stimulated cAMP production in the reconstituted system. In addition to belonging to a class of membrane receptors functionally and physically associated with G protein, this observation suggests that FSH receptors in bovine calf testicular membranes may be associated, at least in part, with adenylate cyclase as well.  相似文献   

17.
We have recently demonstrated the presence in the rat Leydig cells of a corticotropin releasing factor (CRF) receptor and an inhibitory action of the peptide on human chorionic gonadotropin (hCG)-induced cAMP generation and steroidogenesis. The inhibitory action of CRF was unaffected by pertussis toxin and was completely reversed by 8-bromo-cAMP (Ulisse, S., Fabbri, A., and Dufau, M. L. (1989) J. Biol. Chem. 264, 2156-2163). In this study, we have evaluated the participation of protein kinase C in CRF action in the Leydig cells and the level of the gonadotropin signal pathway affected by CRF. Binding of 125I-labeled ovine CRF to Leydig cell membranes was reduced by GTP and guanyl-5'-yl imidodiphosphate (Gpp(NH)p), in a dose-dependent manner. Phorbol 12-myristate 13-acetate, like CRF, caused time-dependent inhibition of hCG-induced cAMP generation and steroidogenesis. This inhibitory action was reversed by 8-bromo-cAMP. Both CRF and 12-O-tetradecanoylphorbol-13-acetate did not affect 125I-hCG binding. No additive effects of CRF and the phorbol ester were observed in these studies. CRF caused a rapid translocation of protein kinase C in Leydig cells. Preincubation of cells with protein kinase C inhibitors or TPA-induced depletion of protein kinase C prevented the inhibitory actions of CRF and TPA. CRF and TPA were able to inhibit the stimulation of cAMP and testosterone production by cholera toxin and forskolin. Adenylate cyclase stimulation by Gpp(NH)p, luteinizing hormone + Gpp(NH)p, and NaF in crude membranes or by forskolin and manganese in solubilized membranes, prepared from CRF- and TPA-treated cells, was also markedly inhibited. We conclude that CRF receptors interact with a pertussis toxin-insensitive G protein (possibly Gp) in the Leydig cell and that the inhibitory action of CRF on Leydig cell function is exerted mainly on the catalytic subunit of adenylate cyclase through a direct or indirect action of protein kinase C.  相似文献   

18.
Epinephrine, histamine and prostaglandin E1 stimulated adenylate cyclase activity in lung membranes and their stimulation of the enzyme activity was completely blocked by propranolol, metiamide and indomethacin, respectively. A partially-purified activator from the adult rat lung also enhanced adenylate cyclase activity in membranes. However, stimulation of adenylate cyclase by the rat lung activator was not abolished by the above receptor antagonists. Further, epinephrine, NaF and Gpp(NH)p stimulated adenylate cyclase activity rather readily, whereas stimulation of the enzyme activity by the lung activator was evident after an initial lag phase of 10 min. Also, the lung activator produced additive activation of adenylate cyclase with epinephrine, NaF and Gpp(NH)p. These results indicate that the lung activator potentiates adenylate cyclase activity in membranes by a mechanism independent from those known for epinephrine, NaF and Gpp(NH)p. Incubation of lung membranes for 30 min at 40°C resulted in a loss of adenylate cyclase activation by NaF and Gpp(NH)p. Addition of the released proteins to the heat-treated membranes did not restore the enzyme response to these agonists. However, heat treatment of lung membranes in the presence of 2-mercaptoethanol or dithiothreitol prevented the loss of adenylate cyclase response to NaF and Gpp (NH)p. N-ethylmaleimide abolished adenylate cyclase activation by epinephrine, NaF, Gpp(NH)p and the lung activator. These results indicate that the sulfhydryl groups are important for adenylate cyclase function in rat lung membranes.Abbreviations Gpp(NH)p 5-Guanylimidodiphosphate  相似文献   

19.
The effect of molybdate on adenylate cyclase (EC 4.6.1.1) in rat liver plasma membranes has been examined. The apparent K alpha for molybdate activation of the enzyme is 4.5 mM, and maximal, 7-fold stimulation is achieved at 50 mM. The observed increase in cAMP formation in the adenylate cyclase assay is not due to: (a) an inhibition of ATP hydrolysis; (b) a molybdate-catalyzed conversion of ATP to cAMP; (c) an inhibition of cAMP hydrolysis; or (d) an artifact in the isolation of cAMP formed in the reaction. Molybdate activation of adenylate cyclase is a general phenomenon exhibited by the enzyme in brain, cardiac, and renal tissue homogenates and in erythrocyte ghosts. However, like fluoride and guanyl-5'-yl imidodiphosphate (Gpp(NH)p), molybdate does not activate the soluble rat testicular adenylate cyclase. Molybdate is a reversible activator of adenylate cyclase. Activation is not due to an increase in ionic strength and is independent of the salt used to introduce molybdate. Molybdate does not activate adenylate cyclase previously stimulated with Gpp(NH)p or fluoride. At concentration greater than 20 mM, molybdate inhibits fluoride-stimulated adenylate cyclase, and at concentrations greater than 100 mM, molybdate stimulation of basal adenylate cyclase activity is diminished.  相似文献   

20.
Abstract: Adenylate cyclase was solubilized from washed paniculate fraction of rabbit cerebral cortex with the nonionic detergent Lubrol 12A9 and subjected to either gel filtration on Ultrogel AcA 34 or chromatography on DEAE Bio-Gel A. By both procedures the enzyme was resolved into two components, one insensitive to guanyl 5'-yl imidodiphosphate [Gpp(NH)p] and NaF but stimulated by Ca2+ and calmodulin, and another that was sensitive to Gpp(NH)p and NaF but relatively insensitive to Ca2+ and calmodulin. The data support the possibility that two independent forms of adenylate cyclase exist in cerebral cortex, one regulated by guanine nucleotide regulatory protein and another by Ca2+-calmodulin. Fractions containing the guanylnucleotide-sensitive activity were found to contain a factor that inhibited basal and Ca2+-stimulated adenylate cyclase in the Ca2+-sensitive fraction. The inhibitor was inactivated by heating at 60°C and by incubation with trypsin. Inhibition was not time-dependent, and it was not due to destruction of cAMP by phosphodiesterase or of ATP by ATPase. Inhibitory action was not reversed by calmodulin and therefore it does not appear to be a calmodulin binding protein. Sucrose density gradient sedimentation indicated a sedimentation coefficient of 4S for the inhibitor; by this technique it co-sedimented with the adenylate cyclase sensitive to Gpp(NH)p and NaF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号